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Abstract

A general game player automatically learns to play arbitrary
new games solely by being told their rules. For this purpose
games are specified in the game description language GDL,
a variant of Datalog with function symbols and a few known
keywords. In its latest version GDL allows to describe nonde-
terministic games with any number of players who may have
imperfect, asymmetric information. We analyse the epistemic
structure and expressiveness of this language in terms of epis-
temic modal logic and present two main results: (1) The op-
erational semantics of GDL entails that the situation at any
stage of a game can be characterised by a multi-agent epis-
temic (i.e., S5-) model; (2) GDL is sufficiently expressive to
model any situation that can be described by a (finite) multi-
agent epistemic model.

Introduction
General game playing aims at building systems that auto-
matically learn to play arbitrary new games solely by being
told their rules (Pitrat 1971; Pell 1993). The Game Descrip-
tion Language (GDL) is a special-purpose, rule-based lan-
guage for defining games (Love et al. 2006). GDL is used
in the AAAI General Game Playing Competition, where
participants are provided with previously unknown games
specified in this language, and are required to dynami-
cally and autonomously determine how best to play these
games (Genesereth, Love, and Pell 2005). A recent exten-
sion to GDL allows to describe games with randomness
and imperfect information (Thielscher 2010). This opens the
door to nondeterministic games like Poker, in which players
have imperfect, incomplete, and asymmetric information.

The game description language is a variant of Datalog
with function symbols and a few known keywords. By ap-
plying a standard semantics for logic programs, a game
description G can be interpreted by a state transition sys-
tem. The execution model underlying GDL then induces
a game model for G, which determines all possible ways
in which the game may develop and what information the
players acquire as the game proceeds (Love et al. 2006;
Thielscher 2010). However, an open question has been to
what extent this game model, including its implicit epistemic
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structure due to imperfect and asymmetric information, sat-
isfies standard properties of epistemic logic, and how ex-
pressive it is compared to this logic. The latter is particu-
larly interesting because at first glance GDL seems to be
constrained by the fact that all players have complete knowl-
edge of the game rules and in particular the initial position.

In this paper we analyse the epistemic structure and ex-
pressiveness of GDL in terms of epistemic logic. Seminal
work in this area is (Hintikka 1962), and since then many
philosophers have been interested in further developing the
notions of knowledge and belief using a possible world se-
mantics. In the late 1980s these approaches were picked up
and further developed by computer scientists, cf. (Halpern
and Vardi 1986; Fagin et al. 1995). This development was
originally motivated by the need to reason about commu-
nication protocols, where one is typically interested in what
knowledge different parties to a protocol have before, during
and after a run (i.e., an execution sequence) of the protocol.
Apart from computer science, there is much interest in the
dynamics of knowledge and belief in areas as diverse as ar-
tificial intelligence (Moore 1990), multi-agent systems (Rao
and Georgeff 1991), and game theory (Aumann and Bran-
denburger 1995).

Here, we present, and formally prove, two main results:

1. The game model for any (syntactically valid) GDL game
entails that at any round of the game the situation that
arises can be characterised by a multi-agent S5-model.

2. Given an arbitrary (yet finite) epistemic model it is possi-
ble to construct a GDL game description which produces
the situation described by this model.

This is complemented by an analysis of entailment of epis-
temic formulas in GDL and a study of how existing sys-
tems for Automated Theorem Proving and Epistemic Model
Checking can be combined into a proof system to systemat-
ically verify epistemic properties of GDL descriptions.

The remainder of the paper proceeds as follows. The next
section recapitulates both GDL and epistemic logic. The
third section analyses the epistemic logic behind GDL and
shows how the situations during a game can always be char-
acterised by a standard epistemic model that entails the exact
same formulas. The fourth section provides the construction
of a GDL game for any given epistemic model. We conclude
with a short discussion on model checking in our framework.



role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move ?m
does(?r,?m) player ?r does move ?m
next(?f) ?f holds in the next position
terminal the current position is terminal

goal(?r,?v) goal value for role?r is ?v
sees(?r,?p) ?r perceives ?p in the next position

random the random player

Table 1: GDL-II keywords: the top eight comprise standard
GDL while the last two have been added in GDL-II.2

Preliminaries
Describing Games with GDL
General Game Playing requires a formal language for de-
scribing the rules of arbitrary games. A complete game de-
scription consists of the names of the players, a specification
of the initial position, the legal moves and how they affect
the position, along with the terminating and winning crite-
ria. The emphasis of the game description language GDL
is on high-level, declarative game rules that are easy to un-
derstand and maintain. At the same time, GDL has a pre-
cise semantics and is fully machine-processable. Moreover,
background knowledge is not required—a set of rules is all
a player needs to know in order to be able to play a hitherto
unknown game.

A variant of Datalog with function symbols, the game de-
scription language uses a few known keywords; cf. Table 1.
Original GDL is suitable for describing finite, synchronous,
and deterministic n-player games with complete informa-
tion about the game state (Love et al. 2006).3 The extended
game description language GDL-II allows to specify arbi-
trary games with randomness and imperfect/incomplete in-
formation (Thielscher 2010; 2011). Valid game descriptions
must satisfy certain syntactic restrictions, which ensure that
all deductions “`” used in Definition 1 below are finite and
decidable; we refer to (Love et al. 2006) for details.

We need two abbreviations: Let S = {f1, . . . , fk} be a
state, that is, a finite set of ground terms (containing the po-
sition features that hold in S), then

Strue
def
= {true(f1)., . . . , true(fk).}

Furthermore, let M = 〈m1, . . . ,mn〉 be a joint move, that
is, a move (mi) for each player (ri), then

Mdoes def
= {does(r1,m1)., . . . , does(rn,mn).}

Definition 1. (Thielscher 2010) Let G be a valid GDL-II
specification whose signature determines the set of ground
terms Σ. Let 2Σ be the set of finite subsets of Σ. The seman-
tics of G is given by the following state transition system.

2The keywords are accompanied by the auxiliary, pre-defined
predicate distinct(X,Y), meaning the syntactic inequality of
the two arguments (Love et al. 2006).

3Synchronous means that all players move simultaneously. In
this setting, turn-taking games are modelled by allowing players
only one legal move, without effect, if it is not their turn.

• R = {r ∈ Σ : G ` role(r)} (the roles);
• s0 = {f ∈ Σ : G ` init(f)} (the initial position);
• t = {S ∈ 2Σ : G ∪ Strue ` terminal} (the terminal

positions);
• l = {(r,m, S) : G ∪ Strue ` legal(r,m)}, for all
r ∈ R, m ∈ Σ, and S ∈ 2Σ (the legal moves);

• u(M,S) = {f ∈ Σ : G ∪Mdoes ∪ Strue ` next(f)},
for all joint moves M and S ∈ 2Σ (the update function);

• I = {(r,M, S, p) : G ∪Mdoes ∪ Strue ` sees(r, p)},
for all r ∈ R \ {random}, M ∈ Σ|R|−1, S ∈ 2Σ, and
p ∈ Σ (the information relation, determining the players’
percepts);

• g = {(r, v, S) : G ∪ Strue ` goal(r, v)}, for all
r ∈ R \ {random}, v ∈ {0, . . . , 100} and S ∈ 2Σ (the
goal relation).

Different runs of a game can be described by develop-
ments, which are sequences of states and moves by each
player up to a certain round, and a player cannot distinguish
two developments if he takes the same moves and gets the
same percepts in the two (Thielscher 2010).

Definition 2. Let 〈R, s0, t, l, u, I, g〉 be the semantics of a
GDL-II description G according to Definition 1, then a de-
velopment δ is a sequence

〈s0,M1, s1, . . . , sd−1,Md, sd〉

where d ≥ 0 and for all i ∈ {1, . . . , d}, Mi is a joint move
such that each move is legal in si−1, and states are updated
thus: si = u(Mi, si−1). The length of a development δ, de-
noted as len(δ), is the number of states in δ. By Mi(j) we
denote agent j’s move in the joint move Mi.

Consider two developments δ = 〈s0,M1, s1, . . .〉 and
δ′ = 〈s0,M

′
1, s
′
1 . . .〉. The player j ∈ R\{random} cannot

distinguish δ from δ′ (written as δ ∼j δ
′) if, and only if,

1. len(δ) = len(δ′) and
2. for all i ∈ {1, . . . , len(δ)− 1}:

(a) {p : (j,Mi, si−1, p) ∈ I} = {p : (j,M ′i , s
′
i−1, p) ∈ I}

(b) Mi(j) = M ′i(j).

Modal Epistemic Logic
In order to analyse the epistemic logic behind GDL-II and
its semantics, we recapitulate basic notions from standard
Modal Epistemic Logic (Fagin et al. 1995).

Definition 3. (Language) A basic Modal Epistemic Logic
Language for epistemic formulas is given by the following
Backus-Naur Form:

φ := P | ¬φ | φ ∧ ψ | Kiφ | CBφ

where P is an atomic proposition, i an agent, and B a non-
empty set of agents. >,⊥,∨,→ are defined as usual.

Intuitively, Kiφ means agent i knows φ, and CBφ means
that φ is common knowledge among the agents in B; for
example, “agent k knows that agent j knows P ” can be ex-
pressed as KiKjP . To give precise meanings to this lan-
guage, we need multi-agent epistemic models.



1 role(generalA). role(generalB). role(random).

2 succ(0,1). succ(1,2). ... succ(8,9).

3 time(3am). time(9pm).

4 init(round(0)).

5 gets_message(?g,?m) <= role(?g), distinct(?g,random),

6 does(?g1,send(?m)),

7 does(random,pass), distinct(?g,?g1).

8 gets_new_message(?g) <= gets_message(?g,?m).

9 has_a_message(?g) <= true(message(?g,?m)).

10 legal(random,noop) <= true(round(0)).

11 legal(random,pass) <= not true(round(0)).

12 legal(random,stop) <= not true(round(0)).

13 legal(generalA,settime(?t)) <= true(round(0)), time(?t).

14 legal(generalB,noop) <= true(round(0)).

15 legal(generalB,noop) <= true(control(generalB)),

16 not has_a_message(generalB).

17 legal(generalA,noop) <= true(control(generalB)).

18 legal(generalB,noop) <= true(control(generalA)).

19 legal(?g,send(ack(?m))) <= true(control(?g)),

20 true(message(?g,?m)).

21 sees(?g,?m) <= gets_message(?g,?m).

22 next(message(generalA,?t))

23 <= does(generalA,settime(?t)).

24 next(attack_time(?t)) <= does(generalA,settime(?t)).

25 next(attack_time(?t)) <= true(attack_time(?t)).

26 next(message(?g,?m)) <= gets_message(?g,?m).

27 next(message(?g,?m)) <= true(message(?g,?m)),

28 not gets_new_message(?g).

29 next(control(generalA)) <= true(round(0)).

30 next(control(generalA)) <= true(control(generalB)).

31 next(control(generalB)) <= true(control(generalA)).

32 next(round(?n)) <= true(round(?m)), succ(?m,?n).

33

34 terminal <= true(round(9)).

Figure 1: A GDL-II description of the Two Generals’ Coordinated Attack Game: Gca.

Definition 4. A multi-agent epistemic model E is a struc-
ture 〈W, {∼i: i ∈ Ag}, V 〉, where W is a set of possible
worlds,Ag is a set of agents, each∼i⊆W×W is an equiva-
lence relation (called the accessibility relation)4 for agent i,
and V : W 7→ 2Atoms is a valuation function that assigns
each world a set of atomic propositions.
Definition 5. Given an epistemic model E and an epistemic
formula φ, the entailment relation |= is defined as follows:
• E,w |= P iff P ∈ V (w);
• E,w |= ¬φ iff E,w 6|= φ;
• E,w |= φ ∧ ψ iff E,w |= φ and E,w |= ψ;
• E,w |= Kiφ iff for all w′, if w ∼i w

′ then E,w′ |= φ;
• E,w |= CBφ iff for all w′, if w ∼B w′ then E,w′ |= φ.
where ∼B is the transitive and reflexive closure of ∪i∈B∼i.

Common knowledgeCBφ is an appropriate concept when
it comes to analysing the knowledge of players in GDL-II
games, in particular since the game rules themselves are al-
ways common knowledge.

From GDL-II to Epistemic Models
Before we present our results in all technical detail, we in-
troduce a running example adopted from (Fagin et al. 1995).
Example 1. (Coordinated Attack Problem) A valley sepa-
rates two hills. Two armies, each on its own hill and led by
General A and B, respectively, are preparing to attack their
common enemy in the valley. The two generals must have
their armies attack the valley at the same time in order to
succeed. The only way for the two generals to communicate
is by sending messengers through the valley. Unfortunately,
there is a chance that any given messenger sent through the

4Note that in general the accessibility relation ∼i does not have
to be an equivalence relation, but since epistemic models in this
paper are meant to represent the knowledge of agents, rather than
belief or other modalities, we restricted ∼i to be an equivalence
relation; hence all epistemic models are S5-models (Fagin et al.
1995).

valley will be stopped by the enemy, in which case the mes-
sage is lost but the content is not leaked. The problem is to
come up with algorithms that the generals can use, including
sending messages and processing received messages, that
can allow them to correctly agree upon a time to attack.

It was proved that such a coordinated attack is impossible
(Fagin et al. 1995). We show that GDL-II is flexible enough
to specify problems like this that involve complex epistemic
situations and arguments. Specifically, we will use the game
semantics to show why a coordinated attack is not possible.

Figure 1 describes a version of this problem in GDL-II.
Generals A and B are modelled as two roles, and the enemy
is modelled by the ‘random’ role. For the sake of simplic-
ity, General A starts by choosing between just two possible
attack times: ‘3am’ or ‘9pm’, and then sends his choice as
a message to B. Subsequently, each general takes control
in turn, and if he receives a message m then he sends an
acknowledgement ack(m) back to the other general, oth-
erwise he does noop; simultaneously, the ‘random’ role al-
ways chooses randomly either pass, which allows the mes-
sage to go to the other general, or stop, which intercepts
the message. For the sake of simplicity, we assume that the
game terminates at round 9 and ignore the goal values.

The semantics of a game description according to Defi-
nition 1 determines a state transition system. We can then
use the operational semantics implicit in Definition 2 to in-
troduce the special concept of epistemic game models for
GDL-II.

Definition 6. (GDL-II Epistemic Game Model) Consider
a GDL-II description G with semantics 〈R, s0, t, l, u, I, g〉.
The epistemic game model of G, denoted by E(G), is a struc-
ture 〈W,Ag, {∼i: i ∈ Ag}, V 〉 where

• W is the set of developments of G;
• Ag is the set of roles R \ {random};
• ∼i⊆W×W is the accessibility relation for agent i ∈ Ag

given by (δ, δ′) ∈ ∼i (also written as δ ∼i δ
′) iff role i

cannot distinguish development δ from δ′;



• V : W → 2Σ is an interpretation function which asso-
ciates with each development δ the set of ground terms in
Σ that are true in the last state of δ.

For example, from the game description Gca for the
Coordinated Attack Problem, we derive a game model
E(Gca), partly depicted in Figure 2, in two steps. The
first step is to use the game semantics for GDL-II to de-
termine all states that are reachable from the initial state.
A joint move is depicted as (a, b, c), where a, b, c are the
moves of, respectively, General A, General B, and ‘ran-
dom’. For instance, there are two possible joint moves
at s0, M1 = (settime(3am), noop, noop) and M2 =
(settime(9pm), noop, noop), which transit s0 to s1 and
s2, respectively. From s1 there are again two possible joint
moves which result, respectively, in s11 where B receives A’s
message, and in s12 where B receives nothing. Accordingly
at state s11, it is legal for B to send an acknowledgement,
after which s11 transits to either of two possible states, s111

and s112. This process is reiterated until a terminal state is
reached.

The second step in constructing the game model for Gca

is to collect all developments and to determine the individual
accessibility relations. For example, consider the two devel-
opments δ1 = 〈s0,M1, s1〉 and δ2 = 〈s0,M2, s2〉. It is easy
to check that δ1 6∼A δ2 since General A moves differently in
M1 and M2. On the other hand, δ1 ∼B δ2 since General B
takes the same move in M1 and M2 and perceives nothing
in both cases.

Based on our concept of an epistemic game model for
GDL-II, we can define how to interpret formulas in the basic
epistemic language over such models in a similar fashion as
Definition 5.

Definition 7. Given an epistemic game model E(G), a de-
velopment δ, and an epistemic formula φ, the entailment re-
lation |= is defined as follows:

• E(G), δ |= P iff P ∈ V (last(δ));
• E(G), δ |= ¬φ iff E(G), δ 6|= φ;
• E(G), δ |= φ ∧ ψ iff E(G), δ |= φ and E(G), δ |= ψ;
• E(G), δ |= Kiφ iff for all δ′, if δ ∼i δ

′ then E(G), δ′ |=φ;
• E(G), δ |= CBφ iff for all δ′, if δ∼B δ

′ then E(G), δ′ |=φ.

where last(δ) is the last state of development δ, and ∼B is
the transitive and reflexive closure of ∪i∈B ∼i.

Coming back to our running example, a simple and ele-
gant argument can be given now on why a coordinated at-
tack is never possible. First, using the epistemic language of
Definition 3 we can express knowledge conditions such as:

• KAP for “General A knows thatP ,” whereP is an atomic
expression, e.g. attack time(3am);

• ¬KBKAP for “General B does not know if General A
knows P ;”

• C{A,B}P for “P is common knowledge to both generals.”

Let P = attack time(3am) and δ1, δ11, δ111 be the left-
most developments with length 1, 2, and 3 in Figure 2, then
we can verify each of the following: E(Gca), δ1 |= KAP ∧
¬KBKAP ; E(Gca), δ11 |= KBKAP ∧¬KAKBKAP ; and

E(Gca), δ111 |= KAKBKAP∧¬KBKAKBKAP . This im-
plies that E(Gca), δ |= ¬C{A,B}P for each development
δ = δ1, δ11, δ111. That is to say, the attack time is not com-
mon knowledge among A and B even after the successful
delivery of all messages during three rounds. We can gen-
eralise this to developments of arbitrary length. Given that
this common knowledge is a prerequisite for a coordinated
attack, it follows that the latter can never be accomplished.

In general, it is easy to show that the epistemic game
model we constructed for GDL-II is equivalent to the stan-
dard concept of models and entailment in Epistemic Modal
Logic. Specifically, we can pick an arbitrary game at any
round and build an epistemic model for this situation such
that the truth of epistemic formulas is preserved.
Proposition 1. Given an arbitrary GDL-II description G
and any round of playing k ≥ 0 (with round 0 corresponding
to the initial state), we can derive a finite epistemic model E
such that this round of the game is characterised byE, which
is to say, E, δ |= φ if, and only if, E(G), δ |= φ.

Proof. Let E(G) = 〈W,Ag, {∼i: i ∈ Ag}, V 〉 be con-
structed from G according to Definition 6, and assume that
game play is at round k. Based on E(G), we construct a finite
epistemic model E = 〈W ′, {∼i: i ∈ Ag′}, V ′〉 as follows:

1. W ′ is the set of any game development δ ∈ W with
len(δ) = k + 1;

2. Ag′ is the same set of agents as Ag;
3. ∼′i is the equivalence relation ∼i restricted on the new

domain W ′, i.e., ∼′i=∼i ∩(W ′ ×W ′);
4. V is a valuation function with P ∈ V ′(δ) iff P ∈ V (δ)

for any atomic proposition P and δ ∈W ′.
We show by induction on the structure of formula φ that
for all δ ∈ W ′: E, δ |= φ iff E(G), δ |= φ. The proposi-
tional cases follow from the fact that the valuation does not
change. For the case of φ := Kiψ, by definition, we have
that E, δ |= Kiψ iff for all δ′, if δ ∼′i δ′ then E, δ′ |= ψ.
If two developments δ, δ′ have different lengths, then any
agent can distinguish them, so if δ ∼′i δ′, then len(δ) =
len(δ′) = k + 1, which means that δ′ ∈ W ′ as well. So
by induction, for all δ′, if δ ∼′i δ′ then E, δ′ |= φ iff for
all δ′, if δ ∼′i δ′ then E(G), δ′ |= φ; therefore E, δ |= Kiψ
iff E(G), δ |= Kiψ. For the case of φ := CBψ, the reason-
ing is similar since the developments in the transitive and
reflexive closure of ∪i∈B ∼i also are all of the same length
k + 1.

As a corollary we can show, say, that the round number is
a common knowledge for all agents; in our example game:
E(Gca), δ |=

∧
k

(round(k)→ C{A,B}round(k)).

From Epistemic Models to GDL-II
We now look at the other direction and show that for any
given finite multi-agent epistemic modelE we can construct
a valid GDL-II description for a game with a development
that leads to E. As a matter of fact, a (very abstract) game
can always be constructed where a single move suffices to
bring about an arbitrary given epistemic model.
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Figure 2: Epistemic game model E(Gca) for the Two Generals’ Coordinated Attack Game.

Theorem 1. For an arbitrary finite multi-agent epistemic
model E = 〈W, {∼i: i ∈ Ag}, V 〉 a GDL-II game descrip-
tion G can be constructed such that E can emerge after one
step of play in G, which is to say, E is isomorphic to a sub-
model of E(G) for the situation after the first move.

Proof. Let W = {w1, . . . , wk} and Ag = {1, . . . , n}, then
game G can be constructed as follows:

1 role(1). ... role(n). role(random).

2

3 world(w1). ... world(wk).

4 legal(random,select(?w)) <= world(?w).

5 legal(?r,noop) <= role(?r), distinct(?r,random).

6

7 val(w1,P1). ... val(wk,Pm).

8 next(?P) <= does(random,select(?w)), val(?w,?P).

9

10 equiv(1,wa,wa). equiv(1,wa,wb). ... equiv(n,wx,wy).

11 sees(?r,class(?w2)) <= does(random,select(?w1)),

12 equiv(?r,?w1,?w2).

The game has n + 1 roles, namely, the n agents plus the
standard ‘random’ role (line 1). Initially, ‘random’ has a le-
gal move select(w) for any world w ∈ W (line 3–4) while
all other players can only do noop. The move select(w) re-
sults in a state in which all atomic propositions hold that are
true in world w (line 8). This rule uses an explicit enumera-
tion of all pairs (w,P ) such that P ∈ V (w) (line 7). Further-
more, in order to arrive at the desired epistemic structure,
the players get to see all worlds in their equivalence class
{w′ : (w,w′) ∈∼i} (line 11–12). This rule uses an enumer-
ation of all triples (i, wa, wb) with wa ∼i wb (line 10).5

We show that G indeed gives E according to the se-
mantics in Definition 1. The initial state is s0 = {}, and
then G∪ strue0 entails legal(random, select(wj)) for all
j ∈ [1..k], and legal(1, noop), . . . ,legal(n, noop). In
other words, each agent in Ag can only do noop, while ‘ran-
dom’ may select an arbitrary world from E. Define joint
move M j := (noop, ..., noop, select(wj)) and consider,
then, successor states sx = u(Mx, s0) and sy = u(My, s0),
corresponding to the two developments δx = 〈s0,M

x, sx〉
5We omit definitions for terminal and goal.

and δy = 〈s0,M
y, sy〉, respectively. If wx ∼i wy , then

agent i gets to see both class(wx) and class(wy) in both
states sx and sy , in which case the agent cannot distinguish
δx from δy because also his action is the same in both M1

and M2. On the other hand, if wx 6∼i wy then agent i
can distinguish the two developments based on his percepts.
Altogether this process gives us an epistemic game model
E(G), from which we obtain a standard epistemic model
E′ = 〈W ′, {∼′i: i ∈ Ag}, V ′〉 as follows: W ′ is the set
of all developments of length 2 from E(G), while∼′i and V ′
are restrictions of, respectively, ∼i and V on W ′.

Now E and E′ are isomorphic: Each world wj ∈ W cor-
responds to the state sj = u(M j , s0) and hence to the devel-
opment δj ∈ W ′. Moreover, (wx, wy) ∈∼i iff (δx, δy) ∈∼′i
for agent i. Finally, for all atomic proposition P we have that
P ∈ V (wj) iff P ∈ V ′(δj).

Model Checking
With an epistemic framework for GDL-II, we are now able
to reason about epistemic properties of games. For example,
given that agents may have only partial observation ability,
it is easy to construct games in which agents do not have
sufficient information to derive their legal moves; this may
render a game unfair or even unplayable. A desirable prop-
erty of a game may be to avoid such a situation, and we
can use the epistemic structure to verify that a GDL-II de-
scription obeys this property. We express this property in the
basic epistemic language by this formula for agent i:

φi =
∧
m

(legal(i,m)→ Kilegal(i,m))

To check such properties systematically amounts to a
model checking problem: given a GDL-II description G, a
round number k, and an epistemic formula φ, verify that
E(G), δ |= φ for all δ with len(δ) ≤ k. In the following we
sketch a model checking method using two existing tools,
the Answer Set Programming system POTASSCO (Gebser
et al. 2011) and the epistemic model checker DEMO (van
Eijck 2007).

The first step is to compute all reachable states in game
G up to round k. For this, we utilise the method in (Schif-



fel and Thielscher 2009): based on GDL-II description G,
we can first derive negation-free clauses D that define the
domains of the features (predicate fdom) and moves (pred-
icate mdom) in G; e.g.,

1 fdom(round(0)). fdom(control(generalA)). ...

2 mdom(noop). mdom(settime(3am)). ...

From this we can construct an Answer Set Program with
a one-to-one correspondence between its answer sets and
the developments of given length k. These answer sets also
indicate what each player gets to see after each move. Using
all these reachable states and moves, we then derive an
epistemic model E that characterises the game in round k
according to Proposition 1.

The second step is to specify the epistemic model E and
epistemic formula φ in the model checker DEMO. In partic-
ular, an epistemic model is represented as

Mo [state][(state,formula)][(Agent,state,state)]

where Mo is an indicator of the model; [state] is a list of
states (here, ‘developments’); [(state,formula)] is a
valuation function with formula being atomic; and finally
[(Agent,state,state)] represents the accessibility
relations of the agents. A formula is encoded as

Form = Top | Prop Prop | Neg Form | Conj [Form]

| Disj [Form] | K Agent Form | CK [Agent] Form

The syntax of DEMO does not allow for implications, but
these can be encoded equivalently using the conjunctive
normal form. For example, the implication legal(i,m) →
Kilegal(i,m) is logically equivalent to the disjunction
¬legal(i,m) ∨ Kilegal(i,m), which can then be encoded
as Disj [Neg legal(i,m),K i legal(i,m)].

Conclusion
We analysed the epistemic structure and expressiveness of
GDL-II in terms of epistemic modal logic and presented
two results: (1) The operational semantics of GDL entails
that the situation in any round of a game can be charac-
terised by a multi-agent epistemic model; (2) GDL is suf-
ficiently expressive to model any situation that can be de-
scribed by a (finite) multi-agent epistemic model. We also
sketched a model checking method for systematically veri-
fying whether a given GDL-II description satisfies important
epistemic properties. Further investigations will include the
computational complexity of this model checking problem,
and an extension of the basic epistemic language.

In an accompanying paper we show how GDL-II can be
formally translated into the Situation Calculus as a first-
order axiomatisation that allows players to reason about
their percepts and what they know about the legality and
effects of moves based on the game description (Schiffel
and Thielscher 2011). Other related work describes the use
of model checking to verify properties of general games
(Ruan, van der Hoek, and Wooldridge 2009), but this is re-
stricted to original GDL and hence to games where players
can maintain complete state information. There is of course
a large body of work on the epistemic structure of imperfect-
information games, but ours is the first application of this

line of research to formally analyse the epistemic structure
behind the general Game Description Language GDL-II.
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