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Abstract

A generalgame player is a system that understands the rules
of unknown games and learns to play these games well with-
out human intervention. A major challenge for research in
General Game Playing is to endow a player with the ability
to extract and prove game-specific knowledge from the mere
game rules. We define a formal language to express tem-
porally extended—yet local—properties of games. We also
develop a provably correct proof theory for this language us-
ing the paradigm of Answer Set Programming, and we report
on experiments with a practical implementation of this proof
system in combination with a successful general game player.

1 Introduction
General Game Playing is concerned with the development
of systems that understand the rules of previously unknown
games and learn to play these games well without human
intervention. Recently identified as a Grand Challenge for
Artificial Intelligence, this endeavour requires to combine
methods from a variety of sub-disciplines, including rea-
soning, search, computer game playing, and learning (Pell
1993; Genesereth, Love, and Pell 2005). The general Game
Description Language (GDL) (Genesereth, Love, and Pell
2005) has been developed for the purpose of communicat-
ing the rules of unknownn-player games (n ≥ 1) to a
general game player. GDL rules are logical axioms, and a
plain, Prolog-like inference mechanism suffices for a basic
general game player to be able to make legal moves (Schif-
fel and Thielscher 2009b). Simple games can then be solved
by complete search, and recent research in General Game
Playing has shown that Monte-Carlo methods provide a suc-
cessful form of selective blind search to address games that
are more complex (Björnsson and Finnsson 2009).

Moving from blind to informed search, however, is a
great endeavour in General Game Playing as it requires a
player to fully automatically analyse the bare rules of un-
known games with the goal to extract and exploit game-
specific knowledge. This ability to form knowledge about
a new game is a prerequisite for both the automated gen-
eration of search heuristics and the construction of evalua-
tion functions for non-terminal positions (Kuhlmann, Dres-
ner, and Stone 2006; Clune 2007; Schiffel and Thielscher
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2007). While successful General Game Playing systems like
the ones just mentioned do extract this kind of knowledge,
they do not actually attempt to prove it; rather they generate
a number of random sample matches to test a property, and
then rely on the correctness of this informed guess.

In this paper, we present the first formal yet practical ap-
proach to the formalisation and automated proving oflocal
yet temporally extendedproperties of games on the basis of
the Game Description Language. By “local” we mean prop-
erties which do not require to analyse the entire game tree
and can be considered as invariants of reachable states.1 By
“temporally extended” we mean properties that concern two
or more successive game states.2 To this end,

• We define syntax and semantics of a formal language to
express game-specific, local knowledge.

• We develop a proof theory that allows to verify these for-
mulas against a given GDL game specification.

• We briefly report on first experiments with a practical im-
plementation of a proof system for this theory.

For describing game-specific properties, we combine ele-
ments from GDL with Temporal Logic. Our proof the-
ory employs the paradigm of Answer Set Programming
(ASP) (see, e.g., (Gelfond 2008)) and builds on a recent
and basic method for ascertaining simplestatic properties
of games, that is, which hold across all positions (Schif-
fel and Thielscher 2009a). For the implementation, we
have integrated an off-the-shelf, state-of-the-art ASP system
(Potassco 2008) with a successful knowledge-based general
game player (Schiffel and Thielscher 2007). Before we start,
however, we should stress that in this paper we are only con-
cerned with automaticallyprovingknowledge, not with au-
tomaticallyfindingproperties worth proving.3

1An example of aglobal property would be the existence of
a winning strategy for a player. This cannot be expressed by an
invariant, as it may hold initially but not for all reachable states.
Our interest here lies in games that are far too complex to enable
automatic proofs of global properties in practice.

2A simple, concrete example is the fact that in standard Tic-
Tac-Toe a marked cell persists from one position to the next.

3We refer to (Clune 2007; Schiffel and Thielscher 2007) for an
extensive discussion on various types of game-specific knowledge
that helps a general game player find good heuristics and generate
tailor-made evaluation functions.



role(xplayer). role(oplayer).
init(control(xplayer)). init(cell(1,1,b)). ... init(cell(3,3,b)).

legal(P,mark(X,Y)) :- true(control(P)), true(cell(X,Y,b)).
legal(xplayer,noop) :- true(control(oplayer)).
legal(oplayer,noop) :- true(control(xplayer)).

next(cell(M,N,x)) :- does(xplayer,mark(M,N)).
next(cell(M,N,o)) :- does(oplayer,mark(M,N)).
next(cell(M,N,W)) :- true(cell(M,N,W)), distinct(W,b).
next(cell(M,N,b)) :- true(cell(M,N,b)), does(P,mark(I,J)), distinct(M,I).
next(cell(M,N,b)) :- true(cell(M,N,b)), does(P,mark(I,J)), distinct(N,J).
next(control(oplayer)) :- true(control(xplayer)).
next(control(xplayer)) :- true(control(oplayer)).

Figure 1: A GDL description of Tic-Tac-Toe (without the definition of termination and goalhood). A game position is encoded
using featurescontrol(P ), whereP ∈ {xplayer,oplayer}, and cell(X,Y,C), whereX,Y ∈ {1, 2, 3} and C ∈ {x, o, b}.

2 Game Description Language
The Game Description Language (GDL) has been developed
to formalise the rules of any finite game with complete in-
formation in such a way that the description can be automat-
ically processed by a general game player. Due to lack of
space, we can give just a very brief introduction to GDL and
have to refer to (Love et al. 2006) for details.

GDL is based on the standard syntax of logic programs,
including negation. We assume familiarity with the basic
notions of logic programming. We adopt the Prolog conven-
tion according to which variables are denoted by uppercase
letters and predicate and function symbols start with a low-
ercase letter. As a tailor-made specification language, GDL
uses a few pre-defined predicate symbols:

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) playerR has legal moveM
does(R,M) playerR does moveM
next(F) F holds in the next position
terminal the current position is terminal
goal(R,N) playerR gets goal valueN

A further standard predicate isdistinct(X,Y), which
means syntactic inequality of the two arguments. GDL im-
poses restrictions on the use of these keywords:

• role only appears in facts;

• init and next only appear as head of clauses, and
init does not depend on any oftrue, legal, does,
next, terminal, or goal;

• true and does only appear in clause bodies with
does not depending onlegal, terminal, or goal.

As an example, Figure 1 shows an excerpt of a GDL de-
scription for the simple game of Tic-Tac-Toe. GDL imposes
some further, general restrictions on a set of clauses with the
intention to ensure finiteness of the set of derivable pred-
icate instances. Specifically, the program must bestrati-
fied (Apt, Blair, and Walker 1987) andallowed (Lloyd and
Topor 1986). Stratified logic programs are known to admit
a specificstandard model(Apt, Blair, and Walker 1987).

Based on the concept of the standard model, a GDL de-
scription can be understood as a state transition system as
follows. To begin with, any valid game descriptionG
in GDL contains a finite set of function symbols, includ-
ing constants, which implicitly determines a set of ground
terms Σ. This set constitutes the symbol baseΣ in the for-
mal semantics forG.

The players and the initial position of a game can be di-
rectly determined from the clauses for, respectively,role
and init in G. In order to determine the legal moves, up-
date, termination, and goalhood for any given position, this
position has to be encoded first, using the keywordtrue.
To this end, for anyfinite subsetS = {f1, . . . , fn} ⊆ Σ
of a set of ground terms, the following set of logic program
facts encodesS as the current position:

Strue
def
= {true(f1)., . . . , true(fn).}

Furthermore, for any functionA : ({r1, . . . , rk} 7→ Σ) that
assigns a move to each playerr1, . . . , rk ∈ Σ, the following
set of facts encodesA as a joint move:

Adoes def
= {does(r1, A(r1))., . . . , does(rk, A(rk)).}

Definition 1 Let G be a GDL specification whose signa-
ture determines the set of ground termsΣ. Let 2Σ be the
set offinite subsets ofΣ. Thesemanticsof G is the state
transition system(R,Sinit , T, l, u, g) where4

• R = {r ∈ Σ : G � role(r)} (the players);
• Sinit = {f ∈ Σ : G � init(f)} (the initial position);
• T = {S ∈ 2Σ : G ∪ Strue � terminal} (the terminal

positions);
• l = {(r, a, S) : G ∪ Strue � legal(r, a)}, where r ∈
R, a ∈ Σ, and S ∈ 2Σ (the legality relation);

• u(A,S) = {f ∈ Σ : G ∪ Strue ∪ Adoes
� next(f)},

for all A : (R 7→ Σ) and S ∈ 2Σ (the update function);
• g = {(r, v, S) : G∪Strue � goal(r, v)}, wherer ∈ R,
v ∈ N, and S ∈ 2Σ (the goal relation).

4Below, entailment � is via the aforementioned standard
model for a set of clauses.



For S, S′ ∈ 2Σ we write S A→ S′ if A : (R 7→ Σ) is such
that (r,A(r), S) ∈ l for each r ∈ R and S′ = u(A,S)

(and S /∈ T ). We callS0
A0→ S1

A1→ . . . Am−1

→ Sm (where
m ≥ 0) a sequence(of legal moves), sometimes abbreviated
as (S0, S1, . . . , Sm).

This definition provides a formal semantics by which a GDL
description is interpreted as an abstractk -player game: in
every positionS , starting withSinit , each playerr chooses
a move a that satisfiesl(r, a, S). As a consequence the
game state changes tou(A,S), whereA is the joint move.
The game ends if a position inT is reached, and theng
determines the outcome. The restrictions in GDL ensure that
entailment wrt. the standard model is decidable and that only
finitely many instances of each predicate are entailed. This
guarantees that the definition of the semantics is effective.

3 Formalising Temporal Game Knowledge
In this section we define a formal language which allows the
formulation of temporally extended yet local properties of
a game given in GDL. A simple and elegant way to obtain
such a language is by extending GDL by the unary operator
“ ©” borrowed from Temporal Logic and used to refer to a
successor game state.

Definition 2 Let G be a GDL description andP be the
set of ground atomsp(~t ) over the signature ofG such that
p /∈ {init,next} and p does not depend ondoes in
G. We define the setF of formulasto be the smallest set
such thatP ⊆ F and F is closed under¬, ∧ and ©.

We also define over syntax treestϕ and tψ of ϕ,ψ ∈ F :

• deg(ϕ) (thedegree ofϕ ): the maximal number of occur-
rences of© on paths from the root oftϕ to its leaves;

• lev(ψ,ϕ) (thelevels ofψ wrt. ϕ ): a set of integers such
that i ∈ lev(ψ,ϕ) iff tψ is a subtree oftϕ and there are
i occurrences of© on the path from the root oftϕ to
the root of tψ .

We define∨ and ⊃ as the usual macros and use restricted
quantification∀(X :Xdom)ϕ to abbreviate

∧
t∈Xdom

ϕ[X/t]

for finite subsetsXdom of Σ. We also allow counting quan-
tifiers of the form∃m..n(X :Xdom)ϕ to formulate that there
are at leastm and at mostn instances forX for which ϕ
is true. Modality ©ϕ states thatϕ holds in all positions
that are a direct, legal successor of the current game state.As
an example for a formula, consider the Tic-Tac-Toe prop-
erty that once the cell at position(1,1) has been marked
by xplayer, it will keep this mark in every legal succes-
sor state. This can be formulated astrue(cell(1,1, x)) ⊃
©true(cell(1,1, x)). The degree of this formula is1 and
the levels of subformulatrue(cell(1,1, x)) are {0, 1}.

Semantics Intuitively, a formula should be true in a state
S only if it is satisfied by all “relevant” sequences starting
at S . Clearly, sequences of length greater thann = deg(ϕ)
need not be considered: Since future states that are more
than n steps away carry no information about the formula,
these sequences can be reduced to their initial subsequences
of length n. Sequences shorter thann, however, must be

taken into account. Otherwise, a formula likeψ ∧ ©ρ
would be considered true in each terminal stateSt regard-
less of the truth ofψ, as no legal sequence of length≥ 1
exists in St. In general, a sequence shorter thann is rele-
vant if and only if it ends in a terminal state. These consid-
erations motivate the following definition.

Definition 3 A sequence(S0, . . . , Sm) is called n-
maximaliff either m = n or m < n and Sm ∈ T .

Entailment of a formulaϕ wrt. a stateS can now be
formally defined over alldeg(ϕ)-maximal sequences start-
ing at S .

Definition 4 Let G be a GDL description,S0 a state, and
ϕ a formula such that deg(ϕ) = n. We say thatS0 satisfies
ϕ (written S0 �t ϕ) if for all n-maximal sequencesS0

A0→
. . . Am−1

→ Sm (m ≤ n) we have that(S0, . . . , Sm) �t ϕ
according to the following definition:

(Si, . . . , Sm) �t p iff G ∪ Struei � p (p ∈ P )
(Si, . . . , Sm) �t ¬ϕ iff (Si, . . . , Sm) 2t ϕ
(Si, . . . , Sm) �t ϕ1 ∧ ϕ2 iff (Si, . . . , Sm) �t ϕ1 and

(Si, . . . , Sm) �t ϕ2

(Si, . . . , Sm) �t ©ϕ iff (Si+1, . . . , Sm) �t ϕ (i < m)
(Sm) �t ©ϕ

A crucial part here is(Sm) �t ©ϕ: In case we reach
the end of a state sequence, every formula of the form©ϕ
must be true. Note that this implies©ϕ to be true in every
terminal state even ifϕ is inconsistent. In our setting this is
perfectly acceptable as we are just interested in the truth of a
formula in reachable states—all states beyond are irrelevant.
It is also worth mentioning that, therefore,¬©ϕ implies
©¬ϕ but not vice versa.

4 Encoding Temporal Game Knowledge
In the following we first present an encoding of temporal
formulas as logic program clauses which, together with a set
of GDL rules, will then enable us to define a suitable proof
method. Since we consider properties that are local but may
involve sequences of successive game states, we first need to
define thetemporal extension(with a horizonn) of a given
GDL specification.

Definition 5 Let G be a GDL description andGinit the
set of all clauses ofG with headinit. For n ≥ 0 we de-
fine Gn =

⋃
0≤i≤n{c

i | c ∈ (G\Ginit)}, where ·i replaces
each occurrence of

• next(f) by true(f, i+ 1) and
• p(t1, . . . , tn) by p(t1, . . . , tn, i),

if p /∈ {role,distinct,next}.

Extending the definitions ofStrue and Adoes (cf. Sec-
tion 2), we define their timed variants as

Strue(0) = {true(f, 0). | f ∈ S} and

Adoes(i) = {does(r1, A(r1), i), . . . ,does(rk, A(rk), i)}

As an example, consider the fourth rule with headnext
in the GDL descriptionG of Figure 1. Its temporal ex-
tensionGn contains a temporally extended rule for every
i ≤ n; e.g. the following clause fori = 0.



true(cell(M,N,b),1) :-
true(cell(M,N,b),0),
does(P,mark(I,J),0), distinct(M,I).

Note thatGn could easily be defined such that it is strat-
ified: instead of extending predicatesp by a time argument,
time could be encoded into their names, obtaining different
predicatespi for each time step. We find Definition 5 more
convenient but will nonetheless assumeGn to be stratified.
This assumption is needed for the following result, which
shows that a temporally extended GDL description can be
used to reason about limited sequences of state transitions.

Theorem 1 Consider a GDL descriptionG and a se-
quenceS0

A0→ S1 . . .
Am−1

→ Sm. Let P = Strue0 (0) ∪

Gm ∪
⋃m−1

i=0
Adoes
i (i), then for all 0 ≤ i ≤ m and pred-

icate symbolsp /∈ {init,next} that do not depend on
does we have

• Si = {f | P � true(f, i)}

• G ∪ Struei � p(~t ) iff P � p(~t, i)

Proof (sketch): By induction onm. The main argument
is the existence of a stratification ofP such that for each
timepoint i the rules concerningi lie in a lower stratum
than the rules concerning timepointi+ 1. �

Since predicatelegal never depends ondoes in valid
GDL descriptions, the second item of Theorem 1 together
with Definition 5 implies P � legal(r,Ai(r), i) for all
r ∈ R and 0 ≤ i ≤ m−1. Similarly, P � terminal(m)
holds if and only ifSm is a terminal state.

Next we show how game-specific knowledge in form
of temporal formulas can be encoded as logic programs.
Specifically, we define the mapping of every subformulaψ
of a formula ϕ ∈ F to a logic program relative to a natu-
ral number i which indicates the level ofψ wrt. ϕ. The
definition assumes a functionη such thatη(ψ, i) gives an
atom of arity 0 which is unique for everyψ and i and not
used elsewhere.

Definition 6 Let ψ ∈ F and i ∈ N. Theencoding ofψ
at level i, denoted Enc(ψ, i), is recursively defined:

Enc(p(~t), i) = {η(p(~t ), i) :- p(~t, i).}
Enc(¬ψ, i) = {η(¬ψ, i) :- ¬ η(ψ, i).} ∪ Enc(ψ, i)
Enc(ψ1 ∧ ψ2, i) = {η(ψ1 ∧ ψ2, i) :- η(ψ1, i), η(ψ2, i).}

∪ Enc(ψ1, i) ∪ Enc(ψ2, i)
Enc(©ψ, i) = {η(©ψ, i) :- terminal(i).,

η(©ψ, i) :- η(ψ, i+ 1).}
∪ Enc(ψ, i+ 1)

Put in words, a predicatep(~t ) at level i is trans-
lated to a rule which entailsη(p(~t), i) if p(~t, i) holds.
Formulas with connectives¬, ∧, and © recursively
resolve to their correspondent subformulas. Note that
Enc(©ψ, i) entails η(©ψ, i) in case level i is termi-
nal or subformula ψ is true at level i + 1. As an
example, recall from above the formula for Tic-Tac-Toe,
true(cell(1,1, x)) ⊃ ©true(cell(1,1, x)). Macro expansion
results in¬(true(cell(1,1, x)) ∧ ¬©true(cell(1,1, x))) by
means of double negation, and hence the following encod-
ing.

a1 :- not a2. a2 :- a3, a4.
a3 :- true(cell(1,1,x),0).
a4 :- not a5. a5 :- terminal(0).
a5 :- a6. a6 :- true(cell(1,1,x),1).

It is easy to see that the size of the encoding of a given
formula is always linear in the size of the original formula.
Together with the underlying temporally extended GDL de-
scription the given encoding is correct wrt. the definition of
formula entailment, as the following result shows.

Theorem 2 Let ϕ be a formula s.t.deg(ϕ) = n, G be a

GDL description,S0
A0→ S1 . . .

Am−1

→ Sm be n-maximal,
and P = Strue0 (0) ∪ Gn ∪

⋃m−1

i=0
Adoes
i (i) ∪ Enc(ϕ, 0).

Then (S0, . . . , Sm) �t ϕ iff P � η(ϕ, 0).

Proof: Let ψ be a subformula ofϕ. We prove by in-
duction on the structure ofψ that for all l ∈ lev(ψ,ϕ)
s.t. l ≤ m: (Sl, . . . , Sm) �t ψ iff P � η(ψ, l). Note that
we haveEnc(ψ, l) ⊆ Enc(ϕ, 0) and henceP contains all
clauses referred to in the proof.

Base caseψ = p(~t) holds by Th.1; casesψ = ¬ρ and
ψ = ρ1∧ρ2 follow immediately by the induction hypothesis
(IH). Now considerψ = ©ρ. Casel < m follows by IH
applied to sequence(Sl+1, . . . , Sm). Case l = m yields
(Sm) �t ©ρ. Moreover, eitherm = n or both m < n
and Sm ∈ T (since the sequence isn-maximal). From
m = n it follows that (n+1) ∈ lev(ρ, ϕ), which contradicts
deg(ϕ) = n. Hencem < n and Sm ∈ T , which gives (by
Th.1) P � terminal(m) and thusP � η(©ρ,m). �

5 Proving Temporal Game Knowledge
For a general game player, showing the correctness of a
given property by complete search through the state tran-
sition diagram for a game, as in (van der Hoek, Ruan, and
Wooldridge 2007), is not practically feasible. To overcome
this, Schiffel and Thielscher (2009a) suggested a local proof
method based on Answer Set Programming (ASP) to ver-
ify simple static properties for all finitely reachable states
in a GDL game. In the following, we generalise their basic
idea to obtain a local proof method for temporally extended
properties.Answer setsform a specific class of models of
logic programs with negation (for details, see e.g. (Gelfond
2008)). In the following, we use two common additions that
have been defined for ASP (Niemelä, Simons, and Soini-
nen 1999): aweight atomm { p: d(~x) } n means that for
atom p an answer set has at leastm and at mostn dif-
ferent instances that satisfyd(~x). Both m and n can be
omitted, in which case there is no lower (respectively, upper)
bound. Aconstraintis a rule:- b1, . . . , bk , which excludes
any answer set that satisfiesb1, . . . , bk .

To prove that a temporal formulaϕ holds in each reach-
able stateS (i.e., S �t ϕ ), we will construct two answer
set programs dependent onϕ in order to establish proofs for
a base case and an induction step. The base case shows that
ϕ is entailed in the initial state. The induction step shows
that, provided a state entailsϕ, each legal successor state
will also entail ϕ. In conclusion, then,ϕ is entailed in all
reachable states. We assume a set of negation-free clauses
Dn which defines the domains of features (fdom), actions



(adom), and time points0, 1, . . . , n (tdom). The encoding
of each player performing a legal move in each nonterminal
state is given by the following ASP clausesPlegal :

(1): terminated(T) :- terminal(T).
(2): terminated(T+1) :- terminated(T).
(3): 1{does(R,A,T):adom(A)}1 :- role(R),

tdom(T), not terminated(T).
(4): :- does(R,A,T), not legal(R,A,T).

For a GDL descriptionG and formulaϕ with degreen,
the answer set program for thebase caseis then defined as

P bcϕ (G) = Strueinit (0) ∪Gn ∪ Plegal ∪ Dn−1 ∪
Enc(ϕ, 0) ∪ { :- η(ϕ, 0).}.

HenceP bcϕ (G) consists of an encoding for the initial state,
Strueinit (0); a temporal GDL description up to time stepn,
Gn ; the necessary requirements concerning legal moves
together with the necessary domain descriptions,Plegal ∪
Dn−1; an encoding for the formula in the initial time step,
Enc(ϕ, 0); and the statement thatϕ should not be entailed
in any model ofP bcϕ (G), { :- η(ϕ, 0).}. In caseP bcϕ (G)
has no model, the last rule implies that there is no state se-
quence starting atSinit that makesϕ false—which means
that ϕ is entailed bySinit .

For theinduction stepthe answer set program is

P isϕ (G) = {(5)} ∪Gn+1 ∪ Plegal ∪ Dn ∪
Enc(ϕ, 0) ∪ Enc(©ϕ, 0) ∪ {(6), (7)},

where

(5): 0{true(F,0):fdom(F)}.
(6): :- not η(ϕ, 0).
(7): :- η(©ϕ, 0).

P isϕ (G) deviates fromP bcϕ (G) in that the state encoding (5)
considers arbitrary states instead of the initial state. More-
over, the maximal time step is increased by one,ϕ is as-
sumed to be true by (6), and©ϕ is assumed to be false by
(7). Assuming thatϕ is entailed inS , P isϕ (G) not having
a model implies thatϕ is entailed by all statesS′ that are
direct successors ofS .

As an example, recall againϕ = true(cell(1,1, x)) ⊃
©true(cell(1,1, x)). This formula can now be proved to
hold in all reachable states: LetG be the rules in Figure 1.
Answer sets forP bcϕ (G) do not satisfyη(ϕ, 0) and hence
must satisfy the encoded premise ofϕ in the initial state,
true(cell(1,1,x),0). This however contradicts the
initial state encoding, soP bcϕ (G) has no answer set. Sim-
ilarly, constraint (7) ofP isϕ (G) only permits answer sets
which satisfytrue(cell(1,1,x),1) and do not satisfy
true(cell(1,1,x),2), contradicting the temporal ex-
tension of the thirdnext rule in Figure 1.

6 Correctness of the Proof Method
We are now ready to state and prove our main result: the
correctness of the proof method.

Theorem 3 Let ϕ be a formula for a game with GDL
descriptionG and whose initial state isSinit . If P bcϕ (G)

and P isϕ (G) are inconsistent, then for all finite sequences

Sinit
A0→ S1 . . .

Ak−1

→ Sk we haveSk �t ϕ.
Proof: Let deg(ϕ) = n. The proof is via induction onk.

Base Casek = 0: We prove that if Sinit 2t ϕ then
P bcϕ (G) admits an answer set.Sinit 2t ϕ implies that

there is ann-maximal sequenceS0
A0→ S1 . . .

Am−1

→ Sm
s.t. Sinit = S0 and (S0, . . . , Sm) 2t ϕ. Let M be
the standard model ofP = [P bcϕ (G) ∪

⋃m−1

i=0
Adoes
i (i)] \

{(3), (4), :- η(ϕ, 0).}. As stratified programs are known
to admit a unique answer set that coincides with its stan-
dard model (Gelfond 2008),M is also an answer set forP .
(S0, . . . , Sm) 2t ϕ implies (by Th.2) thatP 2 η(ϕ, 0)
and hence thatM is also an answer set forPc = P ∪
{ :- η(ϕ, 0).}.

In the following we argue thatM is also a model of
P bcϕ (G). Consider Si s.t. i < m: There is exactly
one a for every r such thatM � does(r, a, i), namely
a = Ai(r); this fulfils (3). SinceM � legal(r,Ai(r), i)
(by Th.1) we also have (4). Now considerSm: If Sm
is terminal then (by Th.1)Pc � terminal(m), hence
Pc � terminated(j) for all m ≤ j ≤ n, which im-
plies (3) and (4). IfSm is nonterminal thenm = n, hence
(3) and (4) are fulfilled astdom(n) is false.

Induction Step: By IH we have Sk �t ϕ and

Sk
Ak→ Sk+1 for some Ak and Sk+1. We prove

that if Sk+1 2t ϕ, then P isϕ (G) admits an answer set.
Sk+1 2t ϕ implies that there is ann-maximal sequence

Sk+1
Ak+1

→ Sk+2
Ak+2

→ . . . Ak+m

→ Sk+m+1 (where
0 ≤ m ≤ n ) s.t. (Sk+1, . . . , Sk+m+1) 2t ϕ. It
follows that (Sk, Sk+1, . . . , Sk+m+1) 2t ©ϕ and that
(Sk, Sk+1, . . . , Sk+m+1) is (n + 1)-maximal. LetM be
the standard model forP = [P isϕ (G) ∪

⋃k+m
i=k Adoes

i (i) ∪
Struek (0)] \ {(3), (4), (5), (6), (7)}.

(Sk, . . . , Sk+m, Sk+m+1) 2t ©ϕ gives (Th.2) P 2

η(©ϕ, 0) which fulfils (7). For (6): Casem + 1 =
deg(©ϕ) yields m = n, hence (Sk, . . . , Sk+m) is n-
maximal. Casem+1 < deg(©ϕ) andSk+m+1 ∈ T gives
m+1 ≤ n, hence(Sk, . . . , Sk+m, Sk+m+1) is n-maximal.
Both cases imply (Th.2)P � η(ϕ, 0), thus satisfying (6).
Now M remains a model by replacingStruek (0) with (5).
The remaining argumentation is similar to the base case and
implies thatM is also a model ofP isϕ (G). �

7 Experimental Results
We have implemented our proof method for temporally ex-
tended properties of games using Fluxplayer (Schiffel and
Thielscher 2007) for the generation of the logic program,
which is then passed to the grounder Bingo (Potassco 2008),
in turn passing the result to the ASP solver Clasp (Potassco
2008). The domains for variables that occur in formulas
as well as the domains for players (Pdom), moves (Mdom),
etc. are calculated based on dependency graphs as described
in (Schiffel and Thielscher 2009a), but with some optimisa-
tions (which together with some improvements concerning
clauses (3) and (5) are beyond the scope of this paper). We
ran tests on a number of games from previous GGP compe-



Turn Taking Persistence Control
3pttc yes,0.44 no,0.33 (blue) yes,0.42

b-tictactoe no,0.07 yes,0.18 (¬b) no,0.21

connect4 yes,0.14 yes,0.18 (r) yes,0.20

endgame yes,5.15 no,1.42 (¬wk) yes,14.75

othello yes,2.03 no,0.89 (red) yes,2.84

tictactoe yes,0.12 yes,0.13 (¬b) yes,0.12

tttcc4 yes,7.52 no,0.56 (redpawn) yes,3.02

Figure 2: Results of three selected properties (“yes” means
proved true) for seven games (seegeneral-game-playing.de)
and respective times to prove in seconds. Experiments were
run on an Intel Core 2 Duo cpu with 3.16 GHz. Persis-
tence is for featurecell with ground third argument, e.g.
in tictactoe ¬b means that we proved∀(X : Xdom)∀(Y :
Ydom) (¬true(cell(X,Y,b)) ⊃ ©¬true(cell(X,Y,b))).

titions (Genesereth, Love, and Pell 2005) to automatically
verify some very common properties that are often crucial
for a general game player to know. A selection is shown in
Figure 2, where we exemplarily had the player try to prove

• Turn Taking:Always at most one player has two or more
legal moves:
∃0..1(P :Pdom)∃2..∞(M :Mdom) legal(P,M).

• Persistence:A feature f stays true [false] once it be-
comes true [false]:[¬]true(f) ⊃ ©[¬]true(f).

• Control: In an n -player game, a player who has control
will also have control aftern moves:
∀(P :Pdom) (true(control(P )) ⊃ ©ntrue(control(P ))).

The size of the ground answer set program for a property is
crucial for the proof time and has been reduced by omitting
irrelevant rules, resulting in excellent computation times for
many games and thus enabling various proof attempts in the
practical setting of the GGP competitions, with strictly lim-
ited time to analyse a given description. Beyond the typi-
cally tight time limits in a GGP competition, the results are
promising for the aim of discovering increasingly complex
and interesting properties of a new game on its own right.

8 Summary
We have defined syntax and semantics of a formal language
to describe game-specific properties in the context of Gen-
eral Game Playing. We have shown how these formulas
can be encoded as a logic program on the basis of a tem-
poral extension of GDL rules, and we have developed (and
formally verified) a proof theory with the help of Answer
Set Programming. While the main focus of this paper is
theoretical, initial experimental results support our expec-
tation that knowledge-based general game playing systems
can make practical use of our proof method to automati-
cally verify game-specific knowledge against a previously
unknown game description. Of course our method also sup-
ports the design of new games by allowing the designer to
verify that her game rules satisfy desired properties.

In terms of related work, our proof theory builds on, and
significantly extends, a recent basic method for ascertaining
simple static properties of games (Schiffel and Thielscher

2009a). Our semantics is inspired by work on control knowl-
edge in planning problems (Bacchus and Kabanza 2000),
adapting planning actions with preconditions and effects to
joint moves with legality and update. The first method of
automatically proving temporally extended properties for
general games is presented in (van der Hoek, Ruan, and
Wooldridge 2007), but this requires to systematically search
the entire set of reachable positions in a game and therefore
cannot be used in practice except for very simple games.
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