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Abstract

This paper presents both a semantic and a computational
model for multi-agent belief revision. We show that these
two models are equivalent but serve different purposes. The
semantic model displays the intuition and construction of the
belief revision operation in multi-agent environments, espe-
cially in case of just two agents. The logical properties of this
model provide strong justifications for it. The computational
model enables us to reassess the operation from a computa-
tional perspective. A complexity analysis reveals that belief
revision between two agents is computationally no more de-
manding than single agent belief revision.

Introduction

It is an interesting problem how people understand each
other through information exchange. Bypassing communi-
cation and psychology issues, the problem can be described
as a pure AI issue as “how epistemic agents in a multi-
agent system revise their beliefs as a result of belief ex-
change”. The classical study of belief revision has been
focused on how a single agent revises her beliefs to incor-
porate new information. This research normally assumes
that new information is fully accepted, no matter whether
it is represented as a single formula or as a set of sen-
tences. Obviously such an assumption is not applicable
to multi-agent systems. There have been a variety of ap-
proaches proposed in the literature to deal with the prob-
lem of belief revision in multi-agent systems. The approach
of non-prioritized belief revision allows an agent to revise
her beliefs by partially accepting new information (Hansson
1999). This research sheds light on belief change with de-
feasible information resources but still focuses on the for-
malization of belief change from a single agent perspec-
tive. The acceptance or rejection of information resources
is purely determined by the epistemic subject rather than de-
cided by all participating agents. The study of belief merg-
ing or knowledge arbitration directly accounts for multi-
agent belief change by pursuing a “fair” process that is
able to incorporate individual beliefs of agents into coher-
ent group beliefs (Revesz 1997; Liberatore & Schaerf 1998;
Konieczny & Pérez 1998). These approaches sometimes
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force agents to accept some democracy rules, such as ma-
jority, equal reliability, social welfare maximization and so
on, but disregard an agent’s “personal” view of group con-
sentience. The present paper takes a different perspective
to deal with the problem of multi-agent belief revision. We
consider belief change in a multi-agent system a two-stage
process. In the first stage, all agents sit together to work
out a mutually acceptable point of view (a common under-
standing of the world) through a sequence of interchanges
of respective views. This process is similar to belief merg-
ing. Once such a common understanding has been reached,
in the second stage of belief change each agent will adjust
her original belief state in order to form a new view of the
world as a result of belief interchange. What distinguishes
our approach from belief merging is that the agents do not
always reach a consensus after mutual belief revision, al-
though their beliefs will in general be “closer” to each other.
This view is indirectly supported by the observation that we,
human beings, do not always completely agree with each
other after exchanging our opinions on certain issues. Note
that as the participating agents will have “closer” views of
the outside world, mutual belief revision facilitates the po-
tential cooperation between these agents. Another advan-
tage of performing mutual belief revision is that heteroge-
neous agents can share their different sensing capabilities,
which of course helps to maximize the overall utility of a
multi-agent system.

To make our exploration simple, we will focus on the
belief revision problem in the setting of two-agent sys-
tems, so-called mutual belief revision. We will present
a semantic model based on Ordinal Conditional Function
(OCF) (Spohn 1988) to specify the above-mentioned two
stages of mutual belief revision. While the OCF model
is conceptually clear and constructively simple, it is not
computation-friendly because it requires to take an expo-
nential input of possible worlds from each agent. In or-
der to have an estimation of the computational complex-
ity, we will present another model of mutual belief revision
based on a sort of generalized epistemic entrenchment or-
dering (Gärdenfors & Makinson 1988). We will prove that
this model is essentially equivalent to the OCF model, and
we will give first complexity results.

The plan of the paper is as follows. In next section,
we present an OCF-based semantic model for mutual belief



revision operation, followed by a discussion of its formal
properties. Then we will present a computational model for
mutual belief revision and some results on its computational
complexity. We conclude the paper with a brief discussion
of related work.

We will express our theory of mutual belief revision in
terms of a propositional language L. The language is that of
classical propositional logic with an associated consequence
operation Cn in the sense that Cn(X) = {α |X ⊢ α}, where
X is a set of sentences. A set K of sentences is logically
closed or called a belief set whenever K = Cn(K). If X , Y
are two sets of sentences, X+Y denotes Cn(X∪Y ). The set
of all propositional interpretations (possible worlds) of L is
denoted by W . A sentence α is true in a world w, written as
w |= α, iff w makes α true in the classical, truth functional
way. A set X of sentences is true in a world w ∈ W , denoted
by w |= X , iff every element in X is true in w. Finally, the
i-th projection of a function M is denoted by Mi, that is,
Mi(x) = Pi(M(x)) where Pi is the i-th projection function.

OCF Model of Mutual Belief Revision

In this section, we will explain the concept of mutual be-
lief revision and present a formal, semantic model for this
concept by using Spohn’s Ordinal Conditional Functions
(OCF), which have been widely employed in the litera-
ture (Spohn 1988).

Belief States in OCF Model

With Spohn’s original model of OCF a belief state of an
agent is represented as a function k which maps the set of
all possible worlds to a class of ordinals. For the sake of
simplicity, we consider here so-called Natural Conditional
Functions (Spohn 1991), in which the range of an OCF k is
the set of natural numbers, that is, k : W → N. The set of
all OCFs is denoted by κ.

Intuitively, an OCF represents the degree of plausibility
of possible worlds, or more precisely, the grading of disbe-
lief. The lower the number, the more plausible is a world.
Representing beliefs by means of an OCF provides a richer
structure than the set representation of beliefs, in the sense
that it encodes both a belief set and the plausibility of be-
liefs. This is not only useful for modeling iterated belief
revision (Darwiche & Pearl 1997) but also, as we will see,
for modeling mutual belief revision.

Given an OCF k and a natural number i, the set of worlds
with ranks smaller or equal to i is called a sphere of i with
radius i, denoted by k−(i). Formally,

k−(i) = {w | k(w) ≤ i}

In particular, k−(0) is called the core of k. As usual, the
belief set of a belief state k, denoted by Bel(k), is the set of
sentences which hold in the core of k:

Bel(k) = {α ∈ L |w |= α for all w ∈ k−(0) }

Therefore, we say that two OCFs k1, k2 are epistemically
equivalent, denoted by k1 ≡ k2, iff k−

1 (0) = k−
2 (0). Two

OCFs k1, k2 are consistent iff k−
1 (0) ∩ k−

2 (0) 6= ∅.

An OCF belief state also encodes an epistemic entrench-
ment (EE) ordering: For any sentence β,

Rankk(β)=

{

∞, if ⊢ β;
min{k(w) |w |= ¬β}, otherwise.

(1)

It is easy to see that Bel(k) = {β |Rankk(β) > 0}. More-
over, if we define an ordering ≤ over the language by
“α ≤ β iff Rankk(α) ≤ Rankk(β)”, then ≤ satisfies Pos-
tulates (EE1)-(EE5) of (Gärdenfors & Makinson 1988).

Reaching a Common Understanding

We consider mutual belief revision to be a two-stage pro-
cess. In the first stage, two agents try to reach a common
understanding (which is assumed to be logically consistent)
through sequential belief interchange. Once such a common
understanding is reached, each agent performs a belief revi-
sion process to adapt his or her belief state to the information
learnt from the other agent. We will model these two stages
separately.

The first stage of mutual belief revision is very similar to
belief merging. To reach a consistent common understand-
ing, several rounds of “belief interchange” might be needed.
In each round, each agent receives more information from
the other one so that both get a better and better “under-
standing” of each other.

Given two pairs of subsets of possible worlds 〈s, t〉 and
〈s′, t′〉, we say that 〈s′, t′〉 is closer than 〈s, t〉, denoted by
〈s, t〉 < 〈s′, t′〉, iff s ⊆ s′, t ⊆ t′ and s ∪ t ⊂ s′ ∪ t′.

Consider two belief states k1 and k2 of two agents. We
start with the cores of k1 and k2; if they do not intersect, the
next round of belief interchange will continue on the least
radius r such that 〈k−

1 (0), k−
2 (0)〉 < 〈k−

1 (r), k−
2 (r)〉, re-

quiring to check the intersection of the corresponding two
spheres k−

1 (r) and k−
2 (r). The process continues until a ra-

dius is reached which is large enough for the correspond-
ing spheres to intersect.1 The procedure can be represented
by the sequence of belief interchange 〈k−

1 (0), k−
2 (0)〉, . . . ,

〈k−
1 (rn), k−

2 (rn)〉, where

1. ri+1 = min{r | 〈k−
1 (ri), k

−
2 (ri)〉 < 〈k−

1 (r), k−
2 (r)〉};

2. rn = min{r | k−
1 (r) ∩ k−

2 (r) 6= ∅}.

This sequence clearly shows the procedure of “mutual
understanding”: each agent gradually broadens their views
(possible worlds) in order to reach a common understanding
(intersection of possible worlds from two agents). After-
wards, the belief state of each agent with the common un-
derstanding can be represented, respectively, by belief states
k1 − rn and k2 − rn, where

(k − r)(w) =

{

0, if k(w) ≤ r;
k(w), otherwise.

Therefore, the first stage of mutual belief revision defines
a function γ which takes a pair of belief states (possibly in-
consistent with each other) and returns a pair of consistent

1Note that it is always possible to reach an intersection in a fi-
nite number of steps since the natural numbers are well-ordered. In
the special case that k

−

1 (0) and k
−

2 (0) intersect, the process termi-
nates immediately.



belief states:

γ(k1, k2) = 〈k1 − rn, k2 − rn〉 (2)

where rn = min{r | k−
1 (r) ∩ k−

2 (r) 6= ∅}.

Revision of OCFs

As we described in the previous section, the first stage of
mutual belief revision results in a pair of weakened belief
states, which represents the (mutually consistent) remain-
ing beliefs of the two agents. In the second stage of mutual
belief revision, the weakened belief state of one agent will
be sent to the other agent as the new information, and vice
versa (Zhang et al. 2004). Both agents will review the new
information they just received in the light of their original
beliefs, to form a new view of the world. This process is
similar to the standard operation of single-agent belief revi-
sion. The only difference is that while an agent revises her
beliefs, she not only tries to incorporate the information re-
ceived from the other agent but also takes the other agent’s
view of the information into account. In other words, the
agent views the new information as a belief state rather than
a single sentence or a set of beliefs. In order to model such
a process we will define a belief revision operator which al-
lows to revise an OCF by another OCF.

Let us first recall the idea of how belief revision is gener-
ated by an OCF. Following (Spohn 1988), a new evidence α
is assumed to come along with an evidence degree m > 0.
An OCF k is then revised according to new evidence α as
follows:

(k∗
α,m)(w) =

{

k(w) + m, if w |= ¬α;
k(w) − Rankk(¬α), otherwise .

(3)

As has been shown by (Jin & Thielscher 2007), this revision
operation satisfies all AGM postulates as well as the DP pos-
tulates (Darwiche & Pearl 1997) and the independence pos-
tulate (Jin & Thielscher 2007) for iterated revision.

Now we define a belief revision operator which allows us
to revise a belief state by another belief state.

Definition 1. Given two OCFs k and λ , we define the revi-
sion of k by λ , denoted by k ⊗ λ , as follows:

(k ⊗ λ)(w) =

{

k(w) + λ(w), if λ(w) > 0;
k(w) − mk,λ, otherwise.

(4)

where mk,λ is the smallest radius of a sphere of k which
intersects the core of λ:

mk,λ = min{i | k−(i) ∩ λ−(0) 6= ∅} (5)

The idea behind this definition is the following. For any
world which the other agent disbelieves, the agent will de-
grade the world according to the other agent’s degree of dis-
belief. Conversely, for those worlds which the other agent
believes, the agent will upgrade these worlds according to
the original degree of belief.

We say that an OCF k encodes a sentence α with evidence
degree m > 0 iff for any possible world w,

k(w) =

{

0, if w |= α;
m, otherwise.

(6)

k1 and k2 consistent

k−
1 (0) k−

2 (0)

(M1(k1, k2))
−(0)

(M2(k1, k1))
−(0)

k1 and k2 inconsistent

k−
1 (0) k−

2 (0)

(M1(k1, k2))
−(0)

(M2(k1, k2))
−(0)

Figure 1: Visualization of mutual belief revision

It is easy to see that an OCF k encodes α with plausibility m
iff Bel(k) = Cn({α}) and Rankk(α) = m. It is not difficult
to see that the revision operator defined by (4) is indeed a
generalization of that defined by (3).

Proposition 1. Let k be an arbitrary OCF and λ an OCF
that encodes 〈α,m〉. Then for any possible w,

(k∗
α,m)(w) = (k ⊗ λ)(w)

OCF Model of Mutual Belief Revision

In the second stage of mutual belief revision, each agent re-
vises her belief state by mutually accepting the point of view
reached in the first stage. The construction is similar to the
approach of (Zhang et al. 2004).

Definition 2. A function M : κ × κ → κ × κ is an OCF
mutual belief revision if for any k1, k2,

M(k1, k2) = 〈k1 ⊗ γ2(k1, k2), k2 ⊗ γ1(k1, k2)〉 (7)

where γ is defined by (2).

The two diagrams in Figure 1 illustrate how the construc-
tion works. The left diagram shows a special case where
k1 and k2 are mutually consistent. It is obvious that the
first stage ends after just one round: π = (〈k−

1 (0), k−
2 (0)〉).

Therefore, M(k1, k2) = 〈k1 ⊗ k2, k2 ⊗ k1〉. The cores
of both new OCFs, i.e., M1(k1, k2) and M2(k1, k2), are

identified with the intersection of k−
1 (0) and k−

2 (0). The
diagram on the right-hand side illustrates the more general
situation where the initial belief states k1 and k2 are
mutually inconsistent. For this example we assume that
the belief interchange requires a total of three rounds, that is,
π= (〈k−

1 (0), k−
2 (0)〉, 〈k−

1 (r1), k
−
2 (r1)〉, 〈k

−
1 (r2), k

−
2 (r2)〉).

Then M(k1, k2) = 〈k1 ⊗ (k2 − r2), k2 ⊗ (k1 − r2)〉. The

core of M1(k1, k2) is exactly the intersection of k−
2 (r2)

with the innermost sphere of k1 (in our example, k−
1 (r1))

which intersects k−
2 (r2).

2 Analogously, the core M2(k1, k2)
is the intersection of k−

1 (r2) with the innermost sphere

of k2 which intersects k−
1 (r2). It is easy to see that the

intersection k−
1 (r2) ∩ k−

2 (rn) contains both the core of
M1(k1, k2) and that of M2(k1, k2); in other words, the
common understanding is accepted by both agents after
mutual belief revision.

2The reader may observe the analogy to the belief revision
model based on Systems of Spheres (Grove 1988).



Properties of Mutual Belief Revision

To justify the OCF model, in this section we discuss some
of its formal properties.

Given two OCFs k1, k2, we define their inconsistency de-
gree, dinc(k1, k2), as follows:

dinc(k1, k2) = min{n | k−
1 (n) ∩ k−

2 (n) 6= ∅}

The following result shows that belief states of agents be-
come “more consistent” after mutual belief revision unless
both agents stick firmly to their original beliefs.

Proposition 2. The OCF mutual belief revision given by
Definition 2 satisfies the following properties:

1. dinc(M(k1, k2)) ≤ dinc(k1, k2);

2. dinc(M(k1, k2)) = dinc(k1, k2) just in case Bel(k1) ⊆
Bel(M1(k1, k2)) and Bel(k2) ⊆ Bel(M2(k1, k2)).

The above properties of mutual belief revision are very
promising. Note that as the participating agents will have
“closer” views of the outside world, mutual belief revision
facilitates the potential cooperation between these agents.

The simple construction of the OCF model allows us to
prove more interesting properties:

Proposition 3. The OCF mutual belief revision given by
Definition 2 satisfies the following properties (for each i ∈
{1, 2}):

(M1) Bel(γ1(k1, k2))+Bel(γ2(k1, k2))⊆Bel(Mi(k1, k2));

(M2) if k1 and k2 are consistent, then
Bel(Mi(k1, k2)) = Bel(k1) + Bel(k2);

(M3) ki and Mi(k1, k2) are consistent iff
Bel(ki) ⊆ Bel(Mi(k1, k2));

(M4) M1(k1, k2) = M1(k1, γ2(k1, k2)),
M2(k1, k2) = M2(γ1(k1, k2), k2);

(M5) if both Bel(k1) ⊆ Bel(M1(k1, k2)) and Bel(k2) ⊆
Bel(M2(k1, k2)), then Mi(k1, k2) ≡ Mi(M(k1, k2)).

(M1) ensures that the common understanding is accepted
by both agents. (M2) captures the cooperative attitude of
agents: if two agents have no disagreement, then each of
them will accept the beliefs of the other agent. (M3), on the
other hand, captures the self-interest of agents, that is, if an
agent is not going to accept any beliefs that contradict her
own, she does not need to give up any of her beliefs.

(M4) shows that the information an agent gains from mu-
tual belief revision is no more than what she agrees on. In
fact, (M1) and (M4) are two principal properties of mutual
belief revision: both agents benefit from mutual belief re-
vision without loss of the diversity of views. In general,
it is not necessary that the two belief states will merge; as
described by (M5), the agents may get stuck in a stand-off
(fixed-point) if none of them is willing to make concessions.

Computational Mutual Belief Revision

An OCF is a function over possible worlds. The total num-
ber of possible worlds is exponential in the number of propo-
sitional variables. Therefore, the OCF model for mutual be-
lief revision is not well-suited for providing a computational
account of mutual belief revision. In this section, we present

another construction of mutual revision operators to inves-
tigate computational properties. We will show that the two
models are essentially equivalent.

Belief States in Computational Model

We will represent a belief state by an integer-weighted belief
base. Formally, an entrenchment ranking base (ERB) Ξ con-
sists of a finite set of sentences, B, and a mapping f from B
to N

+, which can be represented as {〈β1, e1〉, · · · , 〈βn, en〉}
such that βi ∈ B and f(βi) = ei. For any sentence βi ∈ B,
we call f(βi) its evidence degree. The higher the degree, the
firmer is the belief in βi.

Given an ERB Ξ = 〈B, f〉, we denote by Ξi the subset of
B in which all sentences have the same evidence degree i,
that is,

Ξi = {β ∈ B | f(β) = i}

Accordingly, Ξ≥i =
⋃

{Ξj | j ≥ i}.
The belief set of an ERB Ξ = 〈B, f〉, denoted by Bel(Ξ),

consists of all logical consequence of B, that is, Bel(Ξ) =
Cn(B). Much like an OCF, an ERB can also induce a rank-
ing over all sentences:

RankΞ(β)=







0, if B 6⊢ β;
∞, else if ⊢ β;
max{m |Ξ≥m ⊢ β}, else.

(8)

It is easy to show that this defines an AGM epistemic en-
trenchment ordering.

Note that it is possible that a sentence β ∈ B has a higher
belief degree RankΞ(β) than its evidence degree f(β). So
f(β) should only be considered as the lower bound of β’s
epistemic entrenchment ordering. A sentence β is said to be
redundant in a belief base Ξ = 〈B, f〉 iff RankΞ(β) > f(β).
Obviously, discarding redundant sentences from a belief
base will not affect the rank of any sentence, that is, it will
not change the encoded belief state.

An ERB can be related to an OCF. Specifically, we define
a function that maps an ERB Ξ to an OCF kΞ by setting the
rank of a possible world w to the maximal evidence degree
of the sentences in the ERB which it does not satisfy:

kΞ(w)=

{

0, if w |= B;
max{f(β) |β ∈ B and w 6|= β}, otherwise.

(9)

The following theorem shows that the OCF kΞ induced
by an ERB Ξ encodes exactly the same information as Ξ.

Theorem 1. Suppose Ξ is an ERB and kΞ is the OCF de-
fined by (9). Then for any sentence β:

RankΞ(β) = RankkΞ
(β)

Revision of ERBs

Similar to the OCF revision operator defined by (4), we
propose here an operator which revises an ERB by another
ERB.

Suppose Ξ1 = 〈B1, f1〉 and Ξ2 = 〈B2, f2〉 are two ERBs.
The result of revising Ξ1 by Ξ2, denoted by Ξ1 ⊗ Ξ2, is
defined as:

Ξ1 ⊗ Ξ2 ={〈β ∨ α, f1(β) + f2(α)〉 |β ∈ B1 and α ∈ B2}
∪ {〈β, f1(β) − r〉 |β ∈ B1} ∪ Ξ2

(10)



where r = RankΞ1
(¬

∧

B2), assuming
∧

∅ = ⊤.

The following result establishes the equivalence of our
ERB revision operator and the OCF-based revision opera-
tor defined by (4).

Theorem 2. Suppose Ξ1 = 〈B1, f1〉, Ξ2 = 〈B2, f2〉 are
two ERBs and kΞ1

, kΞ2
are the OCFs induced by Ξ1 and

Ξ2, respectively. Then for any possible world w:

(kΞ1
⊗ kΞ2

)(w) = kΞ(w)

where Ξ = Ξ1 ⊗ Ξ2 and kΞ is the OCF induced by Ξ.

ERB Model of Mutual Belief Revision

Finally, we define a mutual belief revision operator on
ERBs. Technically, this requires the notion of an i-cut of an
ERB Ξ = 〈B, f〉, denoted by Ξ − i and defined as follows:

Ξ − i = {〈β, f(β)〉 |β ∈ B and f(β) > i}

Given two ERBs Ξ1 = 〈B1, f1〉, Ξ2 = 〈B2, f2〉, we define
the inconsistency degree, written as dinc(Ξ1,Ξ2), of Ξ1 and
Ξ2 as follows

dinc(Ξ1,Ξ2)=

{

0, if B1 ∪ B2 0 ⊥;

max{i |Ξ≥i
1 ∪ Ξ≥i

2 ⊢ ⊥}, otherwise.

Definition 3. The ERB mutual belief revision operator M is
defined as follows:

M(Ξ1,Ξ2) = 〈Ξ1 ⊗ γ2(Ξ1,Ξ2),Ξ2 ⊗ γ1(Ξ1,Ξ2)〉 (11)

where γ(Ξ1,Ξ2) = 〈Ξ1−dinc(Ξ1,Ξ2),Ξ2−dinc(Ξ1,Ξ2)〉.

Let’s see some examples to illustrate this operator.

Example 1. Suppose Ξ1 = {〈q, 3〉, 〈p, 2〉} and Ξ2 =
{〈q, 3〉 〈¬p, 2〉}. It is easy to see that dinc(Ξ1,Ξ2) = 2
and Ξ1 − 2 = Ξ2 − 2 = {〈q, 3〉}. According to (10), we
have M1(Ξ1,Ξ2) = Ξ1 ⊗ (Ξ2 − 2) = {〈q, 6〉, 〈p, 2〉} and
M2(Ξ1,Ξ2) = Ξ2 ⊗ (Ξ1 − 2) = {〈q, 6〉, 〈¬p, 2〉}, after
removing redundant sentences.

In this example, the belief set of each agent remains the same
but the evidence degree of the common belief q is increased
as a result of the mutual belief revision. Unlike with belief
merging, the conflicting opinions of Ξ1 and Ξ2 on p are not
resolved. It is not difficult to see that the inconsistency re-
mains even if operator M is applied repeatedly.

Example 2. Suppose Ξ1 = {〈q, 3〉, 〈p, 1〉} and Ξ2 =
{〈¬p, 3〉, 〈q, 1〉}. In this case we have dinc(Ξ1,Ξ2) = 1,
Ξ1 − 1 = {〈q, 3〉}, and Ξ2 − 1 = {〈¬p, 3〉}. According
to (10), we have M1(Ξ1,Ξ2) = {〈q∨¬p, 6〉, 〈¬p, 3〉, 〈q, 2〉}
and M2(Ξ1,Ξ2) = {〈q ∨ ¬p, 6〉, 〈q, 4〉, 〈¬p, 3〉}.

In this example, both agents confirm the common belief
q ∨ ¬p with high degree. Agent 1 is convinced by agent 2 of
¬p since agent 2 believes in it with high degree and also has
a common understanding with agent 1 on q. Agent 2 does
not acquire any new belief, but she gets a stronger confir-
mation in q. As a result of mutual belief revision, the two
agents reach a consensus.

〈Ξ1,Ξ2〉 M(Ξ1,Ξ2)

〈kΞ1
, kΞ2

〉 M(kΞ1
, kΞ2

)

(11)

(7)

(9) (9)

Figure 2: Equivalence of ERB and OCF-based model

Equivalence Results

To show the equivalence of the two constructions of mutual
belief revision presented in this paper, we need the following
lemmas.

Lemma 1. Suppose Ξ is an ERB and kΞ its induced OCF.
Then for any possible world w and natural number r:

(kΞ − r)(w) = kΞ′(w)

where Ξ′ = Ξ − r and kΞ′ is the OCF induced from Ξ′.

Lemma 2. Suppose Ξ1,Ξ2 are two ERBs and kΞ1
, kΞ2

are
the OCFs induced from Ξ1 and Ξ2 , respectively. Then

dinc(kΞ1
, kΞ2

) = dinc(Ξ1,Ξ2)

The following equivalence theorem (as illustrated in Fig-
ure 2) is a direct consequence of the above lemmas and The-
orem 2.

Theorem 3. Suppose Ξ1,Ξ2 are two ERBs and kΞ1
, kΞ2

are
the OCFs induced from Ξ1 and Ξ2, respectively. Then

M(kΞ1
, kΞ2

) = 〈kΞ′

1
, kΞ′

2
〉

where 〈Ξ′
1,Ξ

′
2〉 = M(Ξ1,Ξ2) and kΞ′

1
, kΞ′

2
are the OCFs

induced from Ξ′
1 and Ξ′

2, respectively.

It follows directly from Theorem 1 and Theorem 3 that
the ERB operator shares all of the nice logical properties of
the OCF-based operator presented in the previous section.

Computational Complexity

In this section, we present complexity results of two related
problems. First of all, we are interested in how hard it is to
compute the result of M(Ξ1,Ξ2), given two arbitrary ERBs
Ξ1,Ξ2. It turns out that the problem falls in an interesting
complexity class, namely, NP-equivalent, which is the ana-
logue of NP-completeness for function problems. Formally,
a function problem is called NP-equivalent iff it is in F∆p

2

(also referred to as NP-easy) and NP-hard.3

Theorem 4. The problem of computing M(Ξ1,Ξ2), for ar-
bitrary ERBs Ξ1 and Ξ2, is NP-equivalent.

The second problem is to decide whether an arbitrary sen-
tence β is entailed by both M1(Ξ1,Ξ2) and M2(Ξ1,Ξ2). It
turns out that this decision problem inhabits a very low level
of the polynomial hierarchy.

3Complexity class F∆p

2 (∆p

2) denotes function (decision) prob-
lems which can be solved polynomially by a deterministic Turing
machine with an NP-oracle. Readers are referred to (Papadimitriou
1994) for a detailed discussion on these classes.



Theorem 5. The problem of deciding whether both
M1(Ξ1,Ξ2) and M2(Ξ1,Ξ2) entail β, for arbitrary ERBs
Ξ1,Ξ2 and sentence β, is ∆p

2 [O(log n)]-complete.

Conclusion and Related Work
We have introduced the concept of mutual belief revi-
sion. To this end, we have modeled the process of mu-
tual belief revision in two stages: In the first stage, two
agents get together trying to reach a common understanding.
This stage is quite similar to belief merging (Revesz 1997;
Liberatore & Schaerf 1998; Konieczny & Pérez 1998). Once
such a common understanding has been reached, two agents
revise their belief states in order to incorporate the agreed
views into their own belief states. This idea is in the spirit of
(Zhang et al. 2004).We have introduced two different mod-
els for mutual belief revision: an OCF-based model, which
clearly shows the intuition and semantics of the operation,
and an ERB model suitable for computation.

In this paper, we have focused on situations which only
involve two agents. To handle situations with m-agents
(m ≥ 2), we can extend γ (defined by (2)) as follows:

γ(k1, · · · , km) = 〈k1 − rn, · · · , km − rn〉

where rn = min{r | k−
1 (r)∩· · ·∩k−

m(r) 6= ∅}. Accordingly,
M can be extended as follows:

M(k1, · · · , km) = 〈k1 ⊗ T1, · · · , km ⊗ Tm〉

where Ti =
⊕

1≤j≤m,j 6=i{γj(k1, · · · , km)}.4

In (Zhang et al. 2004), a formalism is presented in which
negotiation is viewed as a process of mutual belief revision.
In this work, a set of AGM-style postulates are proposed
for mutual belief revision operators. However, no semantic
model or computational model is given. Moreover, nego-
tiation and mutual belief revision should not be considered
interchangeable despite some similarities in their operation.
The focus of negotiation is to reach a mutually beneficial
agreement; once such an agreement is formed, the diver-
gence of beliefs among the agents is no longer of impor-
tance. In contrast, the divergence of beliefs is always the
focus of mutual belief revision, before and after the process.
In this sense, negotiation is closer to belief merging than
mutual belief revision.

An interesting perspective for future work is of course to
formulate AGM-style postulates for mutual belief revision.
As a staring point, we might directly translate some proper-
ties of Proposition 3 into AGM-style postulates and provide
a representation theorem for these postulates. As an exam-
ple, property (M3) corresponds directly to so-called consis-
tent expansion of (Zhang et al. 2004), which can be refor-
mulated as follows:

- If Ki and Mi(K1,K2) are consistent, then Ki ⊆
Mi(K1,K2).

The main difference between mutual belief revision and the
negotiation operation of (Zhang et al. 2004) is that the for-
mer does not satisfy the so-called postulate of no recanta-
tion:

4We denote by k1 ⊕ k2 the expansion of k1 by k2, such that
(k1 ⊕ k2)(w) = k1(w)+ k2(w). Note that ⊕ is commutative, and
k1 ⊕ k2 = k1 ⊗ k2 when k1 and k2 are mutually consistent.

- K2 ∩ M1(K1,K2) ⊆ M2(K1,K2)
K1 ∩ M2(K1,K2) ⊆ M1(K1,K2)

At first glance, the above postulate seems quite promising:
an agent should not give up its own beliefs that will be ac-
cepted by the other agent. However, as shown in (Meyer
et al. 2004b; 2004a), no recantation also enforces the par-
ticipating agents to have identical beliefs after negotiation.
Therefore, we argue that no recantation is too strong a gen-
eral postulate for mutual belief revision.

It is also worth mentioning that both projections (i.e., M1

and M2) of mutual belief revision satisfy most properties
of so-called selective revision (Fermé & Hansson 1999). In
particular, Property (M4) guarantees the satisfiability of Pos-
tulate proxy success, which can be reformulated as follows:

- There is a subset Y of X , such that Y ⊆ K ∗ X and
K ∗ X = K ∗ Y .
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