
Modeling Actions with Ramifications
in Nondeterministic, Concurrent, and Continuous Domains—

And A Case Study

Michael Thielscher
Dresden University of Technology

01062 Dresden, Germany
mit@inf.tu-dresden.de

Abstract

Combining into a consistent theory co-existing models
for different phenomena in reasoning about actions can
be a problem as challenging as addressing new aspects.
We present a uniform theory for reasoning about ac-
tions with indirect effects in nondeterministic, concur-
rent, and continuous domains. We report on a case study
to which our theory has been successfully applied.

Introduction
Research on reasoning about actions in dynamic environ-
ments has made rapid progress in the recent past: Initiated
by new, solid solutions to the Frame Problem in the early
1990s,1 a variety of advanced aspects of complex environ-
ments has been successfully addressed, among which are:
indirect effects of actions, concurrency, uncertainty, sens-
ing actions, and continuous change in conjunction with so-
called natural actions, to mention just the ones on which
most of recent work has focused.

However, the existence of models for all of these and other
aspects does not imply that there be a unique model which
covers them all. Rather, extensions of basic solutions to the
Frame Problem have mostly been investigated in isolation.
As a consequence, combining co-existing models for differ-
ent phenomena is often a problem as challenging as address-
ing further aspects.

In this paper, we present a classical logic formalism that
uniformly addresses the diverse phenomena of ramifica-
tions (i.e., indirect effects), nondeterminism, concurrency,
and continuous change. Our formalism is based on the
concept of state update axioms of the Fluent Calculus as
one established solution to the Frame Problem (Thielscher
1999b), which roots in the logic programming formalism
of (Hölldobler & Schneeberger 1990).

We have successfully applied our theory to the Traffic
World, a complex dynamic domain which has recently been
posed as a challenge to the scientific community (Sande-
wall 1999). The crucial property of this domain is that it

Copyright c© 2013, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1A good overview of today’s established action formalisms is
provided by the set of reference articles published in (Sandewall
1998).

shows all of the aforementioned phenomena, and hence can-
not be fully axiomatized by means of co-existing but not
readily compatible solutions to each aspect alone. Using
the combined theory of the Fluent Calculus, in (Henschel
& Thielscher 1999) we have developed an axiomatization of
the full Traffic World,2 which proves the expressiveness of
our framework.

In the next section, we give a short introduction to the
case study of the Traffic World, and we briefly recapitulate
the fundamentals of the Fluent Calculus.3 We then discuss a
first challenge which is raised by combining the two aspects
of uncertainty and natural actions and which concerns the
specification of action preconditions. Thereafter, we present
a theory which integrates ramification, nondeterminism, and
concurrency in the Fluent Calculus, followed by incorporat-
ing continuous change and natural actions. Throughout the
paper, key axioms taken from (Henschel & Thielscher 1999)
serve as examples.

The Basic Fluent Calculus
The Traffic World consists of a net of road segments on
which cars are moving. Cars may speed up, slow down, and
turn at intersections (that is, nodes at which segments meet).
Speed changes are approximated as instantaneous, for the
sake of simplicity. Each car has its own top speed, roads
have speed limits, and cars must keep a certain safety dis-
tance to the car in front. One or more cars may be under our
control, others are not. A logical axiomatization of the Traf-
fic World can be used to solve, using automated deduction,
various kinds of problems, such as: What can be concluded
about the future of a (possibly incompletely) given state?
How did a given state evolve, say, a traffic jam? How can
certain goals be achieved? Rigorous axiomatizations more-
over allow for proving general properties, such as congestion
avoidance under certain conditions etc. For details we refer
to (Sandewall 1999).

2It is worth mentioning that the Fluent Calculus was the first
of the standard approaches in which a solution to the challenge
problem was submitted.

3Due to lack of space we can provide only a brief de-
scription of the Fluent Calculus; for a complete introduc-
tion see (Thielscher 1999b)—or get an online tutorial at
http://pikas.inf.tu-dresden.de/˜mit/FC/Tutorial/index.htm.

The Traffic World involves a variety of aspects of real-
world action domains:
• Continuous change. The position of a car which moves

with constant velocity changes continuously.
• Concurrency. Two or more cars may arrive at an inter-

section at the same time and even with the intention to
turn onto the same road segment.

• Natural actions. Cars are assumed to automatically slow
down as soon as they have reached the safety distance to
the car in front.

• Ramification. If the driver of a car hits the break and
slows down as effect, then another car traveling behind
and keeping just the safety distance must slow down, too,
as an indirect effect, which in turn may cause a third car
to slow down traveling behind the second one, and so on.

• Nondeterminism. Cars which are not under our control
may choose either direction at intersections.
The Fluent Calculus uses the basic entity of a fluent,

which is an atomic component of descriptions of world
states. While fluents are generally assumed to be stable in
between the occurrence of two consecutive actions, a fluent
may internally represent an arbitrarily complex, continuous
process. The central fluent used for the Traffic World, de-
noted by Movement(x, d, v, t, r, n), represents such a pro-
cess, namely, the constant movement of a car x. The other
parameters are: the distance absolved on the current road
segment at the time of initiation of the particular movement
(d), the velocity (v), the time when the movement was initi-
ated (t), the road segment (r), and the node the car is head-
ing for (n).

The key feature of the Fluent Calculus is that it intro-
duces an explicit notion of a state to the Situation Calcu-
lus. This requires the meticulous distinction between situa-
tions (which are characterized by sequences of actions) and
states (which are characterized by truth-assignments to flu-
ents). Formally, the Fluent Calculus is an order-sorted sec-
ond order language with equality, which includes the pre-
defined sorts sit, action, fluent, and state. Fluents are
reified propositions. That is to say, the symbol Movement
from above denotes a function symbol which maps a 6-tuple
of the right sort onto a fluent. Fluents can be joined together
by the binary function symbol “ ◦ ” to make up states. We
write this symbol in infix notation. The function shall sat-
isfy the laws AC1, i.e., associativity, commutativity, and ex-
istence of a unit element, denoted by ∅. Associativity allows
us to omit parentheses in nested applications of ◦.

The standard function State : sit 7→ state relates a situa-
tion to the state of the world in that situation. The following
axiom, for instance, specifies two movements taking place
in the initial situation S0:

(∃z) State(S0) =
Movement(X1, 2.5km, 70kmph, 9 : 30 : 00, R14, N8) ◦
Movement(X2, 3.7km, 50kmph, 9 : 32 : 30, R6, N22) ◦ z

That is, of State(S0) it is known that it includes the two
fluents mentioned and possibly some other fluents z.4

4A word on the notation: Predicate and function symbols, in-

For convenience, we will frequently use the expressions
Holds(f, z) —denoting that f holds in state z —and the
common Holds(f, s)—stating that fluent f holds in situa-
tion s—, though they are not part of the signature but mere
abbreviations of equality sentences:

Holds(f, z) def
= (∃z′) z = f ◦ z′

Holds(f, s) def
= Holds(f, State(s))

So-called state constraints are used to restrict the space of
states to those that can actually occur. The following, for
instance, says that one and the same car can never execute
two movements in the same situation:
Holds(Movement(x, d1, v1, t1, r1, n1), s)
∧ Holds(Movement(x, d2, v2, t2, r2, n2), s)
⊃ d1 = d2 ∧ v1 = v2 ∧ t1 = t2 ∧ r1 = r2 ∧ n1 = n2

A further example of a state constraint in the Traffic World
can be found in the section on ramifications.

Fundamental for any Fluent Calculus axiomatization is
the axiom set

EUNA[◦, ∅; fluent, state] (F1)
which accompanies domain-dependent unique name-
assumptions by the axioms AC1 for ◦; ∅ along with the two
axioms of irreducibility and of Levi, which entail inequality
of two state terms that are composed of different fluents;
see (Henschel & Thielscher 1999). In addition, we have the
foundational axiom

State(s) 6= f ◦ f ◦ z (F2)
by which double occurrences of fluents are prohibited in any
state which is associated with a situation.

So-called state update axioms specify the entire relation
between the states at two consecutive situations. In the
basic case of deterministic actions with only direct and
closed effects,5 a mere equation relates a successor state
State(Do(a, s)) 6 to the preceding state State(s):

Poss(A(~x), s) ∧∆(~x, s) ⊃
(∃~y) State(Do(A(~x), s)) ◦ ϑ− = State(s) ◦ ϑ+

where the standard predicate Poss(a, s) denotes that ac-
tion a is possible in situation s and where ϑ− are the
negative effects and ϑ+ the positive effects, resp., of ac-
tion A(~x) under condition ∆(~x, s) (sequence ~y contains
the variables in ϑ−, ϑ+ which are not among ~x).7

More complex phenomena require more complex forms
of state update axioms, as we will see later in the paper.

cluding constants, start with a capital letter whereas variables are
in lower case, sometimes with sub- or superscripts. Free variables
in formulas are assumed universally quantified. Throughout the pa-
per, action variables are denoted by the letter a, situation variables
by the letter s, fluent variables by the letter f , and state variables
by the letter z , all possibly with sub- or superscript.

5By closed effects we mean that an action does not have an
unbounded number of direct effects.

6As in the standard Situation Calculus, Do(a, s) denotes the
situation reached after performing action a in situation s.

7This scheme is the reason for not stipulating that “ ◦ ” be
idempotent, contrary to what one might intuitively expect instead
of (F2). For if the function were idempotent, then the equation
would not imply that State(Do(a, s)) does not include ϑ− .

Preconditions of Natural Actions in
Nondeterministic Worlds

In formalisms based on the Situation Calculus, such as (Re-
iter 1991), as well as in the Fluent Calculus a usual premise
is that the preconditions of an action A(~x) can be described
by a definitional formula

Poss(A(~x), s) ≡ πA(~x, s)

where the first-order formula πA does not include the predi-
cate Poss and describes the conditions on parameters ~x and
situation s under which the action is possible. This assump-
tion usually generalizes to the case of non-deterministic
worlds as well as to the case of natural actions, i.e., which
occur automatically. Surprisingly, the premise fails if the
two aspects are combined.

The reason lies in the fact that all natural actions which
are possible must actually occur (Reiter 1996). Yet in a
non-deterministic world, several instances of a natural ac-
tion may be possible but only one of them can actually take
place. In this case, the possibility of one natural action de-
pends on other actions not being possible at the same time.

An example from the Traffic World is the natural action
of someone else’s car turning at intersections. A car has
a choice among several alternatives, but in any concrete
model of the world it can turn onto one segment only. Un-
der these circumstances, a definitional precondition axiom
of the aforementioned form does not exist. Rather, the spec-
ification needs to be split into two parts, the first of which is
of the form

Poss(A(~x, ~y), s) ⊃ πA(~x, s) ∧ π̂A(~x, ~y, s)

where ~y are the parameters among which a non-
deterministic choice has to be made and where πA(~x, s) ∧
π̂A(~x, ~y, s) describes the necessary precondition of A(~x, ~y)
in s. The second part of the precondition axiomatization
stipulates uniqueness of the choice:

πA(~x, s) ⊃ (∃!~y) Poss(A(~x, ~y), s)

Based on this generalization, the following two axioms
describe the precondition of someone else’s car arriving and
nondeterministically turning at intersections:

Poss(ArriveAt(x, r1, n, r2, t), s) ⊃
(∃d, v, t0, n2) (Holds(Movement(x, d, v, t0, r1, n), s)∧

d + v(t− t0) = Length(r1)∧
Connects(r2, n, n2) ∧ r1 6= r2)

where ArriveAt(x, r1, n, r2, t) denotes the natural action
at time t of car x arriving at node n as the end of segment
r1 and turning onto segment r2; Length(r) denotes the
length of segment r; and Connects(r, n1, n2) denotes that
road segment r connects nodes n1 and n2 . Since there can
only be one road segment r2 onto which the car may turn,
the second axiom requires uniqueness of this parameter:

(∃d, v, t0, n2) (Holds(Movement(x, d, v, t0, r1, n), s)∧
d + v(t− t0) = Length(r1))

⊃ (∃!r2) Poss(ArriveAt(x, r1, n, r2, t), s)

Concurrency with Ramification

Concurrency

The Fluent Calculus for concurrent actions (Thielscher
2000b) is based on the additional pre-defined sort conc, of
which action is a sub-sort. Single actions which are per-
formed simultaneously are joined together with a new bi-
nary function. This function shares with the function com-
bining fluents to states the properties of associativity, com-
mutativity, and existence of a unit element. Hence, the sym-
bol “ ◦ ” is overloaded as denotation for both. The constant
“ ε ” (read: no-op) acts as the unit element wrt. ◦ applied
to terms of sort conc. In summary, the concurrent Fluent
Calculus relies on the equality axioms (c.f. (F1)),

EUNA[◦, ε; action, conc] (F3)

In what follows, variables of the new sort are denoted by the
letter c, possibly with sub- or superscript.

State update axioms for concurrent actions are recursive.
They specify the effect of an action relative to the effect of
arbitrary other, concurrent actions:

Poss(α(~x) ◦ c, s) ∧∆(~x, c, s) ⊃
(∃~y) State(Do(α(~x) ◦ c, s)) ◦ ϑ−=State(Do(c, s)) ◦ ϑ+

That is, ϑ− and ϑ+ are the additional negative and posi-
tive, resp., effects which occur if α is performed besides c.
Here, α can be a single action or a compound action which
produces synergic effects, that is, effects which no single ac-
tion would have if performed alone. With the help of recur-
sive state update axioms, the effect of, say, two simultaneous
but independent actions can be inferred by first inferring the
effect of one of them and, then, inferring the effect of the
other action on the result of the first inference. The recur-
sion relies on the base case of the empty action, which has
no effect:

State(Do(ε, s)) = State(s)

Two or more actions may interfere when performed concur-
rently, which is why condition ∆ in the above state update
axiom may restrict the applicability of the implication in
view of the concurrent action c.

Ramification

In the Fluent Calculus with ramifications (Thielscher
1997), indirect effects of actions are accounted for by
the successive application of so-called causal relation-
ships. Their axiomatization is based on defining a pred-
icate Causes(z0, z+0 , z

−
0 , z1, z

+
1 , z

−
1), which means that in

the current state z0 the occurred positive and negative ef-
fects z+0 , z

−
0 give rise to an additional, indirect effect re-

sulting in the updated state z1 and the updated current ef-
fects z+1 , z

−
1 . For instance, the following causal relationship

implies that if a car x has lowered its speed as a direct or in-
direct effect of some action, then this causes another car x′
traveling behind in the global safety distance ς to slow down

as well:

Causes(z0, z
+
0 , z

−
0 , z1, z

+
1 , z

−
1) ≡

(∃t0, x, d, v, t, r, n, x′, d′, v′, t′)
[Start(z0) = t0 ∧
Holds(Movement(x, d, v, t, r, n), z0)∧
Holds(Movement(x′, d′, v′, t′, r, n), z0)∧
ς = d + v(t0 − t)− (d′ + v′(t0 − t′))∧
v < v′ ∧
z1 ◦ Movement(x′, d′, v′, t′, r, n) =
z0 ◦ Movement(x′, d′ + v′(t0 − t′), v, t0, r, n)∧

z+1 = z+0 ◦ Movement(x′, d′ + v′(t0 − t′), v, t0, r, n)∧
z−1 = z−0 ◦ Movement(x′, d′, v′, t′, r, n)]
∨ . . .

(The ellipsis indicates that the Traffic World axiomatiza-
tion includes more causal relationships. For the definition
of Start(z) see foundational axiom (F7) below.) Applica-
tions of the above causal relationship ensure that the follow-
ing state constraint will not be violated, which says that cars
must in any situation keep the safety distance:

Holds(Movement(x1, d1, v1, t1, r, n), s)∧
Holds(Movement(x2, d2, v2, t2, r, n), s)∧
x1 6= x2 ∧ Start(s) = t ⊃
d1 + v1(t− t1)− (d2 + v2(t− t2)) ≥ ς ∧
[d1 + v1(t− t1)− (d2 + v2(t− t2)) = ς ⊃ v2 ≤ v1]

(1)

Causal relationships are repeatedly applied until a state
is obtained which does not violate the state constraints. Our
causal relationship from above is an excellent demonstration
of the power of ramification: It is intended that if a car lead-
ing a whole convoy slows down, then in a manner of falling
dominoes the effect of deceleration gets propagated. To this
end, the general idea of ramification needs to be combined
with the recursive effect specifications needed for concur-
rency. The combined axiomatization will allow for reason-
ing about interesting cases such as the following. Suppose
car X1 is followed by faster car X2 , which is in turn fol-
lowed by car X3 , the fastest of all. Suppose further that X2
reaches the safety distance to X1 at the very same moment
as X3 approaches X2 . Then X2 assumes the speed of X1
and X3 that of X2 as direct effects; thereafter, ramification
changes the speed of X3 again, namely, to the new speed
of X2 .

The Combination
The challenge with combining the two phenomena of con-
currency and ramification is that two or more actions may
produce direct effects which only together cause some in-
direct effect. (The scenario just mentioned constitutes such
a case.) Therefore, ramifications must not be inferred sep-
arately for each member of a compound action. Hence, a
new form of recursive effect specifications is required by
which an intermediate state is determined in which all di-
rect effects are realized but which is not yet the overall
successor state. To this end, we introduce three functions,
DSucc,DEff+,DEff− , mapping a concurrent action and a
state to states which denote, resp., the world state resulting
from the direct effects of the concurrent action and the com-
bined positive and negative effects. On this basis, the new

general form of state update axioms is as follows.8

Poss(α(~x) ◦ c, z) ∧∆(~x, c, z) ⊃
(∃~y, z+, z−)

[z+ = ϑ+ ∧ z− = ϑ− ∧
DSucc(α(~x) ◦ c, z) ◦ z− = DSucc(c, z) ◦ z+ ∧
DEff+(α(~x) ◦ c, z) = DEff+(c, z) ◦ z+ ∧
DEff−(α(~x) ◦ c, z) = DEff−(c, z) ◦ z−]

The base case for this recursion is given by this foundational
axiom:

DSucc(ε, z) = z ∧
DEff+(ε, z) = ∅ ∧ DEff−(ε, z) = ∅ (F4)

Based on the combined direct effects of a concurrent action,
ramification yields all indirect effects:

Ramify(DSucc(c, z),DEff+(c, z),DEff−(c, z),
Succ(c, z))

(F5)

where Ramify(z0, z
+, z−, z) means that the successive ap-

plication of (zero or more) causal relationships to state z0
and effects z+, z− results in state z .

Ramification is the repeated application of causal relation-
ships:

Ramify(z1, z
+
1 , z

−
1 , z2) ≡

(∃z+2 , z
−
2) (z1, z

+
1 , z

−
1 , z2, z

+
2 , z

−
2) ∈ µ[Causes]

(F6)

where (~x, ~y) ∈ µ[P] abbreviates the following formula,
which is a standard second-order schema to axiomatize that
(~x, ~y) belongs to the reflexive and transitive closure of pred-
icate P :

∀Π

{
(∀~u) Π(~u, ~u)∧
(∀~u,~v, ~w) [Π(~u,~v) ∧ P (~v, ~w) ⊃ Π(~u, ~w)]

⊃ Π(~x, ~y)

}
An example of a recursive effect specification is the fol-

lowing, which describes the direct effect of a car x arriving
at an intersection n and the immediate turn onto another seg-
ment r2 . For a better understanding of the axiom, we note
that our model of the Traffic World handles jams at inter-
sections by virtual waiting areas in each outgoing road seg-
ment, which house all cars waiting in line for that segment
to become free up to the safety distance; see (Henschel &
Thielscher 1999).
Poss(ArriveAt(x, r1, n, r2, t) ◦ c, z)∧
¬Cancels(c, ArriveAt(x, r1, n, r2, t), z) ⊃
(∃d, p, v, t′, t0)
[z+ = Waiting(x, n, r2, p) ◦ Counter(n, r2, p + 1)∧
z− = Movement(x, d, v, t′, r1, n) ◦ Counter(n, r2, p)∧
DSucc(ArriveAt(x, r1, n, r2, t) ◦ c, z) ◦ z− =

DSucc(c, z) ◦ z+∧
DEff+(ArriveAt(x, r1, n, r2, t) ◦ c, z) =

DEff+(c, z) ◦ z+∧
DEff−(ArriveAt(x, r1, n, r2, t) ◦ c, z) =

DEff−(c, z) ◦ z−]

8In anticipation of the integration of continuous change, the sit-
uation argument s is replaced by the state argument z , and the
expression State(Do(c, s)) is replaced by Succ(c, z)—denoting
the successor state of performing concurrent action c in state z—
, in all specifications related to update in the following.

Put in words, if the action is not canceled by the concur-
rent actions, then car x is now waiting in line, there is one
more car waiting to leave node n for segment r2 , car x
is no longer moving, and the previous value of the counter
becomes false.

Turning is a nice example also to demonstrate the prob-
lem of interfering concurrent actions. If more than one
ArriveAt actions take place at the same time and do not
conflict, e.g., because they occur at different intersections,
then the recursive application of the above axiom ensures
that each turn has the effect as specified. However, if two
or more cars arrive at the same node with the intention to
turn onto the same segment, then the consequents of the cor-
responding instances are in conflict. The reason being that
different decompositions of the concurrent action lead to dif-
ferent queues, that is, the incoming cars are not placed in a
unique order.

The conflict admits an elegant solution by defining can-
cellation of actions in the following way. Suppose a car at-
tempts to turn onto a segment which another car has chosen,
too, having higher priority according to the right-of-way reg-
ulation at the intersection in question. Then the former can-
cels the latter, thus avoiding that the decomposition starts
with the action that has higher priority. As a consequence,
only those decompositions of a concurrent action are pos-
sible without cancellation where all turns onto one segment
are inferred according to the priority ordering:9

Cancels(c, ArriveAt(x1, r1, n, r2, t), z) ≡
(∃x2, r′1) (In(ArriveAt(x2, r

′
1, n, r2, t), c)∧

Priority(r1, n, r2) > Priority(r′1, n, r2))

where Priority(r1, n, r2) denotes the priority that cars
coming from segment r1 have at node n regarding a turn
into r2 , and where we use the following macro:

In(c1, c)
def
= (∃c′) c = c1 ◦ c′

Integrating Continuous Change
Continuous Change and Natural Actions
The basic representation mechanism for continuous change
is the introduction of process fluents. The Fluent Calculus
for continuous change moreover relies on the distinction be-
tween deliberative and so-called natural actions. The latter
are not subject to the free will of a planning agent. Rather
they happen automatically under specific circumstances. If,
for instance, a car which is not under our control has ab-
solved the entire length of a segment, then it will automat-
ically perform an ArriveAt action, thus causing an ‘au-
tonomous’ update of the system state.

The crucial notion underlying the Fluent Calculus for con-
tinuous change is that of a situation tree with trajectories
(Thielscher 1999a). In any situation, natural actions may
cause an autonomous evolution of the state associated with

9To see this, suppose A1 and A2 are turn actions such
that Cancels(A2, A1, z). Then the only decomposition which
avoids cancellation is, DSucc(A1 ◦ A2, z) → DSucc(A1, z) →
DSucc(ε, z), where A1 is performed ‘first’ in z.

trajectory for S0S0

t0 t1

z0

t2

z1 z2

trajectory for S1S1 = Do(A1, S0)
t′0

z′0

t′1

z′1

Figure 1: Each situation has its own trajectory, which de-
scribes how the state evolves according to the expected nat-
ural actions. In the example shown here, at the time t′0 when
the deliberative action A1 is performed in situation S0 , the
world is no longer in the initial state z0 due to a natural ac-
tion happening at time t1 < t′0 , which causes state z1 to
arise. The effect of A1 is to transform z1 into z′0 , which
thus becomes the initial state of the trajectory for situation
Do(A1, S0).

that situation.10 To this end, each situation has a trajectory.
A trajectory is a sequence of states. The world state resulting
from a deliberative action is the first one on a new trajectory.
The further evolution of that trajectory is then determined
by the natural actions that are expected to happen. The per-
formance of a deliberative action, on the other hand, brings
about another situation again, with its own trajectory; see
Fig. 1.

The Combination
Integrating the concepts of continuous change and natural
actions into the Fluent Calculus for concurrency and rami-
fication requires to reason about the updating of states that
are not necessarily associated with a situation. This is the
reason for replacing the situation argument in precondition
and effect axioms by the more general state argument (re-
call Footnote 8). This shift is straightforward since the ex-
pression Holds(f, s) means nothing but Holds(f, State(s))
anyway.

The combined Fluent Calculus uses the pre-defined fluent
StartTime(t), where t is of sort IR, determining the time
Start(z) at which a state arises:

(∃!t) Holds(StartTime(t), z)
⊃ (∀t) (Holds(StartTime(t), z) ⊃ Start(z) = t)

(F7)

The starting time of all states associated with a situation is
unique:

(∃!t) Holds(StartTime(t), s)∧
Start(s) = Start(State(s))

(F8)

The evolution of a trajectory is modeled using the predi-
cate Trajectory(z, z′), which indicates that z′ occurs on the
trajectory rooted in z . To model correctly the evolution at
any state, all natural actions that are possible next determine
the successor state:

Trajectory(z, z)∧
[Trajectory(z, z′) ∧ NextNatActions(c, z′) ⊃

Trajectory(z, Succ(c, z′))]
(F9)

10Our approach differs in this respect from the approach of (Re-
iter 1996), where natural actions are included in situation terms.
This intertwining the two kinds of actions has been shown unsuited
for planning under incomplete information (Thielscher 1999a).

where
NextNatActions(c, z) def

=
(∃t) [Start(z) ≤ t ∧ ExpectedNatActions(z, t, c)∧

¬(∃t′, c′) (ExpectedNatActions(z, t′, c′)∧
Start(z) ≤ t′ < t)]

which in turn makes use of the following macro:

ExpectedNatActions(z, t, c) def
=

c 6= ε∧
(∀a) [In(a, c) ≡

Natural(a) ∧ Time(a) = t ∧ Poss(a, z)]∧
(∀a, c′) c 6= a ◦ a ◦ c′

Here, Time(a) denotes the time of action a, for exam-
ple, Time(ArriveAt(c, r1, n, r2, t)) = t; and Natural(a)
means that a is a natural action. Each domain is assumed
to include a suitable axiom defining the positive instances of
Natural.

No states other than the ones according to axiom (F9) may
occur on a trajectory:

ActualState(s, t, z) ∧ ActualState(s, t, z′)
⊃ z = z′

(F10)

where ActualState(s, t, z) is true if z is the state of the
world in situation s at time t:

ActualState(s, t, z)
def
=

Trajectory(State(s), z) ∧ t > Start(s)∧
(∀a) (Natural(a) ∧ Poss(a, z) ⊃ Time(a) > t)

State constraints, such as (1), need to be generalized so that
they apply to all actual states in a situation. Thus, a state
constraint in the general setting becomes an implication of
the form, ActualState(s, t, z) ⊃ Φ(z).

The final complication raised by combining concurrency,
ramification, and natural actions is that natural actions may
by coincidence happen at the very same time at which a com-
pound deliberative action shall be performed. This requires
to infer the direct and indirect effects of all actions together:

Poss(c, s) ∧ ActualState(s,Time(c), z) ⊃
ExpectedNatActions(z,Time(c), c′) ⊃

State(Do(c, s)) = Succ(c ◦ c′, z)
(F11)

Having made the shift from situation to state arguments in
precondition axioms, the expression Poss(c, s) is now a
mere macro. It shall be true iff all actions in c occur at
the same time t, are not natural actions, and are possible
in conjunction with all natural actions that are expected at
time t:

Poss(c, s) def
=

TimeUniform(c)∧
(∀a)(In(a, c) ⊃ ¬Natural(a))∧
(∀z, c′) [ActualState(s,Time(c), z)∧

ExpectedNatActions(z,Time(c), c′)
⊃ Poss(c ◦ c′, z)]

with
TimeUniform(c)

def
= (∀a, a′) (In(a, c) ∧ In(a′, c) ⊃

Time(a) = Time(a′))

where we have the following final foundational axiom,
which defines the time of a time-uniform compound action:

TimeUniform(c) ⊃ In(a, c)⊃Time(c)=Time(a) (F12)

Summary
We have presented a uniform classical logic formalism for
reasoning about actions which covers a variety of complex
phenomena such as ramifications, concurrency, and contin-
uous change. To the best of our knowledge, this is the first
framework which allows to model domains involving all of
these aspects, since in particular the Ramification Problem
has mostly been investigated in isolation. We have illustrated
how this theory has been successfully applied to a case study
that has recently been posed as a challenge to the scientific
community. Future work consists in extending the theory
further, especially by integrating our Fluent Calculus model
of sensing actions (Thielscher 2000a).

References
Henschel, A., and Thielscher, M. 1999. The LMW traf-
fic world in the fluent calculus. http://www.ida.
liu.se/ext/etai/lmw/TRAFFIC/001.
Hölldobler, S., and Schneeberger, J. 1990. A new deductive
approach to planning. New Generation Computing 8:225–
244.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 1996. Natural actions, concurrency and contin-
uous time in the situation calculus. In Aiello, L. C.; Doyle,
J.; and Shapiro, S., eds., Proc. of the International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, 2–13. Cambridge, MA: Morgan Kaufmann.
Sandewall, E., ed. 1998. Electronic Transactions on
Artificial Intelligence 2(3–4). A Collection of Refereed
Reference Articles. http://www.ep.liu.se/ej/
etai/1998.
Sandewall, E. 1999. Logic Modelling Workshop.
http:// www.ida.liu.se/ext/etai/lmw/.
Thielscher, M. 1997. Ramification and causality. Artificial
Intelligence 89(1–2):317–364.
Thielscher, M. 1999a. Fluent Calculus planning with
continuous change. Electronic Transactions on Artificial
Intelligence. (Submitted.) http://www.ep.liu.se/
ea/cis/1999/011/.
Thielscher, M. 1999b. From Situation Calculus to Fluent
Calculus: State update axioms as a solution to the inferen-
tial frame problem. Artificial Intelligence 111(1–2):277–
299.
Thielscher, M. 2000a. Representing the knowledge of
a robot. In Cohn, A.; Giunchiglia, F.; and Selman, B.,
eds., Proc. of the International Conference on Principles of
Knowledge Representation and Reasoning. Breckenridge,
CO: Morgan Kaufmann.
Thielscher, M. 2000b. Solving the inferential
frame problem for concurrent actions. (Submitted.)
http://pikas.inf.tu-dresden.de/˜mit/
publications/conferences/FCconc.ps.

