Solving Two-player Games with
QBF Solvers in General Game
Playing

Yifan He
Abdallah Saffidine
Michael Thielscher

UNSW Sydney, Australia

1/16

General Game Playing

Game Playing Al
@ Deep Blue (1996), AlphaGo (2016)
@ AlphaZero (2018)

2/16

General Game Playing

Game Playing Al
@ Deep Blue (1996), AlphaGo (2016)
@ AlphaZero (2018)
@ Cannot play all perfect information games

2/16

General Game Playing

Game Playing Al
@ Deep Blue (1996), AlphaGo (2016)
@ AlphaZero (2018)
@ Cannot play all perfect information games

General Game Playing Challenge
@ Game Description Language GDL (2006)

@ Logic language similar to Prolog

@ next(cell(X,Y,P)) : - true(cell(X,Y,blank)), does(P, mark(X,Y)).
@ Some successful players

@ FluxPlayer (2006), CadiaPlayer (2007), GAZ (2020)

2/16

General Game Playing

Game Playing Al
@ Deep Blue (1996), AlphaGo (2016)
@ AlphaZero (2018)
@ Cannot play all perfect information games

General Game Playing Challenge
@ Game Description Language GDL (2006)

@ Logic language similar to Prolog

@ next(cell(X,Y,P)) : - true(cell(X,Y,blank)), does(P, mark(X,Y)).
@ Some successful players

@ FluxPlayer (2006), CadiaPlayer (2007), GAZ (2020)

@ Play well, not solve

2/16

Game Solving (with logic) in GGP

Solving 1-player game with ASP (Thielscher, 2009)
@ Can the player win the game within T, steps.

3/16

Game Solving (with logic) in GGP

Solving 1-player game with ASP (Thielscher, 2009)

@ Can the player win the game within T, steps.

@ Convert GDL G to Time-extended ASP Ext(G)
next(cell(X,Y,P)) : - true(cell(X, Y, blank)), does(P,mark(X,Y)).
true(cell(X,Y,P), T +1):-true(cell(X, Y,blank), T), time(T),

does(P,mark(X,Y), T).

3/16

Game Solving (with logic) in GGP

Solving 1-player game with ASP (Thielscher, 2009)

@ Can the player win the game within T, steps.

@ Convert GDL G to Time-extended ASP Ext(G)
next(cell(X,Y,P)) : - true(cell(X, Y, blank)), does(P,mark(X,Y)).
true(cell(X,Y,P), T +1):-true(cell(X, Y,blank), T), time(T),

does(P,mark(X,Y), T).

@ Additional ASP clauses P

@ 1 legal move per step before termination
@ The player must reach terminal within Tz« steps
@ The player must achieve its goal when termination

3/16

Game Solving (with logic) in GGP

Solving 1-player game with ASP (Thielscher, 2009)
@ Can the player win the game within T, steps.
@ Convert GDL G to Time-extended ASP Ext(G)

next(cell(X,Y,P)) : - true(cell(X, Y,blank)), does(P,mark(X,Y)).
true(cell(X,Y,P), T +1):-true(cell(X, Y,blank), T), time(T),
does(P,mark(X,Y), T).
@ Additional ASP clauses P

@ 1 legal move per step before termination
@ The player must reach terminal within Tax Steps
@ The player must achieve its goal when termination

@ Use ASP planner Clingo to solve Ext(G) u P
@ ASP approach is comparable to forward search

3/16

Solving Games with QBF Solvers

Two-player Zero-sum Turn-taking games

@ Chess, Go, Connect-4, Generalized
Tic-Tac-Toe, Breakthrough, Dots and Boxes...

4/16

Solving Games with QBF Solvers

Two-player Zero-sum Turn-taking games
@ Chess, Go, Connect-4, Generalized

Tic-Tac-Toe, Breakthrough, Dots and Boxes...

@ Encode to Quantified Boolean Formula
@ Example: 3a.vb.3c. (av-b)A(cva)

4/16

Solving Games with QBF Solvers

Two-player Zero-sum Turn-taking games

@ Chess, Go, Connect-4, Generalized
Tic-Tac-Toe, Breakthrough, Dots and Boxes...
@ Encode to Quantified Boolean Formula

@ Example: 3a.vb.3c. (av-b)a(cv-a)

@ Connect-4 (Gent, 2003)

@ Generalized Tic-Tac-Toe (Diptarama et al., 2016)

@ Positional board games (Saffidine et al., 2020)

@ Positional + some non-positional board games in
BDDL (Shaik et al., 2023)

@ QBF method outperforms Proof Number Search
in Generalized Tic-Tac-Toe

4/16

Our Work

Motivation
@ Solving 1-p games with ASP works well in GGP,
and solving 2-p games with QBF is promising

@ Solving 2-p games with QBF in GGP is natural

Overall approach

@ Encode GDL to QBF such that the QBF is true
iff player 1 can force a win within T, steps

o GDL 2%, QBF x

@ GDL stable model vs. QBF classical model

o GDL — QASP Converter QBF QBF Solver W/L

@ GDL stable model, QASP stable model
@ QASP to QBF (Fandinno et al., 2021)

51

QASP Review

P is a logic program with ground atoms A.

w=01 X1.Q0 Xo....Qn X,. P Qie{3,Vv}

@ Example: vx. {{x}. :-a. a:-x.}.
@ Satisfiable if and only if both programs have a
stable model.
@ {{x}. :-a a:-x. :-notx} X

@ {{x}. :—-a. a:-x. :— x.}.Stable model: {}

6/16

QASP Review

P is a logic program with ground atoms A.

w=01 X1.Q0 Xo....Qn X,. P Qie{3,Vv}

@ Example: Ix. {{x}. :-a. a:-x.t.
@ Satisfiable iff either of the program have a stable
model.
@ {{x}. :-a a:-x. :-notx} X

@ {{x}. :—-a. a:-x. :— x.}.Stable model: {}

6/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints
@ The game must terminate within Tpax steps, and
when the game terminates, player 1 wins
© Before the game terminates player 1 must make a
legal move per turn
© Before the game terminates player 2 must make a
legal move per turn

@ Main theoretical result:

@ Q Ext(G)u P is satisfiable iff player 1 can win within
Tmax steps

7116

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints

@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

© Before the game terminates player 2 must make a
legal move per turn

8/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints
@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins
© Before the game terminates player 1 must make a
legal move per turn
© Before the game terminates player 2 must make a
legal move per turn

@ (2) and (3) looks similar?
@ They are handled quite differently

8/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints

@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

@ If player 1 makes illegal moves or makes 0 or 2+ moves
per step, Ext(G)u P is falsified immediately

© Before the game terminates player 2 must make a
legal move per turn

9/16

GDL to QASP

@ Convert the game G to Ext(G)
@ Use an ASP P to model the Constraints
@ The game must terminate within Tpmax steps, and

when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

@ If player 1 makes illegal moves or makes 0 or 2+ moves
per step, Ext(G)u P is falsified immediately

© Before the game terminates player 2 must make a
legal move per turn

@ If player 2 makes illegal moves or makes 0 or 2+ moves
per step, Ext(G)u P is falsified immediately x

9/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints
@ The game must terminate within Tpax steps, and
when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

If player 1 makes illegal moves or makes 0 or 2+ moves
per step, Ext(G)u P is falsified immediately

© Before the game terminates player 2 must make a
legal move per turn

If player 2 makes illegal moves or makes 0 or 2+ moves
per step, Ext(G)u P is falsified immediately x

Player 2 cannot force Ext(G)u P to be false by:

making illegal moves,

or making 0 or 2+ moves

9/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints:

@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

© Before the game terminates player 2 must make a
legal move per turn

10/16

GDL to QASP

@ Convert the game G to Ext(G)

@ Use an ASP P to model the Constraints:

@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins

© Before the game terminates player 1 must make a
legal move per turn

© Before the game terminates player 2 must make a
legal move per turn

@ One possible way: create cheating variables: QBF
encoding of Connect-4 (Gent, 2003)

@ Intuition: If player 2 is not making exactly 1 legal
move, player 2 cheats

@ Player 1 wins if and only if it wins or player 2 cheats

@ Not very efficient

10/16

GDL to QASP

@ Convert the game G to Ext(G)
@ Use an ASP P to model the Constraints:
@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins
© Before the game terminates player 1 must make a
legal move per turn
© Before the game terminates player 2 must make a
legal move per turn

11/16

GDL to QASP

@ Convert the game G to Ext(G)
@ Use an ASP P to model the Constraints:
@ The game must terminate within Tpmax steps, and
when the game terminates, player 1 wins
© Before the game terminates player 1 must make a
legal move per turn
© Before the game terminates player 2 must make a
legal move per turn
@ Logarithmic encoding in positional games (Saffidine

et al., 2020)
@ Example: use 3 bits to represent 8 possible actions

@ Vbybibo.

@ by=1;by=1;bo=1— player 2_action(1)

@ by=T;bi=1;b,=L1— player_2_action(2)

o ...

@ by=1;b1=T;bo=T — player_2_action(7)

@ by=T;b;=T;b=T — player_2_action(8)

11/16

GDL to QASP (cont.)

@ Final step: add quantifiers to Ext(G)u P

GDL to QASP (cont.)

@ Final step: add quantifiers to Ext(G)u P
@ Quantify each atom as early as possible, based
on atom dependency of Ext(G)u P
@ Example true(cell(1,1,x),2): ~true(cell(1,1, blank),1), time(1),
does(x,mark(1,1),1).

true(cell(1,1, blank),1) does(x,mark(1,1),1)

time(1)

true(cell(1,1,x),2)

@ true(cell(1l,1,x),2) should be quantified no
earlierthan time (1), does (x, mark (1,1),1),
and true (cell(1,1,blank),1).

12/16

Experiments

@ Connect-4, Breakthrough, Generalized

Tic-Tac-Toe, Dots and Boxes

Fatty Elly Knobby Tippy

(%]
x
3
3
<

13/16

Experiments

@ Connect-4, Breakthrough, Generalized
Tic-Tac-Toe, Dots and Boxes

14/16

Experiments

@ Connect-4, Breakthrough, Generalized
Tic-Tac-Toe, Dots and Boxes

@ Convert GDL games at a certain depth to QBF
@ QBF solver DepQBF and Caqge + blogger
preprocessor

@ Minimax + Transposition table solver in C++

14/16

Experiments

@ Connect-4, Breakthrough, Generalized
Tic-Tac-Toe, Dots and Boxes

@ Convert GDL games at a certain depth to QBF
@ QBF solver DepQBF and Caqge + blogger
preprocessor

@ Minimax + Transposition table solver in C++

@ lterative increase depth T,,., we record

@ Solving time (time limit 1000s)

@ Tmax: depth of the game
@ maximum depth at least one method can solve
@ Red: the first player winnable within Tpax steps
@ Blue: the first player cannot win at depth Tpax

@ ug length of the longest playing sequence that the

first player wins

14/16

Experiments Results

Game Config pug Tmax | DepQBF Caqe Minx
4x4 15 15 1.48 1.21 1.42
Connect-4 5x5 25 21 372.85 | 137.77 | 517.50
6x6 35 19 * | 597.56 *
elly 15 7 6.91 4.38 9.75
fat. 15 15 204.11 411.91 307.38
GTTT-1-1 knob. 15 15 379.34 | 705.57 *
skin. 15 15 394.47 * | 206.59
tip. 15 9 16.99 8.42 30.94
GTTT-2-2 fat. 14 14 171.36 | 313.55 *
skin. 14 14 390.11 | 548.99 | 662.32
2x5 21 21 6.66 5.95 0.36
2x6 29 15 12.49 11.78 2.86
Breakthrough 3x4 19 19 9.98 9.50 1.09
3x5 31 19 * | 847.31 92.41
4x4 25 25 159.73 69.63 | 106.20
D&B 2x2 12 12 6.70 6.46 0.63
2x3 17 17 * | 605.09 15.06

@ Both Cage and DepQBF can solve most

instances to a reasonable depth

@ QBF is comparable with Minimax search

15/16

Summary and Future Work

Contribution

@ Convert from 2-player games in GDL to QBF
@ Comprable with forward search in some games

@ Inline with 1-player games while generalizing it to
2-player zero-sum games

@ Strong winnability of multi-player games

Future Work
@ Embed the translation into a GGP player

@ Obtain a smaller encoding

@ Our encoding size proportional to O(A- Tmax)
e Lifted-encoding technique used in BDDL to QBF
O(log(Board_Size)- Tmax) (Shaik et al., 2023)

16/16

