Fair Course Allocation with Additive Utilities and a Conflict Graph

Arpita Biswas* , **Yiduo Ke**#, Samir Khuller† , Quanquan C. Liu&

*arpitabiswas@g.harvard.edu #yiduo-ke@u.northwestern.edu †samir.khuller@northwestern.edu &quanquan@mit.edu

Motivation: a problem all universities face

- Students want to take different courses
- Not enough seats in courses
- Some courses conflict with others
- How to allocate seats "fairly"?
- How it is now: whoever get online first
- Enrollment in CS courses has gone up significantly in recent years, for example

Problem setup, before we formally define fairness notions

4

Student i's allocation: A_i

What is "fair"?

What is "fair"? 1) envy-freeness

*Gamow, George; Stern, Marvin (1958). Puzzle-math. Viking Press. ISBN 0670583359.

What is "fair"? 1) envy-freeness*

What is "fair"?

1) envy-freeness 2) Max-min objective

when no student envies another student's allocation

For all students $i \in \mathcal{N}$, there does not exist a student $i' \in$ $\big\vert {\cal N}$ such that $u_i(A_{i'}) > u_i(A_i) \big\vert$

Recall: $u_i(A_{i'})$ is the utility of student *i* for $A_{i'}$

No envy! Because of their preferences

But envy-freeness is
a bit strict...

Envy-freeness, but relaxed:

envy-freeness up to any good (EFX)

For all students $i \in \mathcal{N}$, if there is a student $i' \in N$ such that $u_i(A_{i'}) > u_i(A_i)$, for any course $x \in A_i$, it is true that $u_i(A_i \wedge x) \leq$ $u_i(A_i)$

spinach>carrot>∅

Max-min fairness

an allocation of courses to students $\mathcal{A} =$ (A_1, \ldots, A_n) is max-min fair if it maximizes the minimum utility of any student. Namely, we seek to satisfy the following objective: max $\mathcal{A}% _{G}=\mathcal{A}_{G}=\math$ min $i \in \mathcal{N}$ $u_i(A_i$

Not very fair!!

Fairer!

<u>Uniform</u> means $\forall i \in N, j \in M, u_i(j) =$ 1 **Binary** means $\forall i \in N, j \in M, u_i(j) \in$

Identical means $j \in M$, $u_i(j) =$ $u_{i'}(j)$ $\forall i, i' \in N$

0 , 1

Additive means a student's utility for a set S of items is the sum of his utilities for each item in the maximum weighted independent set of S: set: $u_i(S) = \sum_{i \in MWIS_i(S)} u_i(j)$

utility

<u>Uniform</u> means $\forall i \in N, j \in M, u_i(j) =$

Binary means $\forall i \in N, j \in M, u_i(j) \in$ ${0,1}$

1

In previous work: Arpita Biswas, Yiduo Ke, Samir Khuller, and Quanquan C. Liu. An algorithmic approach to address course enrollment challenges. In Kunal Talwar, editor, 4th Symp. on Foundations of Responsible Computing, FORC 2023

Identical means $j \in M$, $u_i(j) =$ $u_{i'}(j)$ $\forall i, i' \in N$

This talk. EFX and 1/2 max-min

Additive means a student's utility for a set S of items is the sum of his utilities for each item in the maximum weighted independent set of S: set: $u_i(S) = \sum_{j \in MWIS_i(S)} u_i(j)$

One more thing about envy…

Due to courses having conflicts with each other, it is not always possible to allocate every course seat to a student

The Charity

The set of all unallocated courses

The Charity

No student shall envy the Charity.

$u_i(A_i) \geq u_i$ (Charity) $\forall i \in N$

The Charity

No student shall envy the Charity.

u_1 (Charity) = $MWIS_1$ (Charity)

Theorem

Under identical additive utility for n students, there exists an EFX and ½ approx. with additive factor maxmin allocation

EFX algorithm

Exists for monotonic non-decreasing utility*

EFX algorithm

Exists for monotonic non-decreasing utility*

*Chaudhury et. al. *A Little Charity Guarantees Almost Envy-Freeness* SODA 2020

Our algorithm, roughly

•Find the n-largest colorable subgraph G' of the interval graph that describes the course conflicts •Find an EFX allocation on G' •Continue finding an EFX allocation on the whole graph, G

An example

An example

Now, find an EFX allocation on the whole graph G

An example

Now, find an EFX allocation on the whole graph G

An example

Proof Sketch

- •Allocation is EFX throughout the algorithm
- •Optimal maxmin value $OPT \leq T/n$,
where T is the sum of utilities of courses in the largest n-colorable subgraph G' •Lowest student in G' has a better allocation than the MWIS of $G' \cap$ Charity

Proof Sketch

Related works

- *Fair Allocation with Interval Scheduling Constraints.* (Li et. al. 2021, NeurIPS)
- *Fair packing of independent sets.* (Chiarelli et. al. 2020)
- *Fair allocation of conflicting items.* (Hummel and Hetland, 2021)
- *Fair allocation of indivisible goods: Improvements and generalizations.* (Ghodsi et. al. 2018)

Future work?

•Max-min approximation without finding largest –colorable subgraph •Multiple meeting days for each class •Different credit counts for each course •Other utility types such as non-identical, submodular, subadditive, etc.

Thank you for attending!