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Target: ESMDrug: Graph embedding
Molecules can be described as 
heterogeneous graph structures, where 
atoms are represented as nodes and 
chemical bonds as edges. Node and edge 
features capture the relationships between 
neighboring atoms in a graph, facilitating 
molecular representation learning. Graph 
neural networks (GNNs) operate on 
molecular graphs to iteratively up-date node 
representations through neighborhood 
aggregation, ultimately producing com-
prehensive graph embeddings. These graph-
level representations can then be used by a 
simple classifier to predict molecular 
properties or labels.

Protein Target Network(GCN)

Drug Feature Representation

ESM (Evolutionary Scale Modeling) is a cutting-
edge protein language model that generates 
high-resolution protein embeddings directly 
from a protein's primary amino acid sequence. 
Trained using a masked language modeling 
approach, ESM predicts randomly masked 
amino acids based on their surrounding context, 
enabling the model to learn complex 
dependencies and evolutionary sequence 
patterns. This training enhances the model's 
understanding of protein structures. These 
embeddings are versatile and can be utilized for 
various downstream tasks, including accurate 
three-dimensional structure prediction, 
functional annotation, and assessing the effects 
of mutations, as demonstrated by models like 
ESMFold that leverage these embeddings to 
predict atomic-level protein structures.

LAMP
The CLAMP model architecture consists of a trainable molecule encoder 
that produces molecule embeddings and a trainable text encoder that 
generates bioassay embeddings. Both embeddings are assumed to be 
layer-normalized. CLAMP includes a scoring function, designed to 
return high values when a molecule m is active on a bioassay a and low 
values otherwise. The contrastive learning approach allows CLAMP to 
perform zero-shot transfer learning, enabling it to make meaningful 
predictions for bioassays not seen during training.

Cell line Feature Representation

Contrastive Language-Assay-Molecule Pre-training

Gene Expression profile of cell lines from depmap
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Ground truth Loewe Synergy Score
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Epoch LOEWE ZIP HSA BLISS
MSE 1000 94.01 41.93 50.21 95.08
MAE 1000 6.83 4.35 4.91 6.03
MSE 2000 167.44 78.03 96.57 266.76
MAE 2000 9.02 5.9 6.54 10.27
MSE 3000 76.91 37.06 44.63 89.2
MAE 3000 6.14 4.09 4.65 5.7
MSE 4000 199 175 151 683.5
MAE 4000 9 8 8.04 16.49

Predicted Value

We implemented two approaches for drug feature representation: CLAMP and GCN, leveraging message passing and aggregation within a 
drug-protein interaction graph. For cell line features, we utilized gene expression profiles from DepMap. By employing an early fusion 
technique, we designed a model architecture tailored to optimize performance across various synergy metrics.

Our methodology involved concatenating the features of both drugs and the cell line at the input layer, passing them through two shared 
hidden layers. The model then branched into four distinct output paths, each tailored to predict a specific synergy score through unique 
sequences of fully connected layers. Finally, the outputs were integrated into a single tensor for evaluation.

To ensure metric-agnostic consistency, we employed simultaneous optimization across multiple synergy metrics, achieving robust results. 
Notably, our approach delivered an MSE of 6.4 for the Loewe synergy score, showcasing the efficacy of our design in predicting drug 
synergy.
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RESULT

Traditional de novo drug discovery involves a lengthy and costly process, taking over 
12 years and approximately $2 billion USD to bring a single drug to market, with a 
low success rate of only 5%. One promising alternative to accelerate therapeutic 
development is the use of drug combinations. Drug combinations, defined by the 
FDA as therapies involving two or more approved drugs, have shown efficacy in 
treating diseases such as cancer and autoimmune disorders. For instance, the 
combination of irinotecan and 5-fluorouracil has demonstrated a synergistic effect 
in colorectal cancer treatment, leveraging established pharmacological and 
toxicological profiles to enhance efficacy, reduce toxicity, and minimize resistance.
Despite these advantages, the traditional method for identifying synergistic 
combinations relies heavily on empirical testing, which is time-consuming, labor-
intensive, and costly. The growing number of approved drugs further amplifies the 
combinatorial complexity, making it impractical to evaluate all possible 
combinations across disease contexts.
To address these challenges, this research aims to develop an AI-based model to 
predict and identify optimal drug combinations efficiently. By leveraging advanced 
computational methods, this approach seeks to streamline the discovery process, 
reduce resource expenditure, and maximize therapeutic benefits for patients 
awaiting treatment.

Introduction:
Combinational drug therapies hold great promise for treating complex 
diseases like cancer, but identifying effective drug combinations remains a 
significant challenge due to the vast number of possible pairings. Although 
in vitro testing on cancer cell lines has provided valuable insights into the 
effects of drugs, exploring the entire combinatorial space is impractical, 
limiting the discovery of potentially life-saving treatments. Artificial 
intelligence (AI) offers a transformative solution to this challenge. While 
most studies focus solely on the chemical structures of drugs, we recognize 
that a drug's mechanism of action is highly dependent on its targets. To 
address this, we developed a novel approach using graph neural networks 
(GNNs) to model drug-target interactions by integrating drug structural 
information (i.e., molecular graph representations) with protein target 
features extracted from a transformer model pre-trained on proteins’ 
primary structures. Additionally, we incorporated a contrastive learning 
technique that leverages drug bioactivity data, derived from the 
descriptions of bioassays processed using large language models 
(LLMs).By combining these features with gene expression data from cancer 
cell lines, we trained advanced machine-learning models capable of 
predicting synergistic drug combinations with greater accuracy and 
biological relevance. Our framework represents a significant step toward 
utilizing AI to accelerate the development of combinational therapies for 
cancer treatment.
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