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Motivation
Location trajectories are valuable for many applications:

o Navigation, Targeted Marketing, City Planning, ...
But: Trajectories reveal sensitive information:
o Sexual Orientation, Religious Beliefs, Political Opinions, ...
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The Long Road to Trajectory Privacy
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Proposed Framework
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Privacy-Preserving Trajectory Publication
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/ Generative Models
Deep Learning-based Generative Models as Alternative?
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LSTM-TrajGAN as the most common architecture:
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Limitations: Publication

* No privacy guarantees
* Converges towards identity function = No privacy
* Vulnerable to reconstruction attacks (RAoPT)

Traditional Approaches

/Protect Dataset: \
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Known Shortcomings:
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Broken DP Proofs:
Errors in Proofs

Limited Domain:
Pre-Defined Locations

Grid Cells:
Reduced Granularity
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Aggregation: Correlation:

Points Only:

Other Approaches:

Approach UoP G3 G4 G5 Main Shortcoming

€@ LSTM-TrajGAN Instance v (TUL) / X (RAoPT) Vv V No guarantees

® Shin2023 Instance v v (TUL) v Y No guarantees

€ Ozeki2023 Instance v o (MIA) v No guarantees

O Song2023 Instance v v/ (TUL) v No guarantees

© Fontana2023 Instance v v (TUL) v Y No guarantees

O LGAN-DP Instance v — o Flawed DP proof

@ DP-TrajGAN Instance v — o Vv Flawed DP proof

© Kim2022 Location X — 0 VA UoP; Grid-based

© RNN-DP Instance v - v o/ Flawed DP proof

@ TSG Instance v — v Y No guarantees

® TS-TrajGEN Instance v — v v No guarantees
\ ® GeoPointGAN  Location X — v Y Points only )
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No input during prediction “noise-only” generation:

Publication

Did not observe sufficient utility on trajectory datasets:

Dataset Noise-TrajGAN AR-RNN
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\Only Aggregated Results Enables Attacks

Unconnected Loc. only/

. Structural Differences

Noise leads to structural differences
between authentic and protected |
trajectories: 17T

* Cars not following roads
* Ships passing over land :
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Neural Network Publication

DP-SGD

Original

Goal: Generate Synthetic Trajectories with DP Guarantees
1. Develop a model without input during generation

2. Train the model with DP-SGD (to prevent memorization)
3. Explore DP-relaxations if required

4. Special-purpose solutions for certain applications

Conclusion: Further research on private trajectory generation required!
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