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Search By Genus, Infraclass or Customary Use “ C

Welcome to Customary Medicinal Flora of Australia Database

Search a genus, infraclass or customary use or start chatting
Describe the chemistry of genus Acacia.
Which Australian plants are used for toothache?

What are the therapeutic uses of members of the Myrtaceae?

See network projection.
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You
What are the therapeutic uses of members of the Myrtaceae?

Medicinal Flora Assistant

Based on the data available, members of the Myrtaceae family have a wide range of
therapeutic uses. The genera belonging to Myrtaceae (Eucalyptus, Angophora, Melaleuca,
Syzygium, and Syncarpia) are associated with the following medicinal applications:

1. Digestive issues: Diarrhoea, Stomach problems, Laxative

2. Pain relief: Toothache, Headache, Other Analgesic (pain relief)

3. Respiratory problems: Cough

4. Infections and immune support: Bactericidal, Fever, Parasites .

5. Skin conditions: Emolient (soothing/moisturizing), Skin issues, Bites

6. Anti-inflammatory: Inflammation

7. Eye problems: Eyes

8. General health: Tonic

9. Nervous system: Sedative

10. Reproductive health: Venereal diseases -

Additionally, some uses are listed as 'Industrial' and 'Misc.' (miscellaneous), which may
include other applications not specifically mentioned.

See network projection.

You
Is there any chemistry common across these genera?

Medicinal Flora Assistant

Based on the analysis of the chemical classes associated with the genera in the
Myrtaceae family (Eucalyptus, Angophora, Melaleuca, Syzygium, and Syncarpia), there are
indeed common chemistry patterns across these genera. The main chemical classes
found are:

1. Terpenoid-type compounds: This is the most common class, with 18 occurrences

across the genera.

2. Phenolic-type compounds: The second most common class, with 13 occurrences.

3. Miscellaneous-type compounds: Less common, with 2 occurrences. .

The prevalence of terpenoid-type and phenolic-type compounds suggests that these are
characteristic chemical classes for the Myrtaceae family. Terpenoids are known for their

aromatic properties and various biological activities, which could contribute to the

diverse therapeutic uses of Myrtaceae plants. Phenolic compounds are often associated

with antioxidant properties and other health benefits. -

This common chemistry across the genera of Myrtaceae likely contributes to the similar
therapeutic applications observed in these plants. However, it's important to note that

See network projection.
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HTINet2: herb-target prediction via knowledge graph
embedding and residual-like graph neural network
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Figure 1. Overall architecture of HTINet2; HTINet? consists of three key modules, i.e. KG construction and embedding leaming (A and D), graph

representation learning (B and E), and target prediction (C).
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Applications Note

OXFORD

Databases and ontologies

KRAGEN: a knowledge graph-enhanced RAG framework
for biomedical problem solving using large

language models

Nicholas Matsumoto’, Jay Moran’, Hyunjun Choi', Miguel E. Hernandez', Mythreye Venkatesan’,

Paul Wang", Jason H. Moore ®"*
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0] Description
Prompt: GoT LLM Prompt

<Instruction= You are an Al knowledge
simplifier with access ta a knowbedge graph.
Your task is 10 filter out irrelevant information
from a given set of knowledge and provide a
cancise summary. You will receive a
statement describing a relationship and a list
of knowledge. Only includa krowledge
directly related to the statement,
disregarding any extraneous detals. Presant
P EEINEHEE SUPITE 2 KW
within the <Output= tags. </Instruction>
<Statement> BodyPart-BODYPART

Knowledge From
RAG

Knowledge:

« The gene METTLE is associated with the
blood, midbrain, urathra, heart, adrenal
gland, adipose tissue, smooth muscle tissue,
and saliva-secreting gland because these
body parts over-axprass the gene. The gena
METTLS is associated with the lung and
nipple because these body parts unger-
express the gene. The gene METTLS is
associated with the drug Everolimus,
Digitexin, Ouabain, and Bsacodyl because
these drugs decresse the gene expression.
The gene METTLE is involved in the

F

Interactive
GoT

GoT LLM Response

Response:

The gena STYXLZ is imobved in the
molecular function phosphatase activity. The
gene STYXL2 is involved in the biological

Figure 1. Application flow chart (above) from extraction of knowledge from a knowledge graph, to converting the knowledge graph dump into a list of

natural language statements, vectorizing the knowledge and uploading to a vector database, and deploying the KRAGEN GUI (bottom) where the user

can ask elaborate guestions and view the Graph-Of-Thoughts prompting to view the intuition and knowledge used 1o solve the problem
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