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Some results from temporal logic

Theorem: the following are PSPACE complete:
1. Given ¢ € Ly ¢ determine if § is satisfiable/valid.

2. Given § € bﬁOxE and a finite state environment E, determine

if ¢ is realized in E.
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Extend Tig by making Ps true just at S.
define
Nszt Ps — Pt
ANsE(ps = O Vier(g) Pt)
O = AAsApre(sp—-10(Ps— p)
ANsApire(s p)=oD(Ps — —p)
AV sea TOPs

¢ realized in E iff \/ g, Ps A 9E A ¢ is unsatisfiable

Realization (observational View)
The following can be obtained using techniques of [Vardi, TARK’96]:

Theorem: Realization of ¢ € hﬁﬁ,..;xzh,o, ¢ } inafinite

environment wrt the observational view is PSPACE complete.
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Let KF () be the set of subformulas of ¢ of the form K or Cd

Let S be the set of reachable states of E.

A knowledge interpretation is a function K : S — P(KF(¢))

An execution € of an environment is a run, except it need not start at

an initial state

Let K be a knowledge interpretation

1. E;K,(g,m) E pif Te(e(m),p) =1

2.

w

o

E.K
E,K
E,K,
E.K
E.K

&,m) = OYIfE.K, (e, m+1) =Y

i
(

,(€,m) = Y1 U Yy if there exists M > msuch that
(e,m) E Y2 and E, K, (¢,k) =P form< k< m.
(
(

g,m) = Ky iff Kip € k(g(m))
€,m) = Cyiff C € K(€(m))
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K is consistent if for all states S

1. for Ki € KF(9), Kiy € K(9) iff for all states t such that SXt,

for all executions € of E with €(0) =t, we have
E.k, (€(0),0) = W

2. for CY € KF(¢), CP € K(s) iff for all states t such that SKct,
for all executions € of E with €(0) =t, we have

E.k, (€(0),0) = W

Proposition: There exists a unique consistent knowledge

interpretation K and it can be computed in PSPACE

Proposition: ¢ is realized in E with respect to obs iff all runs € of
E satisfy E, K, (€,0) = ¢, where K is the unique consistent
knowledge interpretation.
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Realization (Synchronous Perfect Recall View)

Theorem: Realization of ¢ € bﬁxp4...”x34oqoq q } in afinite

environment wrt the synchronous perfect recall view is undecidable.

Theorem: Realization of ¢ € hﬁxp4...”x34oqow in a finite environment

wrt the synchronous perfect recall view is PSPACE complete.

Theorem: Realization of a formula ¢ € btA&..;_A:JOJ a } of
knowledge depth K in a finite environment E wrt the synchronous

perfect recall view is decidable in space polynomial in Cy(E) - ||
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Let E be (S, le, T,O, T, 0) and k > 0.
Define Ac(E) = (&, Ik, Tk, Ok) to be the Biichi automaton with
1. S equal to the set Ik of k-trees over E,

2. initial states Iy equal to the set of k-trees Fi(S) where s€ |,

3. transition relation Ty defined by WT,W when there exists state
s € Ssuch that root (w) Tsand W = Gy(W, S),

4. acceptance condition Ok defined by
ok ={we S:root(w) € a}.

A(E) accepts sequences of k-trees.

Given a run € of E, define Li fty(€) to be the sequence of k-trees
WoWj . ... such that Wo = Fi(€(0)) and
W1 = Gy (Wm, E(M+ 1)) for all m> 0.

Proposition: Li fty is a bijection between the runs of E and the

w-language accepted by Ax(E).
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Let € be an infinite sequence of K-trees. Define

o E, =k p. where p € Prop, iff Tie(root(e(m)), p) = 1,

Exd1 A2, iff E, (e,m) =k 1 and
Fk d2,

em)
em)
em)
,(em) =k ¢, iffnot E, (e, m) = ¢,
em)
em)

Fk O, iff E, (e,m+1) ¢ ¢,

Exk &1 Ub>, iff there exists M’ > msuch that
_m ,(e,m") =k 2 and E, (e,m) =k 1 for all mf with
m<m <n'.

°
m m m mm

Letd € Lik,,.. KnO, U }-

First define =k on k-trees W by:

E,w =k Kid if for all K — 1-trees W that are i-children of W,
and for all fair executions € of Ax_1(E) such that €(0) = W/,
we have E, (€,0) =x_1 6.

Now define

E,(em) ExKid if E,;e(m) E=¢ Kid
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Proposition: For each natural number K > 0, each formula ¢ in
hﬁOJEq_Ap4..._A3¥ of knowledge depth at most K, for each

environment E, every run € of E and m > O we have

I°P%(E), (%%, m) = ¢ iff E,(Lifte(€),m) = .

Key Observation:
If ¢ is a formula of temporal logic, determining E, w =i Ki@, i.e,

for all K — 1-trees W that are i-children of W, and for all fair
executions € of Ay_1(E) such that &(0) =W, we have

E, Amq Ov _H_A\“_. .

reduces to the realization problem of temporal logic once we have

computed E U =1 K for all proper subformulae K; of ¢.
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Realizability

A formula ¢ is realizable in an environment E with respect to a view
V if there exists a protocol P such that for all runs r of IV(E,P), we

have

I'(E,P),(r.0) = ¢

Synthesis

Theorem: [van der Meyden and Vardi, CONCUR 98] Let E be an
environment for a single agent. There is an algorithm that decides
whether a formula P € Lik,,0,u) is realizable in E with respect to

the synchronous perfect recall view in time

SO([E]) , 52041)

The bound is tight, because

Theorem (Pnueli and Rosner 1989): Realizability of temporal logic
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formulae with complete information is 2-EXPTIME hard.
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