Slide 2	Slide 1
Model Checking Knowledge and Linear Time	North American Summer School in Logic Language and Information, June 2003 Algorithmic Verification for Epistemic Logic Ron van der Meyden University of New South Wales/National ICT Australia

References

Implementing Knowledge-based Programs, M.Y. Vardi, TARK 96

Model Checking Knowledge and Time in Systems with Perfect Recall, R. van der Meyden and N.V. Shilov, FST & TCS'99

Slide 3

Synthesis from Knowledge-Based Specifications. R. van der Meyden and M. Y. Vardi, CONCUR'98

Some results from temporal logic

Theorem: the following are PSPACE complete:

Slide 4

- 1. Given $\phi\in \mathcal{L}_{\{\,\bigcirc\,,\,\mathcal{U}\,\}}$ determine if ϕ is satisfiable/valid.
- 2. Given $\phi \in \mathcal{L}_{\{\bigcirc,\,\mathcal{U}\}}$ and a finite state environment E , determine if ϕ is realized in E .

-

Extend π_s by making p_s true just at s.

define

Slide 5

 φ realized in E iff $\bigvee_{s \in I_e} p_s \wedge \varphi_E \wedge \neg \varphi$ is unsatisfiable

Realization (observational View)

The following can be obtained using techniques of [Vardi, TARK'96]:

Slide 6

Theorem: Realization of $\varphi \in \mathcal{L}_{\{K_1,...,K_n,C,\bigcirc,\ U\}}$ in a finite environment wrt the observational view is PSPACE complete.

Let $KF(\phi)$ be the set of subformulas of ϕ of the form $K_i \psi$ or $C \phi$

Slide 7 Let S' be the set of reachable states of E.

A knowledge interpretation is a function $\kappa: S' \to \mathcal{P}(KF(\phi))$

An execution ϵ of an environment is a run, except it need not start at an initial state

Let κ be a knowledge interpretation

1.
$$E, \kappa, (\varepsilon, m) \models p$$
 if $\pi_e(\varepsilon(m), p) = 1$

2.
$$E, \kappa, (\varepsilon, m) \models \bigcirc \psi$$
 if $E, \kappa, (\varepsilon, m+1) \models \psi$

Slide 8

3. $E, \kappa, (\varepsilon, m) \models \psi_1 \ \mathcal{U} \psi_2$ if there exists m' > m such that $E, \kappa, (\varepsilon, m') \models \psi_2$ and $E, \kappa, (\varepsilon, k) \models \psi_1$ for $m \le k < m'$.

4.
$$E, \kappa, (\varepsilon, m) \models K_i \psi \text{ iff } K_i \psi \in \kappa(\varepsilon(m))$$

5.
$$E, \kappa, (\varepsilon, m) \models C \psi \text{ iff } C \psi \in \kappa(\varepsilon(m))$$

K is *consistent* if for all states s

1. for $K_i \psi \in KF(\phi)$, $K_i \psi \in \kappa(s)$ iff for all states t such that $s \mathcal{R}_i t$, for all executions ϵ of E with $\epsilon(0) = t$, we have

Slide 9

 $E, \kappa, (\varepsilon(0), 0) \models \psi$

2. for $C\psi \in KF(\phi)$, $C\psi \in \kappa(s)$ iff for all states t such that $s\mathcal{H}_Ct$, for all executions ε of E with $\varepsilon(0)=t$, we have $E,\kappa,(\varepsilon(0),0)\models \psi$

Slide 11

Realization (Synchronous Perfect Recall View)

Theorem: Realization of $\varphi \in \mathcal{L}_{\{K_1,\dots,K_n,C,\bigcirc,\ \mathcal{U}\}}$ in a finite environment wrt the synchronous perfect recall view is undecidable.

Theorem: Realization of $\emptyset \in \mathcal{L}_{\{K_1,\dots,K_n,C,\bigcirc\}}$ in a finite environment wrt the synchronous perfect recall view is PSPACE complete.

Slide 12

Slide 10

Proposition: There exists a unique consistent knowledge interpretation κ and it can be computed in PSPACE

knowledge interpretation.

Proposition: ϕ is realized in E with respect to obs iff all runs ϵ of E satisfy E, κ , $(\epsilon,0) \models \phi$, where κ is the unique consistent

Theorem: Realization of a formula $\varphi \in L_{\{K_1,...,K_n,\bigcirc,\ \mathcal{U}\}}$ of knowledge depth k in a finite environment E wrt the synchronous perfect recall view is decidable in space polynomial in $C_k(E) \cdot |\varphi|$

5

Slide 13

Let E be $\langle S_e, I_e, T, O, \pi_e, \alpha \rangle$ and $k \geq 0$.

Define $A_k(E) = \langle S_k, I_k, T_k, \mathbf{c}_k
angle$ to be the Büchi $\,$ automaton with

- 1. S_k equal to the set \mathcal{T}_k of k-trees over E,
- 2. initial states I_k equal to the set of k-trees $F_k(s)$ where $s \in I$,
- 3. transition relation T_k defined by wT_kw' when there exists state $s \in S$ such that root(w)Ts and $w' = G_k(w,s)$,
- 4. acceptance condition α_k defined by

$$\alpha_k = \{ w \in S_k : root(w) \in \alpha \}.$$

 $A_k(E)$ accepts sequences of k-trees.

 $w_0w_1\dots$ such that $w_0=F_k(oldsymbol{arepsilon}(0))$ and Given a run ϵ of E , define $Lift_k(\epsilon)$ to be the sequence of k-trees

 $w_{m+1} = G_k(w_m, \operatorname{\varepsilon}(m+1))$ for all $m \geq 0$.

Slide 14

 ω -language accepted by $A_k(E)$. **Proposition:** $Lift_k$ is a bijection between the runs of E and the

Let e be an infinite sequence of k-trees. Define

- ullet $E,(e,m)\models_k p$, where $p\in Prop$, iff $\pi_e(root(e(m)),p)=1$,
- ullet $E,(e,m)\models_k \phi_1 \wedge \phi_2,$ iff $E,(e,m)\models_k \phi_1$ and E, $(e,m) \models_k \varphi_2$,
- Slide 15
- $E, (e,m) \models_k \neg \varphi$, iff not $E, (e,m) \models_k \varphi$,
- $E, (e,m) \models_k \bigcirc \emptyset$, iff $E, (e,m+1) \models_k \emptyset$.
- ullet $E,(e,m)\models_k \phi_1\mathcal{U}\phi_2$, iff there exists $m''\geq m$ such that $m \leq m' < m''$. $E,(e,m'')\models_k \phi_2$ and $E,(e,m')\models_k \phi_1$ for all m' with

Slide 16

First define \models_k on k-trees w by:

Let $\varphi \in \mathcal{L}_{\{K_1,\ldots,K_n,\bigcirc,\ u\}}$.

and for all fair executions e of $A_{k-1}(E)$ such that $e(0)=w^{\prime}$ we have E, $(e,0) \models_{k-1} \varphi$. $E,w\models_k K_i \emptyset$ if for all k-1-trees w' that are i-children of w,w'

Now define

$$E, (e,m) \models_k K_i \varphi \text{ if } E, e(m) \models_k K_i \varphi.$$

Slide 17

 $\mathcal{L}_{\{\bigcirc,\mathcal{U},K_1,...K_n\}}$ of knowledge depth at most k, for each **Proposition:** For each natural number $k \geq 0$, each formula ϕ in

environment E , every run ϵ of E and $m \geq 0$ we have

$$I^{\operatorname{spr}}(E), (\varepsilon^{\operatorname{spr}}, m) \models \varphi \text{ iff } E, (Lift_k(\varepsilon), m) \models_k \varphi.$$

Slide 18

Key Observation:

If ϕ is a formula of temporal logic, determining $E,w\models_k K_i\phi$, i.e,

for all k-1-trees ${\it w}^{\it l}$ that are $\it i$ -children of $\it w$, and for all fair E, $(e,0) \models_{k-1} \varphi$. executions e of $A_{k-1}(E)$ such that e(0)=w', we have

computed $E,u\models_{k-1}K_j\psi$ for all proper subformulae $K_j\psi$ of ϕ . reduces to the realization problem of temporal logic once we have

Slide 20

 $2^{O(||E||)} \cdot 2^{2^{O(||\psi||)}}$

The bound is tight, because

Theorem (Pnueli and Rosner 1989): Realizability of temporal logic

Realizability

Slide 19

u if there exists a protocol ${f P}$ such that for all runs r of $I^{
u}(E,{f P})$, we A formula ϕ is *realizable* in an environment E with respect to a view

$$I^{\nu}(E,\mathbf{P}),(r,0)\models \varphi$$

Synthesis

the synchronous perfect recall view in time whether a formula $\psi \in \mathcal{L}_{\{K_1,\bigcirc\,,\,\mathcal{U}\}}$ is realizable in E with respect to environment for a single agent. There is an algorithm that decides **Theorem:** [van der Meyden and Vardi, CONCUR 98] Let ${\cal E}$ be an

9