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The Verification Problem

Given a particular scenario, and a claim about the evolution of states

of knowledge in the example, prove formally that the claim is correct.

Proof Theoretic Approach

Encode the (runs, system) of the scenario as a formula ¢,
Encode the claim as a formula §¢.
Prove validity of s — ¢c.

Difficulty/Inconvenience: the environment is common knowledge,

hﬁx&..;xsbobw not axiomatizable in the context of pr
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Model Checking

represent the scenario as a model M
represent the claim as a formula ¢¢c

show by algorithmic means that M |= ¢¢

Environments (transition form)

An environment in transition form is a tuple of the form

E = (S,le, T,0, ) where

1. S is a set of states of the environment.

2. le € &, is the set of initial states of the environment.
3. T C & x S s a transition relation.

4. Oisatuple (Og,...,0n) such that for each i = 1..n,
O; : S — Ois an observation function O.

5. T : S x Prop — {0, 1} is a valuation.
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Assume T is serial: Vs € S3t € S(sTt)

A run of an environment E is an infinite sequence € = §S; . .. of
states of E such that

1. € lg,
2. TS forallk >0,

A trace of E is a finite sequence p = . . . Sy of states satisfying

conditions 1 and 2.

Local state defined wrt a view

Let € be a run of E. A view associates a local state with each agent
at each point of time, determining a mapping €V : N — L"x &

In all cases €4(mM) = £(m)
Examples:
1. The observational view: £7°%(m) = Oj(g(m)))

2. The synchronous perfect recall view:
&7 (m) = Oi(£(0)) ... Oi(g(m))

spr

3. The asynchronous perfect recall view: €~ (m) is € (m) with

consecutive repetitions removed.
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System Generated by an Environment wrt a View

Let V be a view of an environment E. Define IV(E) = (RY(E), )

to be the interpreted system with

1. RY(E) the set of €¥ such that € is a run of E.

2. T(r(m), p) = Te(re(m), p) forall r € RY(E), p € Prop

Recall, for each agent i we define the relation ~j on points by
(r,m) ~i (r', ) i ri(m) = r{(m).
Given a point (r,m) of IV(E), define
trace(r,m) =re(0)...re(m).
For two traces T, T/, define T ~;j T’ if there exist points (I, m),

(r',m'’) such that trace(r,m) = T and trace(r’,m’) = 1" and
(r,m) ~i (r',m).
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Letv € {obs,pr,spr}

Proposition: Suppose (r,m), (r’,m) are points of IV(E) and let
b € Lik,,... kac)- If trace(r,m) = trace(r’,nv) then

IY(E), (r,m) = ¢ ift IY(E), (', m) = ¢.

If Tis a trace of E, write IY(E),T = ¢ when IY(E), (r,m) |= ¢ for
some point (r, M) with trace(r,m) = 1.

Model Checking Ly, .. k,c} ata Trace

Let V be a view.

Problem: Given a finite environment E, a trace T of E and a
formula ¢ € Lyk, . k,cy, determine if IV(E), T |= ¢.

Comment: IY(E) is not a finite structure, so this is an infinite state

model checking problem




Consider an environment E in which

e agent S(sender) can send the single message “hello” to agent r
(receiver), but can only do this once

® agent Sobserves a variable that records whether or not the

Slide 13 message has been sent Slide15 | traces(E)={wkd™ k> 0,m> O} U{wktd™ |k >0,m> O}

® agent I observes a variable that records whether the message
has arrived

e the channel either delivers the message either immediately, or

with a delay of one second

e the proposition P means “the message has arrived”

Message transmission example (observational view)

Suppose agent s sends the message at time 1, and the environment

<edly, ssend, > <e* st > delivers the message immediately, then the agents wait forn— 1

ticks of the clock, i.e. consider the trace wd"1

<eddlvr, sisend, ri*> . .
Slide 14 w d p Slide 16 Under the observational view,

o wd" ! ~ Timplies fin(T) = d

[ ] <<Q3\“_. ~s S\J\Hﬁ

R,
<e*, swait, r:*> <e*, s*, r*>

le={w} Te(X, p) = trueiff x=d.

s(W) s(t) s(d) Thus NocmAmV“EQ:\H = K p but

1°°3(E),wd"* = —Ksp.
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vkt (k>0)

{ }=unred

1°P7(E), wd™ 1 = (KiKg) pforall j < n—1,
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{-k= unsent {}=rovd
Jwkd k0) ISPT(E), 1= —Cpforall T € traces(E)
Lwktd  (k1>0)
Message transmission example (synchronous perfect recall
view) S5, Kripke Structures
Under the perfect recall view,
An S5p, Kripke structure is a tuple M = (W, K3, . .., Ky, T)) where
<<Q:\H SPT — | . (sent n-1_ <SQ:\N spr
{ s ( ) { s 1. Wiis a set of worlds
sowd™ 1 ~g wtd"2. .
Slide 18 S Slide 20 2. X is an equivalence relation on W foreachi=1...n

3. T.: W x Prop — {0, 1} is an assignment
Define %c = (U; K)*
1. M,w K if M,w = ¢ for all W Kw

More generally, for each length n:
<<Q3\H_. ~s <<_“Q3\N ~r <<NQ3\N ~s <<NHQ3\w .

2. M,wl=Co it M,wW for all W Kcw
~r S\S\HQ ~s S\j\n_.—“ Zﬂs\j v” e_ _”nv
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Given an environment E and view V, define
MY = (traces(E),~1,...,~n,T) where the ~;j are the
equivalence relations on traces defined wrt the view and

(T, p) = Te(£in(T), p).

Proposition: For T € traces(E) and ¢ € Lk, . k.C}-

MY, TEd iffIY(E),T=d

Model Checking in Finite Kripke Structures

For a finite Kripke structure M define |M| to be the number of
symbols needed to write down M, all edges of the equivalence

relations included.

Proposition: Given a finite S5, structure M and a formula
¢ e hﬁ_ﬁ,..;xz,ﬂ determining M, W |= ¢ can be done in time

O(IM[ - [¢]).

11
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Algorithm:

For each subformula ) of ¢, in order of increasing size,
For each world W of M label W by ¢ or —¢:
CASE

1. if Y = pthen label Wby piff T(w, p) = 1
2. it Y = =/’ then label W by  iff W not labelled ()’

3. if Y = Y1 A Y2 then label W by U iff W labelled by )1 and by
g2

4. if P = KqU/'label W by U iff W labelled U)' for all W ZGw

END CASE
END (for W)

if Y = Cy’ then

1. do a depth first search from all worlds labelled JE\ through
edges X, labelling all worlds reached JOE\

2. label all worlds not reached in the above by Cy/

END (for )

Output YES if Wis labelled ¢

12
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Model Checking at a Trace (Observational View)
Let E = (S, le, T,0, ) be a finite state environment.
A statet € S is reachable if ST *t for some S € le.
Define M = (W, K3, ..., Kn, TD) by
1. W is the set of reachable states of E.
2. skt iff Oj(s) = Oi(t)

3. TM=Te

Proposition: For ¢ € L, . k,c}. we have I°°%(E), T |= ¢ iff

M, £in(1) E ¢.

Corollary: For ¢ € h«,_AT..,_A?Q_ determining whether
I°*(E), T = ¢ can be done in time O(|E| - [$]).

13
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Model Checking at a Trace (Synchronous Perfect Recall View)

Theorem: [van der Meyden, TARK 94]
Determining I°P*(E),T = ¢ for § € Lyk, . k,.c) isin PSPACE.

Theorem: [van der Meyden, TARK94] There exists an environment

E for two agents and a propositional constant p such that the set
{tetraces(E) | I***(E),T = Cy12,p}

is PSPACE complete.

Model Checking at a Trace - Synchronous Perfect Recall View

Theorem: [van der Meyden, TARK94] Let E be a finite environment.
For formulae § € hﬁ@?;xi of (alternation) depth bounded by K,
and T € traces(E), IP*(E), T |= ¢ can be decided in time
O(Ck(E) - (19 +[t])) where Cy(E) = exp(n x S|, k) /n.

Here exp(a, b) is the function defined by exp(a,0) = aand
exp(a,b+ 1) = a2%P(@b),

14
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Model reduction for a single agent

Let E = (S, le, T, 0, Tk) be an environment for one agent.

Let S be the set of reachable states of E.

Define M = (W, K3, TT) where
1. W={(sU)|seS,UcP(S)andscU},
2. (U)K (t,V)iffU =V,

3. ((s,U), p) = Te(s, p)

Define F : traces(E) — Wy by
F(1) = (£in(1),U (1))
where

U(T) = {£fin(?) |V ~1 T}

Proposition:
Forall T € traces(E), and ¢ € Lyk,, we have I°P*(E), T = ¢

itt M,F (1) = ¢

15
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Define G: P(S&) x O — P(S) by

G(U,0) = {t|sTtand O1(t) = oforsomese U}

Proposition: For all T € traces(E), U (1s) = G(U (1),04(S))
Thus, F(T) can be computed in time O(|r|).

16
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k-trees
Fix an environment E.
A O-treeis a tuple (S, 0, ...0) where Sis a state of E.
A k+ Ltreeis a tuple (S,U1,...Upn), where
1. Sis a state of E and
2. Ujis a set of k-trees, fori = 1...n.

Write Iy for the set of k-trees.

Proposition: Let kK > 0 be a natural number and E be a finite

environment for N agents with states S. Then |Z| < C«(E)

From traces to trees

Suppose we are given a system ~<Amv with accessibility relations

~j
i

Define Fy : traces(E) — 7 by

1. Fo(t) = (£in(1),0,...,0).

2. Ft1(1) = (fin(1),U1,...,Um), where for each agent i,

Ui={Rc1(t) [ T ~iT}

17
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Interpreting depth K formulae at K-trees

Let (S,Uy,...,Un) be a k-tree and ¢ a formula of Ly, . k.1 of
knowledge depth at most K. Define

(s,U1,...,Un) Ek pifTe(s,p) =1
(s,U1,...,Un) Ex Kid if w=k_1 ¢ forall w € U;.

(booleans as usual)

Theorem: For all traces Tof E and all § € hﬁAr..;_Ai of

knowledge depth at most K, we have

I'(E), T ¢ iff R(T) o

18
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Computing F¢ with respect to spr

Theorem: There exists a function Gy : Iy X S — i such that for
alltraces T-Sof E,

F(T-5) = G(R(1),9)

Incremental Computation of F

Define Gy : Ik X S— ‘I by

O_AATHAAw CH_L cee uc_\_vaﬁv = AH“<“_L cee “<3v

where

Vi = {Gk(Wt') | Ve Ui, root(V)TY, O(t') = O;(t)}

19
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Model Checking at a Trace - (Asynchronous) Perfect Recall

View
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E for two agents and a propositional constant p such that the set
{tetraces(E) | I (E),T = Cy12, P}

is undecidable.

Theorem: [van der Meyden, TARK94] Let E be a finite

Slide 42 environment. For formulae ¢ € hﬁAr..;_Ai of alternation depth
bounded by K, and T € traces(E), IP*(E),T = ¢ can be
decided in time O(Ck(E) - (|o| + |T])).
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