North American Summer School in Logic Language and Information, June 2003

Algorithmic Verification for Epistemic Logic
Ron van der Meyden

University of New South Wales/National ICT Australia

Silde 2

Part 2: Model Checking Knowledge

The Verification Problem

Given a particular scenario, and a claim about the evolution of states of knowledge in the example, prove formally that the claim is correct.

Slide 3

Proof Theoretic Approach

Encode the (runs, system) of the scenario as a formula ϕ_S .

Encode the claim as a formula ϕ_C .

Slide 4

Prove validity of $\phi_S \rightarrow \phi_C$.

Difficulty/Inconvenience: the environment is common knowledge,

 $\mathcal{L}_{\{K_1,...,K_n,C,\bigcirc,\mathcal{U}\}}$ not axiomatizable in the context of pr

represent the scenario as a model ${\it M}$

represent the claim as a formula $\phi_{\it C}$

Environments (transition form)

An environment in transition form is a tuple of the form

$$E = \langle S_e, I_e, T, O, \pi_e
angle$$
 where

- 1. S_e is a set of states of the environment.
- 2. $I_e \subseteq S_e$, is the set of *initial states* of the environment.

Slide 6

- 3. $T \subseteq S_e \times S_e$ is a transition relation.
- 4. O is a tuple $\langle O_1, \ldots, O_n \rangle$ such that for each i = 1..n,
- $O_i:S_e o \mathcal{O}$ is an observation function \mathcal{O} .
- 5. $\pi_e: S_e \times Prop \rightarrow \{0,1\}$ is a valuation.

Slide 5

Model Checking

show by algorithmic means that $M \models \phi_C$

Slide 7

1. $s_0 \in I_e$,

states of E such that

A *run* of an environment E is an *infinite* sequence $\varepsilon = s_0 s_1 \dots$ of

Assume T is serial: $\forall s \in S_e \exists t \in S_e(sTt)$

2. $s_k T s_{k+1}$ for all $k \ge 0$,

A *trace* of E is a *finite* sequence $\rho = s_0 \dots s_m$ of states satisfying conditions 1 and 2.

Local state defined wrt a view

at each point of time, determining a mapping $\mathbf{e}^{v}: \mathbf{N} \to L^n imes S_e$ Let ϵ be a run of E. A *view* associates a local state with each agent

In all cases $\mathbf{\varepsilon}_e^{\nu}(m) = \mathbf{\varepsilon}(m)$

Examples:

Slide 8

1. The observational view: $arepsilon_i^{ t obs}(m) = O_i(arepsilon(m)))$

2. The synchronous perfect recall view:

 $\varepsilon_i^{\mathtt{spr}}(m) = O_i(\varepsilon(0)) \dots O_i(\varepsilon(m))$

3. The asynchronous perfect recall view: $\mathbf{e}_i^{\mathrm{pr}}(m)$ is $\mathbf{e}_i^{\mathrm{spr}}(m)$ with consecutive repetitions removed.

S

System Generated by an Environment wrt a View

to be the interpreted system with Let u be a view of an environment E . Define $I^{
u}(E)=(\mathcal{R}^{
u}(E),\pi)$

Slide 9

- 1. $\mathcal{R}^{\nu}(E)$ the set of ε^{ν} such that ε is a run of E.
- 2. $\pi(r(m),p)=\pi_e(r_e(m),p)$ for all $r\in \mathcal{R}^{\nu}(E),\,p\in \mathsf{Prop}$

Recall, for each agent i we define the relation \sim_i on points by

$$(r,m)\sim_i (r',m')$$
 if $r_i(m)=r_i'(m)$.

Given a point (r,m) of $I^{\nu}(E)$, define

Slide 10

$$trace(r,m) = r_e(0) \dots r_e(m).$$

For two traces au, au', define $au \sim_i au'$ if there exist points (r,m), (r',m') such that trace(r,m)= au and trace(r',m')= au' and

$$(r,m) \sim_i (r',m').$$

Let $\nu \in \{ \text{obs}, \text{pr}, \text{spr} \}$

Slide 11

 $\phi \in \mathcal{L}_{\{K_1,...,K_n,C\}}.$ If trace(r,m) = trace(r',m') then $I^{\nu}(E),(r,m)\models \varphi \text{ iff }I^{\nu}(E),(r',m')\models \varphi.$ **Proposition:** Suppose (r,m),(r',m) are points of $I^{v}(E)$ and let

some point (r,m) with $trace(r,m) = \tau$. If au is a trace of E, write $I^{v}(E), au \models \phi$ when $I^{v}(E), (r,m) \models \phi$ for

Model Checking $\mathcal{L}_{\{K_1,...,K_n,C\}}$ at a Trace

Let ν be a view.

formula $\phi \in \mathcal{L}_{\{K_1,...,K_n,\mathcal{C}\}}$, determine if $I^{
u}(E), \tau \models \phi$. **Problem:** Given a finite environment E, a trace τ of E and a

Slide 12

model checking problem **Comment:** $I^{v}(E)$ is not a finite structure, so this is an *infinite state*

Slide 13

 agent s observes a variable that records whether or not the ullet agent s (sender) can send the single message "hello" to agent rmessage has been sent (receiver), but can only do this once

Consider an environment E in which

 agent r observes a variable that records whether the message has arrived

• the channel either delivers the message either immediately, or with a delay of one second

ullet the proposition p means "the message has arrived"

 $I_e = \{w\}$ $O_r(w) = O_r(t) = \bot, \quad O_r(d) = rcvd$ $O_s(w) = \bot, \quad O_s(t) = O_s(d) = sent$ <e:*, s:wait, r:*> <e:dly, s:send, r:*> $\pi_e(x,p) =$ true iff x = d. <e:dlvr, s:send, r:*> <e:*, s:*, r:*>

Slide 14

Slide 15

 $\mathtt{traces}(E) = \{ w^k d^m \mid k > 0, m \geq 0 \} \cup \{ w^k t d^m \mid k > 0, m \geq 0 \}$

Message transmission example (observational view)

ticks of the clock, i.e. consider the trace wd^{n-1} delivers the message immediately, then the agents wait for n-1Suppose agent s sends the message at time 1, and the environment

Slide 16 Under the observational view,

• $wd^{n-1} \sim_r \tau$ implies $extstyle extstyle extstyle extstyle extstyle extstyle ag{in}(au) = d$

• $wd^{n-1} \sim_s w^{n-1}t$

 $I^{\text{obs}}(E), wd^{n-1} \models \neg K_S p.$ Thus $I^{ extsf{obs}}(E), wd^{n-1} \models K_r p$ but

Slide 17

Message transmission example (synchronous perfect recall view)

Under the perfect recall view,

$$\{wd^{n-1}\}_s^{\operatorname{spr}} = \bot \cdot (sent)^{n-1} = \{wtd^{n-2}\}_s^{\operatorname{spr}}$$

so
$$wd^{n-1} \sim_s wtd^{n-2}$$
.

Slide 18

More generally, for each length n:

$$wd^{n-1} \sim_s wtd^{n-2} \sim_r w^2d^{n-2} \sim_s w^2td^{n-3} \dots$$

$$\cdots \sim_r w^{n-1}d \sim_s w^{n-1}t \sim_r w^n$$

Slide 19

$$I^{\operatorname{spr}}(E), \ wd^{n-1} \models (K_rK_s)^j p$$
 for all $j < n-1$,

 $I^{\operatorname{spr}}(E), \ wd^{n-1} \models \neg (K_rK_s)^{n-1}p$

 $I^{\operatorname{spr}}(E),\ \tau\models \neg Cp$ for all $\tau\in \mathit{traces}(E)$

S5_n Kripke Structures

An S5 $_n$ Kripke structure is a tuple $M=\langle W,\mathcal{K}_1,\ldots,\mathcal{K}_{\!\!u},\pi
angle$ where

- W is a set of worlds
- 2. \mathcal{K}_i is an equivalence relation on W for each $i=1\dots n$

Slide 20

3. $\pi: W imes extit{Prop}
ightarrow \{0,1\}$ is an assignment

Define $\mathcal{K}_{\mathcal{C}} = (\bigcup_i \mathcal{K}_i)^*$

- 1. $M,w\models K_i \phi$ if $M,w'\models \phi$ for all $w'\mathcal{R}_i w$
- 2. $M, w \models C\varphi$ if $M, w' \models \varphi$ for all $w' \mathcal{R}_C w$

Slide 21

 $\pi(\tau,p) = \pi_e(\text{fin}(\tau),p).$

equivalence relations on traces defined wrt the view and $M_E^{
m v}=\langle { t traces}(E),\sim_1,\ldots,\sim_n,\pi
angle$ where the \sim_i are the Given an environment E and view ν , define

Proposition: For $\tau \in traces(E)$ and $\varphi \in \mathcal{L}_{\{K_1,...,K_n,C\}}$, $M_E^{\nu}, \tau \models \varphi \quad \text{iff } I^{\nu}(E), \tau \models \varphi$

Model Checking in Finite Kripke Structures

relations included. symbols needed to write down M, all edges of the equivalence For a finite Kripke structure M define $\left|M\right|$ to be the number of

 $O(|M| \cdot |\varphi|)$. $\emptyset \in \mathcal{L}_{\{K_1,...,K_n,C\}}$ determining $M,w \models \emptyset$ can be done in time **Proposition:** Given a finite $S5_n$ structure M and a formula Slide 22

1

Algorithm:

For each world w of M label w by φ or $\neg \varphi$: For each subformula ψ of ϕ , in order of increasing size

CASE

- 1. if $\psi=p$ then label w by p iff $\pi(w,p)=1$
- 2. if $\psi = \neg \psi'$ then label w by ψ iff w not labelled ψ'

Slide 23

- 3. if $\psi = \psi_1 \wedge \psi_2$ then label w by ψ iff w labelled by ψ_1 and by
- 4. If $\psi = K_1 \psi'$ label w by ψ iff w' labelled ψ' for all $w' \mathcal{H}_i w$

END CASE

END (for w)

Slide 24

1. do a depth first search from all worlds labelled $\neg \psi'$ through edges \mathcal{K} , labelling all worlds reached $\neg C \psi'$

if $\psi = C\psi'$ then

2. label all worlds not reached in the above by $C\psi'$

END (for ψ)

Output YES if w is labelled ϕ

Model Checking at a Trace (Observational View)

Let $E = \langle S_e, I_e, T, O, \pi_e
angle$ be a finite state environment.

A state $t \in S_e$ is reachable if sT^*t for some $s \in I_e$.

Define
$$M = \langle W, \mathcal{X}_1, \ldots, \mathcal{X}_{\!\!u}, \pi
angle$$
 by

Slide 25

- 1. W is the set of reachable states of E.
- 2. $s \mathcal{K}_i t$ iff $O_i(s) = O_i(t)$
- 3. $\pi = \pi_e$

 $M, fin(\tau) \models \varphi.$ **Proposition:** For $\emptyset \in \mathcal{L}_{\{K_1,...,K_n,C\}}$, we have $I^{\mathsf{obs}}(E), \tau \models \emptyset$ iff

Slide 26

 $I^{\mathrm{obs}}(E), \tau \models \emptyset$ can be done in time $O(|E| \cdot |\phi|).$ **Corollary:** For $\phi \in \mathcal{L}_{\{K_1,...,K_n,C\}}$, determining whether

Model Checking at a Trace (Synchronous Perfect Recall View)

Theorem: [van der Meyden, TARK 94]

Determining $I^{\mathrm{spr}}(E), \tau \models \phi$ for $\phi \in \mathcal{L}_{\{K_1, \dots, K_n, C\}}$ is in PSPACE.

 ${\it E}$ for two agents and a propositional constant p such that the set Theorem: [van der Meyden, TARK94] There exists an environment Slide 27

 $\{\mathfrak{\tau}\in\mathtt{traces}(E)\mid I^{\mathtt{spr}}(E),\mathfrak{\tau}\models C_{\{1,2\}}p\}$

is PSPACE complete.

Model Checking at a Trace - Synchronous Perfect Recall View

For formulae $\phi \in \mathcal{L}_{\{K_1,...,K_n\}}$ of (alternation) depth bounded by k, $O(C_k(E)\cdot (|oldsymbol{\phi}|+|oldsymbol{ au}|))$ where $C_k(E)=exp(n imes|S_e|,k)/n.$ and $au\in \mathtt{traces}(E)$, $I^{\mathtt{spr}}(E), au\models \phi$ can be decided in time **Theorem:** [van der Meyden, TARK94] Let E be a finite environment.

Slide 28

 $exp(a,b+1) = a2^{exp(a,b)}.$ Here $\exp(a,b)$ is the function defined by $\exp(a,0)=a$ and

Model reduction for a single agent

Define $G:\mathcal{P}(S_e) imes\mathcal{O} o\mathcal{P}(S_e)$ by

 $G(U,o) = \{t \mid sTt \text{ and } O_1(t) = o \text{ for some } s \in U\}$

Let $E = \langle S_e, I_e, T, O, \pi_e
angle$ be an environment for one agent.

Let S' be the set of reachable states of E.

Slide 29

Define $M=\langle W,\mathcal{R}_{\!\!1},\pi
angle$ where

1.
$$W = \{ (s,U) \mid s \in S', \ U \in \mathcal{P}(S') \text{ and } s \in U \},$$

2.
$$(s, U)\mathcal{R}_1(t, V)$$
 iff $U = V$,

3.
$$\pi((s,U),p) = \pi_e(s,p)$$

Slide 31

Slide 32

Thus, $F(\tau)$ can be computed in time O(|r|).

Proposition: For all $au\in \mathtt{traces}(E),$ $U(\mathtt{t}s)=G(U(\mathtt{t}),O_1(s))$

Slide 30

where

 $U(\tau) = \{ \texttt{fin}(\tau') \mid \tau' \sim_1 \tau \}$

Define $F: \mathtt{traces}(E) o W_M$ by

 $F(au) = (exttt{fin}(au), U(au))$

iff $M, F(\tau) \models \varphi$

Proposition:

For all $au\in {
m traces}(E)$, and $\phi\in L_{\{K_1\}}$, we have $I^{
m spr}(E), au\models \phi$

15

k-trees

Fix an environment E

A 0-tree is a tuple $\langle s, 0, ... 0 \rangle$ where s is a state of E.

A k+1-tree is a tuple $\langle s, U_1, ... U_n
angle$, where

1. s is a state of E and

Slide 33

2. U_i is a set of k-trees, for $i = 1 \dots n$.

Write \mathcal{T}_k for the set of k-trees.

Proposition: Let $k\geq 0$ be a natural number and E be a finite environment for n agents with states S_e . Then $|T_k|\leq C_k(E)$

From traces to trees

Suppose we are given a system $I^{\nu}(E)$ with accessibility relations \sim_i .

Define F_k : ${ t traces}(E)
ightarrow { t T}_k$ by

Slide 34

1. $F_0(au) = \langle exttt{fin}(au), exttt{0}, \ldots, exttt{0}
angle.$

2. $F_{k+1}(au) = \langle ext{fin}(au), U_1, \ldots, U_m \rangle$, where for each agent i,

$$U_i = \{ F_{k-1}(\tau') \mid \tau' \sim_i \tau \}$$

Interpreting depth k formulae at k-trees

Let $\langle s, U_1, \dots, U_n \rangle$ be a k-tree and ϕ a formula of $\mathcal{L}_{\{K_1, \dots, K_n\}}$ of knowledge depth at most k. Define

Slide 35

 $\langle s, U_1, \ldots, U_n \rangle \models_k p \text{ if } \pi_e(s, p) = 1$

 $\langle s, U_1, \dots, U_n \rangle \models_k K_i \varphi$ if $w \models_{k-1} \varphi$ for all $w \in U_i$.

(booleans as usual)

Theorem: For all traces τ of E and all $\phi \in \mathcal{L}_{\{K_1,\dots,K_n\}}$ of knowledge depth at most k, we have

$$I^{\nu}(E), \tau \models \varphi \text{ iff } F_k(\tau) \models_k \varphi$$

Slide 37

all traces $\tau \cdot s$ of E,

Theorem: There exists a function $G_k: \mathcal{T}_k \times S_e \to \mathcal{T}_k$ such that for

$$F_k(au \cdot s) = G_k(F_k(au), s)$$

Computing F_k with respect to spr

Slide 39

Incremental Computation of F_k

Define
$$G_k: \mathcal{T}_k imes \mathcal{S}
ightarrow \mathcal{T}_k$$
 by

Slide 38

$$G_{k+1}(\langle s, U_1, \dots, U_n \rangle, t) = \langle t, V_1, \dots, V_n \rangle$$

Slide 40

where

$$V_i = \{G_k(\boldsymbol{\nu}, t') \mid \boldsymbol{\nu} \in U_i, \; \mathtt{root}(\boldsymbol{\nu}) T t', \; O_i(t') = O_i(t) \}$$

19

Model Checking at a Trace - (Asynchronous) Perfect Recall View

Theorem: [van der Meyden, TARK94] There exists an environment E for two agents and a propositional constant p such that the set

Slide 41

 $\{\mathfrak{\tau} \in \mathtt{traces}(E) \mid I^{\mathtt{pr}}(E), \mathfrak{\tau} \models C_{\{1,2\}}p\}$

is undecidable.

Slide 43

Theorem: [van der Meyden, TARK94] Let E be a finite environment. For formulae $\phi \in \mathcal{L}_{\{K_1,\dots,K_n\}}$ of alternation depth

Slide 42

bounded by k, and $au\in\mathtt{traces}(E)$, $I^{\mathrm{pr}}(E)$, $au\models\varphi$ can be decided in time $O(C_k(E)\cdot(|\phi|+| au|))$.