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The main problem unique to distributed systems is a lack of (global)
knowledge. It is difficult (probably impossible) for one node to know
everything about the rest of the network. Yet global knowledge
seems to be required to answer questions such as “Where is the file
A", “Is there a deadlock”, [or] “What is the best way to answer the
question.... ” (Gray, 1979)

“Once the sender receives the acknowledgement, it knows that the
current packet has been delivered; it can then safely discard the

current packet and send the next.”

Sequence Transmission Problem

Sender S to communicate bits x_1,x_2, .. to receiver R across a
possibly unreliable medium (Halpern and Zuck, JACM 1990)

Sender S:
Receiver R:
For eachi=0.. do
Foreachi=0... do
while not knows(S,knows(R,x_i))
while not knows(R,x) do
do
send(S,( i, ? ))
send(R, (i, x.i )) (2
wait(T’)
wait(T)
end
end
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Brafman, Latombe, Moses, Shoham: Applications of a logic of

knowledge to motion planning under uncertainty. JACM 1997

o —

Environmental Constraints:
® Sensor € [position-1, position+1]

o Robot moves under control of the environment, at most one

step per unit time.

A knowledge-based program:

wait until Know(position in Goal);
hal t .

Implementations:

11: wait until Sensor = 3;
hal t.

(when agent'’s view = Sensor)

12: wait until Sensor in {3,4,5};
hal t .

(when agent’s view = Sensor, and when agents view = Sensor +

clock value)
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Benefits Claimed for Knowledge-Based Programs

e Abstractness: correctness proofs at the knowledge level are

simpler and more intuitive

e Generality: The same knowledge-based program describes
distinct protocols running under different environmental

assumptions

e Optimality: Implementations of knowledge-based programs

make optimal use of information

Questions concerning the implementation of knowledge-based

programs:
1. Do implementations exist? Are they unique?
2. How can one verify that a given protocol is an implementation?
3. How can an agent compute what it knows in a given system?
4. If an implementation exists, how complex is it to construct one?

5. What is the inherent complexity of the implementations

themselves? Can they be finite state protocols?
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Part 1: Logics of Knowledge and Time

References

The Complexity of Reasoning about Knowledge and Time | (Lower
Bounds), Joe Halpern and Moshe Vardi, JCSS 1989

Complete Axiomatizations for Knowledge and Time, Joe Halpern,

Ron van der Meyden, Moshe Vardi, to appear SIAM J. Computing

Complete Axiomatizations for Knowledge and Branching Time, Ron

van der Meyden and Ka-Shu Wong, to appear Studia logica
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Background

M. Sato 1977 — (CPT-Syne

D. Lehman 1984 — (CP*:8yne

R. Fagin, J. Halpern and M. Vardi 1984 — CP*
R. Parikh and R. Ramanujam 1985 — (CP*

R. Ladner and J. Reif 1985 — (CPrnluis

Overview

Semantics of knowledge in distributed systems
Properties of agents: abstract and concrete characterizations
Axiomatizations of knowledge and linear time

Axiomatizations of knowledge and branching time
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A Model for Runs of a Distributed System

Let L be a set of local states of the agents
and S be a set of states of the environment

Define the set of global states as G = L" x S, i.e., a global state is

aisatuple (I1,...,In, Se).
e fori =1,...,n, the component i represents the local state of
agent i

® S represents the state of the environment

Runs

A run over global states G is amapping : N — G.

Write ri(m) for the i-th component of r(m), and re(m) for the

N+ 1-st component (the state of the environment)

A pair (r,m) consisting of a run I and a natural number mis called

a point.
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Distributed Systems
A system over global states G is a set of runs over G.
Let Prop be a set of propositional constants.
An interpretation for G is a function Tt: G x Prop — {0,1}.

An interpreted system [ = Gm; 5 consists of a system R_together

with an interpretation function TU

A Language for Knowledge and Time

The following are formulas:
p, where p € Prop
=0, o1 A 2,
O¢  (“ at the next moment of time”)
b1 UP2  (“dy until 27)
Kip,wherei=1...n (“agenti knows §”)

define 91 — P2 as =1V §2, etc
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Sublanguages

Write hﬁou&..;oui for the sublanguage based just on the

operators Opy, . ..,0Opn

E.g.

hﬁOxE. (temporal logic)

hﬁx&..;xi (logic of knowledge)

hﬁxp4...qxsqoqﬁw (logic of knowledge & time)

I(rm) = p

NJA_.“ Bv _” I_n_v“_.

NJA_.L.SV _”nvn_.>h_vw

L,(rm) = O

I, A_@ _.jv vH GH_.CA_VN

it T(r,m)(p) = 1.

ifnot I, (r,m) = é1

it I,(r,m) =d1and I,(r,m) = ¢>

it I,(r,m+1) = ¢.

if there exists m > nwith I, (r,m) = ¢»
and I,(r,k) = ¢1 forall kwithn <k <m.
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Two points (r,m) and (r’,m) are indistinguishable to agent i,
written (r,m) ~; (r',m) justwhen ri(m) = r{(n).

I(rnm) =Ko if I,(r',m) = ¢ for all points (r',m) ~j (r,m)

0o——0———F0———0———0———0 o——
0——0—+—+0——0——0—0—+—+0—F——
0——0—+—F0——0——0—+—F0———0+——
0——0——F0——0———0——F0———0+——
0——0—+—+0——0——0—F+—+0—0—+——

Common Knowledge
n
Ed = A\Kid
i=1

Co)=EQ NEEQ AEEEO A ...

10
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Semantics of Common Knowledge

Define the (equivalence) relation ~ on Points(7) to be the
transitive closure of | Jj—1 p ~i-

I,(rm) =Cod i I,(r',m) = ¢ forall points (r',m’) ~ (r,m)

ﬂ 2

attack =cattack

11
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Axioms for Knowledge: S5m

Al. All tautologies of propositional logic.
KL Kio AKi(¢ — @) — K

K2. Kip — ¢

K3. Ki¢ — KiKi¢

K4. =Ki¢ — Ki—Kid

RK. If ¢ then Ki¢

RA.Ifd and ¢ — ) then .

Political Knowledge
(Donald Rumsfeld, 2003)

As we know

There are known knowns

There are things we know we know
We also know

There are known unknowns

That is to say

We know there are some things

We do not know

But there are also unknown unknowns

The ones we don’t know we don’t know

12
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+ Axioms for Common Knowledge: S5Cmy,

cLEd=A";Kid
c2.Cod — E(d ACOh)

RC.If ) — E(WA ) then ¢ — Cy

Axioms for Linear Time: LT

TLOP)AO — ) — OY
12. O(=9) & -0Ob
T3. OUY < WV (d A O(UWY))

RT1. If ¢ then O¢
RT2. 1f ¢’ — WA Q¢’ then ¢’ — =(dU W)

13
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Properties of systems

sync: A system R is synchronous if for all agents i, if

(r,m) ~;j (r',m) thenm=m.

uis: A system has unique initial states if for all runs I’ and all
agents i, (r,0) ~;j (r',0).

Concordant intervals

Two intervals (possibly infinite) of two runs are concordant wrt agent
i if agent i goes through the same sequence of local states over
those intervals, not counting consecutive repeats.
E.g. if
ri[19, o] = aaabbaacc. ..
and
r{[2,»] = abaaaaaaaaaaaaaacc. . .

then r[19, 0] and r’[2, ] are concordant for agent i.

14
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Properties of Systems (continued)

pr: A system R has perfect recall (or no forgetting) if for all points
(r,m) and all agents i, if (r,m) ~; (r’, M) then the intervals
r[0,m| and r’[0, ] are concordant wrt agent i.

o o o o o o o
[o] [o] (o] (o] [o] o (o]
o o o o o o o
[o] o] o ‘O‘ [o] o o
[o] [o] o :O‘ [o] o (o]

Concrete constructions for synchrony and perfect recall

Let S be the set of states of the environment.
A run of the environment is a function € : N — S..
Let Obs be a set of observations.

An observation function is a mapping O : S — Obs.

15
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Given a run € of the environment, and an observation function Oj

for each agenti = 1...n, define the runs r&°bs, r&pr p&clock

[&spr by

re*(m) =¢g(m) for eachx € {obs,clock,spr,pr}

and

rF () = O e(m)

rE1%% () — (m, Oy (e(m)))

ﬁwmvaﬁBV = (0;(g(0)),...,0i(e(m)))

i
(PP (m) = Oi(e(0) ... 40 (&())
where # is absorbtive concatenation:

oxy ifx#y
ox ifx=y

(ox)ty =

16
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Given a set Re of runs of the environment, define the system

RE= (% | £ € Re}

for X € {obs, clock, spr,pr}

Say two systems R, R are isomorphic if there exists a bijection
f 1 R — R/ such that for all i and points (r,m), (r’,m) of R we
have (r,m) ~; (r',mf) iff (f(r), m) ~; (f(r'),n).

Proposition: Let f : ® — R be an isomorphism and let Ttand T
be interpretations such that TC(f (r)(m), p) = 1i(r(m), p) for all
re R, me N and p € Prop. Then for all points (r,m) of X and
b € Liky,... Kn.0,uc)s We have (R, T)(r,m) = ¢ iff

(R, )(f(r),m) = ¢.

17
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Proposition:

1. A system R _is synchronous iff it is isomorphic to a system
RELK for some set Re of some environment and some set of
observation functions

2. A system R _is a system with perfect recall iff it is isomorphic to
a system ﬁ%a for some set Re of some environment and some

set of observation functions

3. A system R _is a system with synchrony and perfect recall iff it is
isomorphic to a system Emmva for some set Re of some

environment and some set of observation functions

Complexity results (Halpern and Vardi 86,88)

Class of systems Lk, 0,1} LKy, K08 LKy KnCO,

ﬁ‘u ﬁ._.h_.m“
csyme, PSPACE PSPACE EXPTIME

ﬁéum,m%dn

T
P,
ﬁ.ﬁH,EMw

3

._.__,\_mANNE:J nonelementary _|_”HP
(Pr:sync
)

Q%H,m%dn,zww

18
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An Axiom for Synchronous Systems with Perfect

Recall

KTPESYRC: KiOd — OKid

K.00

© O

O¢

An Axiom for Asynchronous Systems

with Perfect Recall

KTPT:

Kid1 A O(Kid2 A —Kid3) —
—Ki=~{(Ki®p1)U [(Kidp2)U —d3]}

19
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A Characterization of Perfect Recall

Let I be an interpreted system. Then the following are equivalent:

(a) I is a system with perfect recall.

(b) For all agents i, for all runs r, Sand for all numbers n, m, if
(r,m+ 1) ~j (S,m) then either (r,m) ~j (S, M) or there exists
a number | < msuch that (r,m) ~;j (s,1) and for all K with
| < k< muwe have (r,m+1) ~;j (s k).

Class of Systems Complete Axiomatization

¢, €, S5(C)m+LT

. m
ﬁ.m%dnu ﬁ.ﬁum,m%dn
ﬁ.vﬂu ﬁ.ﬁﬁﬁwm S5+ LT +KTPT

ﬁ.vﬁm%zo“ ﬁ.vuqmwdo”swm S5+ LT + KTPTSyne

20
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Branching Time

Extend the temporal language to a variant of CTL* (Emerson &

Halpern)
if § is a formula, then so is
1. Ad (read “on all paths §”)

2. E¢ (read “on some path ¢").

Two runs I, I’ are said to be equivalent to time n, if

r[0...n] =r'[0...n].

(I,r,n) = Ad if for all runs 1’ of I that are equivalent to ' to
time N, we have (I,r',n) = ¢.

(This is the bundle semantics (Burgess, Stirling).)

21
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Axioms for Branching Time: AXB

B1. p — Ap, where pis atomic

B2. dp — p, where pis atomic

B3. A —

B4. A(d — ) — (Ad — AY)
B5. AQ — AAD

B6. 3¢ — AT

RB. From ¢ infer Ad.

Interaction Axioms

FC.AO¢ — OAd

Theorem: AXB + LT + FC is sound and complete for bﬁrO%E. in

the class of all interpreted systems.

22
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An Interaction between Knowledge and Branching

KB. Ki¢ — AK;d

Class of Systems Complete Axiomatization

ﬁ.“ ﬁéwma
. S5(C)m* AXB + LT + FC + KB
ﬁ.m%dnu (vis,sync
CPT, CPruis S5m+ AXB + LT + FC + KB +KTPT

ﬁ.vﬁm%zo“ ﬁ.vuqmwdo”swm S5+ AXB + LT + FC + KB + KTPT:sync

23
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Related Work

Ladner and Reif (TARK 86)
CPT and CPT2LUS yith respect to LiKy,... Knshoh AT}
discuss the axioms

KT1. KiAop — AoKi¢.

KT2'. KjAO¢ — ALK .

Completeness for KT1" by Halpern and Vardi (IBM TR)

Branching Time as a Special Case of The Logic of Knowledge

Compare:

KTPESYRC . Kijod — oKid,i=1 m.

FC. Ao — oAd

Say i has complete information in I if for all points (r,m), (r’,m’) of
I, itri(n) =r{(n') thenr(n) =r'(n).
If i has synchronous perfect recall and complete information in 1,

then I, (r,m) = Ki¢ iff 7,(r,m) = Ad.

(In Z+AFA, can define i has complete information as r;(n) = r(n))

24




