
VODCA 2006

Algorithmic Verification of Noninterference
Properties

Ron van der Meyden, Chenyi Zhang

School of Computer Science and Engineering,
University of New South Wales,

Sydney, Australia

National ICT Australia,
Locked Bag 6016, Sydney,

NSW 1466, Australia

Abstract

The paper discusses the problem of model checking a number of noninterference properties in finite state
systems: noninterference, nondeducibility on inputs, generalized noninterference, forward correctability and
restrictiveness. The complexity of these problems is characterized, and a number of possible heuristics for
optimization of the model checking are discussed.

Keywords: Noninterference, Model Checking, Complexity

1 Introduction

The notion of ‘noninterference’ is a general term applied in the security literature to
a number of causality-like notions intended to capture the intuition that informa-
tion does not flow from high level users to lower level users, so that confidentiality
of high level information is maintained. The main approach to verification that
systems satisfy these properties has been proof theoretic methods using so-called
‘unwinding conditions’. In this paper, we investigate the applicability of algorithmic
verification techniques when the systems in question are finite state. We develop
algorithms for model checking a number of different noninterference notions, and
characterise the computational complexity of the associated verification problems.
In particular, we deal with noninterference on deterministic systems [11,24], nonde-
ducibility on inputs [25], generalized noninterference [17], forward correctability [14]
and restrictiveness [17].

Noninterference has been studied under several distinct semantic models, includ-
ing state based models[11,24], trace-set models[19,29] and process algebras [22,7].

? National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability ini-
tiative, in part through the Australian Research Council

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

van der Meyden, Zhang

Only for the latter has there been a systematic study of algorithmic verification of
these notions [7,8]. The process algebraic models are the most expressive, and def-
initions of noninterference notions on other models can be reduced to definitions of
noninterference notions on a process algebraic model by means of natural mappings
between the models [27]. However, state based system modelling approaches are
more natural to many, are likely to be adequate for many applications, have a more
extensive literature on algorithmic verification, and have a more highly developed
set of verification tools. This modelling approach also remains the predominant ap-
proach in operating systems verification efforts [13], the area originally motivating
the noninterference literature. It therefore makes sense to consider the algorithmic
verification problem also on state based models. This is particularly so with respect
to complexity bounds, where lower bounds proved for a more expressive semantic
model may not apply on a more restrictive model. We therefore focus in this pa-
per on a state-based modelling of systems, and (to make the verification problem
decidable) restrict attention to finite state systems.

The contributions of the paper are as follows. First, we show that noninterference
in deterministic systems can be reduced to a safety property, so it is expressible in
both branching time and linear time temporal logics and verifiable in polynomial
time by existing model checkers. Also in PTIME is the notion of restrictiveness on
nondeterministic systems. We show that the remaining notions of noninterference
on nondeterministic systems that we consider are PSPACE-complete. For some
of these notions (restrictiveness and nondeducibility on inputs), these results are
closely related to results of Focardi and Gorrieri [7,8] (but on a more restricted
semantic model, hence not immediate consequences for the lower bounds). The
results on generalised nondeducibility and forward correctability are new, as far as
we know. Finally, we discuss heuristics that may be applied to the verification of
noninterference notions, and give complexity arguments that suggest that this may
sometimes lead to optimizations.

2 State-Observed Model

The state based system models in the literature on noninterference can be roughly
classified into two distinct types, depending on whether observations are associated
with states [20,3,23] or actions [11,24]. The system definitions are similar to those
of finite state automata, with the distinction between the two types resembling the
Mealy/Moore distinction. It can be shown [27] that there exist natural mappings
between these two types of models that preserve all the security notions that we
consider in this paper. Consequently, we consider only the state-observed modeling.
The systems are input-enabled, in the sense that any action can be taken at any
time. Most of the literature restricts attention to two agents High (H) and Low (L)
and the security policy L ≤ H. This policy permits information to flow from Low
to High but not from High to Low. We also make this restriction here, and take
the set of agents (also called domains) to be D = {L,H}.

A nondeterministic state-observed state machine is a tuple of the form M =
〈S, s0,next, obs, dom,A〉 where S is a set of states; s0 ∈ S is the initial state;
A is a set of actions; the function next : S × A → P(S) \ {∅} is a transition

2

van der Meyden, Zhang

function, such that next(s, a) defines the set of states to which it is possible to
make a transition when action a ∈ A is performed at a state s ∈ S; the function
dom : A → D associates a security domain with each action, and the function
obs : S × D → O describes the observation made in each state by each security
domain. For readability, we ‘curry’ the function obs by obsu of type S → O if
u ∈ D. Such a state-machine is deterministic if next(s, a) is a singleton for all
states s and actions a. In this case we may define a function step : S × A → S by
next(s, a) = {step(s, a)}. We write Mns for the set of all nondeterministic state-
observed machines, and Ms for the set of all deterministic state-observed machines.

A run of a state-observed system is a sequence r = s0a1s1a2s2 . . . ansn ∈ S(AS)∗

such that for all 1 ≤ i ≤ n, si ∈ next(si−1, ai). Define r(i) = si to be the i-
th state on the run r and ra(j) = aj to be the j-th action. We use two types
of concatenation operation on sequences. We write α · β for the usual notion of
concatenation. A run can also be described as a fusion of two sequences: we write
r = r1 ◦ r2 if there exists m with 1 ≤ m ≤ n such that r1 = s0a1s1a2s2 . . . amsm

and r2 = smam+1sm+1am+2sm+2 . . . ansn.

3 State Based Security Definitions

In this section we recall from the literature a number of classical security defini-
tions. Some of them are state based and some were originally defined as a trace-set
property, in which case we give a corresponding definition in our system model.

Several of the definitions are cast in terms of a notion of view capturing the
information at an agent’s disposal in a run. We take the view to be the maximal
information that an agent can have in a nondeterministic asynchronous system: its
sequence of actions and observations reduced modulo stuttering. Let Cond : X∗ →
X∗ be the function which condenses a sequence of elements into a possibly shorter
sequence by removing stuttering, such that for all a, b ∈ X, α ∈ X∗, Cond(ε) = ε,
Cond(a) = a,

and Cond(α · a · b) =

 Cond(α · a) · b if a 6= b,

Cond(α · a) otherwise.

Definition 3.1 For u ∈ D, define the observation function Obsu : S(AS)∗ →
O+(AO+)∗ on a run by Obsu(s) = obsu(s), and

Obsu(δ · a · s) =

 Obsu(δ) · a · obsu(s) if dom(a) = u

Obsu(δ) · obsu(s) otherwise.

Define the function viewu : S(AS)∗ → O+(AO+)∗ by viewu(r) = Cond(Obsu(r)).

Note that an agent may make the same observation several times in a row,
without an intervening action by that agent. This indicates that another agent has
acted. To eliminate this timing-based reasoning, in order to make the definition
compatible with the assumption of asynchrony, we apply the function Cond in this
definition.

3

van der Meyden, Zhang

3.1 Noninterference

Historically, one of the first information flow properties was (transitive) noninter-
ference [11,12], defined with respect to deterministic machines. We base our dis-
cussion on the presentation of Rushby [24], which has been followed in many other
works. As noted above, in state-observed deterministic systems, we have a function
step : S×A → S to represent the deterministic state evolution as a result of actions.
To represent the result of executing a sequence of actions, define the operation • :
S ×A∗ → S, by s • ε = s; and s • (α · a) = step(s • α, a).

With respect to the simple policy L ≤ H, the definition of noninterference can be
described in terms of the operation purgeL : A∗ → A∗

L on sequences of actions that
restricts the sequence to the subsequence of actions of L. Intuitively, the purged H

actions are not allowed to lead to any effects observable to L. This is formalised as
follows in the definition of noninterference.

Definition 3.2 A (deterministic) system in Ms satisfies Noninterference if for all
α ∈ A∗, we have obsL(q0 • α) = obsL(q0 • purgeL(α)). We write NIs for the set of
such systems.

3.2 Nondeducibility on Inputs

One way of understanding the statement that H does not interfere with L in a
deterministic system is as stating that every sequence of H actions is compatible
with the actions and observations of L. This leads to the proposal to take a similar
notion as the formulation of noninterference in nondeterministic systems: an ap-
proach known as nondeducibility [25]. Nondeducibility is defined in a quite general
way, in terms of a pair of views of runs. We focus here on a commonly used special
case: L’s nondeducibility of H’s actions.

To state the definition of nondeducibility, we also require a function to extract
the sequence of actions performed by an agent. We write Actu(r) for the sequence
of actions performed by agent u in run r, and Act(r) the whole action sequence
from all the agents in r.

Definition 3.3 1 A system M satisfies Nondeducibility on Inputs if for every α ∈
A∗

H , and every observation sequence β such that there exists a run r of M with
viewL(r) = β, there exists a run r′ of M with ActH(r′) = α and viewL(r′) = β.
Write NDIs for the set of systems in Mns satisfying Nondeducibility on Inputs.

3.3 Generalised Noninterference

Generalised Noninterference (GN) was proposed in [17] to generalise noninterference
to nondeterministic systems. The original definition of GN is a trace based property
with the intuition that the changes on high-level input must not alter the possible
future sequences of low-level events (by modifying H outputs somewhere). Here we
formulate it on our state based systems as:

Definition 3.4 A system M satisfies Generalised Noninterference (GN) if

1 In [27] it has been shown that Nondeducibility on Inputs is equally strong as Nondeducibility on Strategies
in purely asynchronous systems, though this is not true on synchronous machines due to [28].

4

van der Meyden, Zhang

(i) for all runs r of M with Act(r) = α ·α′, and for all a ∈ AH , there exists another
run r′ such that Act(r′) = α · a · α′ and viewL(r) = viewL(r′)

(ii) for all runs r of M with Act(r) = α · a · α′ with a ∈ AH , there exists another
run r′ such that Act(r′) = α · α′ and viewL(r) = viewL(r′).

Write GNs for the set of systems in Mns satisfying Generalised Noninterference.

Note that this definition implies that every possible L observation is consistent
with every sequence of H Actions, so GNs is at least as strong as NDIs. However,
GNs is seemingly a stronger notion than NDIs in that the latter allows L to rule out
certain possible H/L action interleavings whereas GNs requires that all interleavings
are consistent.

3.4 Forward Correctability

Forward Correctability (FC) was first introduced in [14]. Similar to Generalised
Noninterference, FC was defined as a property on traces. We formulate it as follows
in state-observed systems. Define the relation ≡ on runs by r1 ≡ r2 if r1 and r2 have
the same length n ∈ N, ra

1(j) = ra
2(j) for all 1 ≤ j ≤ n, and obsu(r1(i)) = obsu(r2(i))

for all 0 ≤ i ≤ n and u ∈ D.

Definition 3.5 A system M satisfies Forward Correctability (FC) if

(i) for all runs r = r1 ◦ r2 of M such that Act(r1) = α and Act(r2) = α′ with α′ ∈
A∗

L, for all a ∈ AH , there exists a run r′ = r′1 ◦ r′2 with r1 ≡ r′1, Act(r′2) = a ·α′
and viewL(r) = viewL(r′)

(ii) for all runs r = r1 ◦ r2 of M such that Act(r1) = α and Act(r2) = a · α′ with
a ∈ AH and α′ ∈ A∗

L, there exists a run r′ = r′1 ◦ r′2 with r1 ≡ r′1, Act(r′2) = α′

and viewL(r) = viewL(r′).

Write FCs for the set of systems in Mns satisfying Forward Correctability.

FCs is seemingly stronger than GNs because any ‘perturbation’ must be cor-
rectable in the future for FCs but GNs allows it to be correctable either in the past
or in the future.

3.5 Restrictiveness

There are two versions of ‘Restrictiveness’ introduced in McCullough’s early works.
The former [16] is a trace-based definition, while the latter is essentially defined on
labelled transition systems [17,18]. In [18] McCullough mentions both definitions
and concludes that the one on labelled transition systems is a stronger notion. Here
we follow his latter definition. This is close to the notion of unwinding relation
which is a way of facilitating proofs of traditional noninterference on deterministic
systems [24].

Definition 3.6 An unwinding relation for a system M ∈ Ms is an equivalence
relation ∼L on the states of M satisfying the following conditions, for all states s, t

and actions a: 2

2 We present a slight modification of the usual definition, which would have an equivalence relation ∼u for

5

van der Meyden, Zhang

• Output Consistency : if s ∼L t then obsL(s) = obsL(t);
• Locally Respects: if a ∈ AH then s ∼L step(s, a);
• Step Consistency : if a ∈ AL and s ∼L t then step(s, a) ∼L step(t, a).

The relationship between unwinding conditions and noninterference is given by
the following classical results:

Theorem 3.7 [12,24]

(i) If there exists an unwinding relation for M ∈ Ms, then M ∈ NIs.

(ii) If M ∈ NIs then there exists an unwinding relation for M .

The following is a natural generalization of Definition 3.6 to nondeterministic
systems.

Definition 3.8 An unwinding relation for a system M ∈ Mns is an equivalence
relation satisfying

• OC: if s ∼L t then obsL(s) = obsL(t).
• LR: if a ∈ AH and t ∈ next(s, a) then s ∼L t,
• SC: if a ∈ AL and s ∼L s′ and t ∈ step(s, a), then there exists t′ ∈ step(s′, a)

such that t ∼L t′.

McCullough’s [18] restrictiveness definition is similar in spirit to unwinding but
distinguishes between inputs and outputs on actions. Since on state-observed sys-
tems, outputs are ‘embedded’ in states, the above is a somewhat simplified version
of what was introduced by McCullough, and we have the following definition of
restrictiveness on state-observed systems.

Definition 3.9 M ∈ Mns satisfies restrictiveness, written M ∈ RESs, if there
exists an unwinding relation for M .

The property RESs is inherently stronger than the other security notions we
have introduced here, since intuitively every ‘perturbation’ from H always leads
L to a state which is observationally bisimilar to its original state. The following
summarizes the known relations between the definitions we have introduced above.

Proposition 3.10 The following containments are strict: RESs ⊂ FCs ⊂ GNs ⊂
NDIs. On deterministic systems, the notions NIs, NDIs, GNs, FCs and RESs

are equivalent.

We also note that observation on the whole history path seems no stronger than
observation only on the last state given that the system is deterministic.

4 Verifying Noninterference Properties

We now turn to the main interest of this paper: verification methods and complexity
results for the security properties introduced in the previous section. None of these

each agent u, satisfying a similar set of conditions for each u. For the policy L ≤ H we can take ∼H to be
the universal relation, which automatically satisfies the necessary conditions.

6

van der Meyden, Zhang

properties is directly expressible in the traditional safety-liveness framework [1], as
they express not a constraint on single system execution, but rather a constraint on
the set of all possible executions. We therefore need to develop new techniques for
their verification.

4.1 Unwinding Characterizable Properties

In this section we consider the property NIs and its generalization RESs, both of
which can be characterized by an unwinding relation.

The following is a way to decide noninterference NIs on deterministic state-
observed systems by a doubling construction. Given a deterministic system M =
〈S, s0, step, obs, dom,A〉, define M2 = 〈S2, s2

0, step
2, obs2, dom,A〉 to be the system

with identical actions and domains, with states S2 = S×S, initial state s2
0 = (s0, s0),

observation function obs2 : D×S2 → (O×O) given by obs2
u(s, t) = (obsu(s), obsu(t))

for s, t ∈ S, and transition function step2 : S2×A → S2 given by step2((s1, s2), a) =
(step(s1, a), step(s2, a)) for a ∈ AL and step2((s1, s2), a) = (step(s1, a), s2) for a ∈
AH .

Note that in every transition, a ∈ AH is applied only on the left part of each
state pair. An easy induction shows that for every sequence of actions α ∈ A∗, if
s2
0 • α = (s, t) in M2, then in M we have s = s0 • α and t = s0 • purgeL(α). We

therefore obtain the following:

Proposition 4.1 For M ∈ Ms, we have M ∈ NIs iff in M2, for all states (s, t)
reachable from s2

0, we have that obs2
L((s, t)) = (o, o′) implies o = o′.

Now NIs is reduced to a safety property, which says M2 will never reach a pair of
states (s, t) on which L has a pair of different views. This enables noninterference to
be checked using standard model checking technology, for both linear and branching
time.

Corollary 4.2 For M ∈ Ms, checking M ∈ NIs can be done in time O(|S|2× |A|)
and additional space O(|S|2).

Proof. The system M2 has at most |S|2 states. Performing a search algorithm
to traverse every possibly reachable state by trying every possible action takes
|S|2 × |A|. Marking states reached requires space |S|2, in addition to the space
needed to represent M . 2

Barthe et al. [2] and Davas et al. [5] proposed a self-composition technique to
reason about language based noninterference properties, which is somewhat similar
to our method for NIs. However, their definitions of noninterference are targeted at
reasoning about programming languages and assume that a single input is given at
the beginning and a single output observed at the end of the computation, whereas
we deal with systems permitting an arbitrary sequence of actions to be performed
by two distinct agents, and generating outputs throughout the computation.

The property RESs can be regarded as a nondeterministic version of NIs be-
cause they both are characterizable by the existence of an unwinding relation.
This property can be characterized using fixpoints as follows. Define the opera-
tor TL : P(S × S) → P(S × S) by (p, q) ∈ TL(X) iff

7

van der Meyden, Zhang

• (p, q) ∈ X and obsL(p) = obsL(q)
• for all p′ ∈ step(p, a) and a ∈ AL there exists q′ ∈ step(q, a) such that (p′, q′) ∈ X

• for all q′ ∈ step(q, a) and a ∈ AL there exists p′ ∈ step(p, a) such that (p′, q′) ∈ X.

The operator TL is monotonic, in the sense that ∼1⊆∼2 implies TL(∼1) ⊆
TL(∼2). The set of binary relations on S and the subset relation (⊆) have the
structure of a complete lattice. The Knaster-Tarski theorem [26] asserts the exis-
tence of a least and greatest fixed point operator on a complete lattice. We write
νX.TL(X) for the greatest binary relation ∼ satisfying ∼⊆ TL(∼). The following
result characterizes RESs in terms of TL and the property LR (in Definition 3.8).

Proposition 4.3

(i) M ∈ Mns satisfies RESs iff there exists an equivalence relation ∼⊆ S × S

satisfying ∼= TL(∼) and LR.

(ii) M ∈ Mns satisfies RESs iff νX.TL(X) satisfies LR.

The understanding of the property RESs in Proposition 4.3(ii) yields several
algorithmic approaches to its verification. One approach is symbolic, noting that
given a BDD encoding of M , the operation TL is readily encoded as an operation
on BDDs, and the computation of νX.TL(X) and the verification that it satisfies
LR can be implemented using standard operations on BDDs.

We also obtain a bisimulation-based approach. From Definition 3.8, an unwind-
ing relation is essentially a strong bisimulation relation with respect to AL, and
Proposition 4.3 requires the largest ∼. It is known that computing the largest
bisimulation on a labelled transition system can be reduced to the problem of find-
ing the coarsest partition, which is computable in O(|M | × |S|) by Kanellakis and
Smolka’s algorithm [15] and in O(|M | × log2(|S|)) by Paige and Tarjan’s algorithm
[21], where |M | is the number of transitions. In our case |M | = |S|2 × |AL|, and we
start from an initial partition corresponding to the equivalence relation ≈ defined
by s ≈ t iff obsL(s) = obsL(t). To verify LR we need to check every H transition,
which takes |S|2 × |AH |. The space requirement is comparable to the size of the
system itself in [21].

Theorem 4.4 Given M ∈ Mns, M in RESs is verifiable in O(|S|2log2(|S|)×|AL|+
|S|2 × |AH |) time and space O(|M |).

If M is deterministic, the size of the transition relation |M | becomes |S|×|A| and
the time complexity of the bisimulation algorithm in [15] reduces to O(|S|2×|AL|).
Thus, the complexity for the whole procedure becomes O(|S|2 × |AL|+ |S| × |AH |)
time and and space linear in |M |. This is marginally better than than the result in
Proposition 4.2 on time and better on space. However, the reduction to a classical
model checking problem in Proposition 4.2 permits various optimization techniques
to be used (e.g., partial order reductions) so it is unclear which technique will
perform better in practice.

We note that another way to approach these results is by a reduction to results
of Bossi and Focardi et al. [4,9] who defined a property P BNDC as a bisimulation
based properties on labelled transition systems (LTS) and proved a polynomial time
complexity result for it. We may define a linear time translation Fsl : Mns → LIO

8

van der Meyden, Zhang

from state observed system into τ -free and input-enabled LTS as follows. Assuming
O = OH

.
∪ OL, for M = 〈S, s0, step, obs, dom,A〉 ∈ Mns, define Fsl(M) = 〈P, p0,→

,L〉 where

(i) P = S, p0 = s0

(ii) L = A ∪O

(iii) →= {(s, a, t)|∃a ∈ A : t ∈ step(s, a)} ∪ {(s, o, s)|∃o ∈ O, u ∈ D : o = obsu(s)}.

The following relates RESs to a property on labelled transition systems.

Proposition 4.5 M ∈ Mns in RESs iff Fsl(M) is in P BNDC.

It follows that checking RESs has a polynomial time upper bound, from [9]. In
particular, [9]’s algorithm for P BNDC reduces a weak bisimulation problem into
checking strong bisimulation with an additional step of transitive closure on AH .
Their algorithm works in O(| → |× log2(|S|)) in general, where | → | is comparable
to |S|2 × |A| in our approach. The complexities of our direct approach and this
approach by reduction are therefore essentially equivalent.

4.2 Trace Set Properties

Verifying the remaining properties NDIs, GNs and FCs proves to be more complex
than NIs and RESs. In this section we prove the following:

Theorem 4.6 For P any of NDIs, GNs or FCs, the problem of deciding M ∈ P
is PSPACE-complete.

For the lower bound part of this result, we use the following polynomial time
reduction to convert the classical problem of deciding if the language accepted by a
nondeterministic finite state automaton is equal to Σ∗ into the problem of verifying
any of the following: NDIs, GNs and FCs. Let A = 〈S,→,Σ, s0,F〉 be a nonde-
terministic finite state automaton (without ε-transitions) which does not accept ε,
where S is the set of states, Σ the alphabet, → the transition relation, s0 the initial
state and F the set of final states. Define M(A) = 〈Sm, s0, obs,next, dom,Am〉 to
be the system with

• Sm = S
.
∪ SΣ, where SΣ = {s′0, s′1, s′2}

• Am = Σ
.
∪ {h} with dom(a) = L for all a ∈ Σ and dom(h) = H

• obs : D × Sm → {0, 1} with obsH(s) = 0 for all s ∈ Sm and obsL(s) = 0 for all
s ∈ S ∪ {s′0, s′2}, and obsL(s) = 1 if s = s′1

• next : Sm ×A → P(Sm) defined as follows
· For a = h: next(s0, h) = {s′0}, next(s, h) = {s} if s 6= s0

· For a ∈ Σ: next(s′0, a) = SΣ, next(s′1, a) = {s′1} and next(s′2, a) = {s′2}.
For s ∈ S, next(s, a) = {s′2} if there does not exist t such that s

a−→ t.
Otherwise, next(s, a) = {t ∈ S|s a−→ t} ∪ {s′1} if {t ∈ F|s a−→ t} 6= ∅, and
next(s, a) = {t ∈ S|s a−→ t} if {t ∈ F|s a−→ t} = ∅.

The construction of M(A) from A can be done in polynomial time.

Proposition 4.7 Let P be any of the properties NDIs, GNs, FCs. Then L(A) =
Σ∗\{ε} iff M(A) ∈ P

9

van der Meyden, Zhang

Deciding if the language accepted by a nondeterministic finite state automaton
equals Σ∗\{ε} with |Σ| ≥ 2 is known to be a PSPACE-complete problem [10], so all
the above security properties are PSPACE hard. Next we will show each is solvable
in polynomial space.

Lemma 4.8 M ∈ Mns in NDIs iff for every possible low observation β ∈
O+(AO+)∗, there exists a run r ∈ S(AS)∗ such that viewL(r) = β and ActH(r) = ε.

Lemma 4.9 If M ∈ Mns in NDIs then for every reachable state s and t ∈
next(s, a) with a ∈ AH , we have obsL(s) = obsL(t).

Lemma 4.8 shows a system is in NDIs iff H’s actions do not cause more obser-
vations to L than if H does nothing. The following definitions sketch a reduction
from NDIs into a regular language equivalence problem.

Definition 4.10 The H-Condenser is the function CondH : Mns → Mns de-
fined as follows on a machine M ∈ Mns. For s ∈ S let [s] = {t|∃α ∈ A∗

H :
t is reachable from s by α}. Define CondH(M) = 〈Sc, s0,nextc, obsc, AL〉, where

• Sc = {[s] | s ∈ S}.
• nextc : Sc ×AL → P(Sc) such that [t] ∈ nextc([s], a) if there exists s′ ∈ [s], such

that t ∈ next(s′, a).
• obsc : Sc → P(O) such that obsc([s]) = {o ∈ O|∃s′ ∈ [s] : obsL(s′) = o}.

Definition 4.11 The H-Restrictor is the function RestH : Mns → Mns such that
for M ∈ Mns, RestH(M) = 〈Sr, s0,nextr, obsL, AL〉, where Sr ⊆ S is the set of
states reachable from s0 by actions in AL only, and nextr : Sr × AL → Sr is the
restriction of the ‘next’ function to Sr ×AL.

The systems CondH(M) and RestH(M) can be regarded as Moore machines
with the same input set AL and output set O. If all the values obsc(s) are singletons
and we shift the outputs on states to their incoming transitions, we get two finite
automata sharing the same alphabet AL ×O.

Proposition 4.12 M ∈ NDIs iff in CondH(M) for all s ∈ Sc, the set obsc(s) is
a singleton, and CondH(M) and RestH(M) are language equivalent on AL ×O.

Every state in CondH(M) having single observation is a necessary condition
by Lemma 4.9, and this is linearly checkable. The language equivalence between
the two regular language is a PSPACE-complete problem [10]. Both CondH(M)
and RestH(M) have state space at most S, so generating them can be done in
polynomial time. Thus, NDIs is in PSPACE.

This result is related to work of Focardi Gorrieri et al. [8], who studied
the complexity problem of the information flow properties NNI, SNNI, NDC,
BNNI and SBNNI in a process algebraic framework. For input-enabled systems,
NNI, SNNI and NDC are equivalent.

Proposition 4.13 For M ∈ Mns, we have M ∈ NDIs iff Fsl(M) is in SNNI.

Focardi et al. give an exponential time subset-construction based algorithm for
the property SNNI. Our result for NDIs states the complexity more precisely, but
also yields exponential time in practice, pending advances in complexity theory.

10

van der Meyden, Zhang

The security property GNs requires arbitrary H action interleavings to be con-
sistent with L views, and it is seemingly more complicated than NDIs. However,
the following analysis yields an in-place exhaustive solution to refute GNs.

Define V iewL : A∗ → P(O+(AO+)∗) such that an observation β ∈ V iewL(α) if
there exists a run r with viewL(r) = β and Act(r) = α. Intuitively V iewL(α) is the
set of L observations compatible with α.

Lemma 4.14 M ∈ Mns is in GNs iff for all α ∈ A∗, V iewL(α) = V iewL(α|L).

Proof. For the ‘only if’ part, suppose M ∈ GNs. We need to show V iewL(α) =
V iewL(α|L). For a particular β ∈ V iewL(α), there exists a run r with Act(r) = α

and viewL(r) = β. From M ∈ GNs we can delete actions in AH from r to get a
new run r′ such that viewL(r′) = β. If all actions in AH are deleted, Act(r) = α|L,
so β ∈ V iewL(α|L). So V iewL(α) ⊆ V iewL(α|L). V iewL(α|L) ⊆ V iewL(α) can
be proved similarly by inserting actions in AH into a run compatible with L’s
observation in V iewL(α|L). For the ‘if’ part, suppose V iewL(α) = V iewL(α|L)
for all α ∈ A∗. It follows that V iewL(α′) = V iewL(α) for any α, α′ ∈ A∗ with
α′|L = α|L. For a particular run r with Act(r) = α, an arbitrary insertion or
deletion of actions in AH into α generates a new action sequence α′ with α′|L = α|L.
From V iewL(α′) = V iewL(α), we have viewL(r) ∈ V iewL(α′), so that there exists
a run r′ with Act(r′) = α′ and viewL(r′) = viewL(r). So M in GNs. 2

From Lemma 4.14, we have M 6∈ GNs iff there exists some action sequence α ∈
A∗ and some L observation β ∈ O+(AO+)∗, such that β ∈ V iewL(α) \ V iewL(α|L)
or β ∈ V iewL(α|L) \ V iewL(α). This motivates the following algorithm DecGN ,
which, given a system M , nondeterministically guesses an action sequence α and a
low observation β and checks consistency with α and α|L.

DecGN(M):
(i) Place a red marker and a blue marker on the initial state;
(ii) Repeat the next step 22×|S| times, where |S| is the number of states in M ;
(iii) Nondeterministically select a ∈ A;

• If a ∈ AH , then for every s with a blue marker, erase the old marker on s and
place new blue markers on all t ∈ step(s, a). If there exists any states s, t

marked either red or blue with obsL(s) 6= obsL(t) return true, else proceed.
• If a ∈ AL, then nondeterministically choose o ∈ O. For every s with a red

marker, erase the old red marker on s and place new markers on every t ∈
step(s, a) with obsL(t) = o. Then do the same on blue markers. After that,
if there is only one colour remaining, return true, if no colour remaining,
return false, otherwise, proceed.

(iv) Return false in the end.

Intuitively, the blue markers are tracing the executions of a possible input action
sequence α with respect to a particular L view, the red markers are tracing the
executions of α restricted to L with respect to the same Low view. Whenever any
H action changes L’s local view or only one of the sets of executions can follow
a step in the L view, GNs is detected to be false. The number 22×|S| covers all
possible pairs of sets of marked states. Formally, we claim the following statement.

11

van der Meyden, Zhang

Proposition 4.15 M 6∈ GNs iff there exists a computation of DecGN(M) which
returns true.

Proof. We justify this by following the definition of DecGN(M). Suppose an
action sequence α and an L observation β are chosen, such that α|L = β|AL. Then
the algorithm marks the sets Sblue = {s ∈ S|∃r : Act(r) = α ∧ viewL(r) = β ∧ s =
lstate(r)} and Sred = {s ∈ S|∃r : Act(r) = (α|L) ∧ viewL(r) = β ∧ s = lstate(r)},
where lstate(r) denotes the last state in the run r.

If M 6∈ GNs, suppose β is a minimal length L observation such that there exists
an action sequence α satisfying α|L = β|AL and β is only consistent with one of
the α and α|L. Consider a run of DecGN where the sequence of actions selected is
α and the sequence of L actions and observations is β. By minimality, DecGN has
not terminated before this point. Then there are two possibilities:

(i) β ∈ V iewL(α) \ V iewL(α|L).

(ii) β ∈ V iewL(α|L) \ V iewL(α).

In the first case Sblue is nonempty since β is compatible with α but Sred is empty
since β is incompatible with α|L. So the blue marker vanishes after the last action
a ∈ AL in α is selected but red marker remains, and true is returned in this case.
In the second case Sred is empty but Sblue is nonempty by similar reasoning. In
both cases DecGN(M) produces true within (2|S|)2 steps, because S is finite, the
state space for sets of states is 2|S|, and the space for a pair of sets is (2|S|)2, which
is the longest path to search. If t ∈ next(s, a) with a blue marker on s, a ∈ AH

and obsL(s) 6= obsL(t), choosing a will lead s to state t which has a different L view
from s, and we identify it by comparing this with states bearing red markers. From
Lemma 4.9 we have M 6∈ NDIs, so M 6∈ GNs from GNs ⊂ NDIs. DecGN(M)
returns true also.

If M ∈ GNs, then from Lemma 4.14 for any possible L observation β and α ∈ A∗,
β is either consistent with both α and α|L or inconsistent with both. In both cases
DecGN(M) returns false after (2|S|)2 steps.

2

Since the algorithm is nondeterministic, M 6∈ GNs is decidable in NPSPACE.
Savitch’s theorem states PSPACE = NPSPACE, so deciding GNs is in PSPACE.
FCs can be shown in NPSPACE in a similar procedure as DecGN by fixing not
only L’s observations, but also H’s observations.

5 Heuristics

We now consider some heuristic approaches which may optimize the verification of
the properties we have considered, which work by reducing the problem of verifying
a property on a system to a verification on an “equivalent” system.

In particular, we define a relation capturing equivalence on states with respect
to L’s actions, and and consider the use of this to compress the state space of the
system. Define an L-bisimulation on a system M to be an equivalence relation
∼L⊆ S × S such that s1 ∼L s2 iff

(i) obsL(s1) = obsL(s2)

12

van der Meyden, Zhang

(ii) for all a ∈ A and s′1 ∈ next(s1, a) there exists s′2 ∈ next(s2, a) such that
s′1 ∼L s′2.

Write [s] for the equivalence class of s with respect to ∼L.
Let min be a function Mns → Mns such that min(M) = 〈Sm, sm

0 ,

nextm, obsm, dom,A〉, where, with ∼L the maximal L-bisimulation on M ,

(i) Sm = S/ ∼L and sm
0 = [s0]

(ii) For [s], [t] ∈ Sm, a ∈ A, [t] ∈ next([s], a) if there exists s′ ∈ [s] and t′ ∈ [t] such
that t′ ∈ next(s′, a)

(iii) For [s] ∈ Sm, obsm
L ([s]) = o if obsL(s) = o, and obsm

H([s]) = ⊥ for all [s] ∈ Sm,
where ⊥ is any observation on the range of obs.

Theorem 5.1 For M ∈ Mns, M ∈ P iff min(M) ∈ P, where P is any of the
properties NDIs, GNs, FCs and RESs. In particular, M ∈ RESs iff for all s ∈
Smin(M), a ∈ AH , next(s, a) = {s}.

This result may produce optimizations since the size of min(M) may be sig-
nificantly smaller than M . In general, ‘bisimulation minimization’ is not a vi-
able approach for the verification of invariance properties since the partition based
bisimulation usually takes more resources than it saves in the subsequent model
checking [6]. However, for properties such as NDIs, GNs and FCs, which seem to
unavoidably take exponential time, spending polynomial time on minimization may
benefit the verification significantly. Also, on deterministic systems, as described in
Proposition 4.1, we reduce the NIs problem into a safety problem which is verifiable
by running a model checker on a larger state space (precisely, from |S| to |S|2). This
extra cost may mean that a prior minimization step is beneficial.

In this case, another consideration may result in further reductions. In state
based systems, a state is usually represented as an assignment to a set of variables.
Let s ∈ S be represented as a function s : V → U where V is a set of variables and
U is a universe of values. Let the L observation function be represented so that
obsL(s) is the restriction of s to a set VL ⊆ V . For v ∈ VL, define the function
obsv

L(s) = s(v), and let Mv be the system in which obsL is replaced by obsv
L. Then

we have the following:

Proposition 5.2 For M ∈ Ms, we have M ∈ NIs iff Mv ∈ NIs for all v ∈ VL.

This result suggests an approach where we apply the bisimulation minimization
approach to each Mv before applying the doubling construction. Each of these
systems may be significantly smaller than min(M). Approximately, the bisimu-
lation algorithm takes O(|AL| × |S|log2(|S|)) to get a partition and the further
exhaustive search from Theorem 4.2 takes O(|Sr|2 × |A|) where Sr is the maximal
size quotient state space obtained for the Mv. So the whole time complexity is
|VL|×O(|AL|×|S|log2(|S|)+ |Sr|2×|A|). Since |S| ≈ 2|V | if all variables are binary,
|VL| is far less than |S|. Since observations in Mv are based on a single variable,
it seems likely that |Sr| is far less than |S|, and |Sr|2 × |A| may be far less than
|S|2 × |A|. Also |AL| × |S|log2(|S|) is far less than |S|2 × |A|. So we conclude it is
very likely that |VL| × (|AL| × |S|log2(|S|) + |Sr|2 × |A|) is far less than |S|2 × |A|.
For the space complexity, we are using additional space O(|Sr|2) repeatedly in the

13

van der Meyden, Zhang

model checking phase instead of O(|S|2). Since space costs are often the critical
factor in model checking, this gain may be significant.

6 Conclusion

We have considered a number of security properties on state-observed systems and
have studied the complexity of the verification problems for all these properties.
The unwinding characterisable properties NIs and GNs are tractable, based on the
result of deciding bisimulation on finite states. Both symbolic and explicit state
methods are applicable to these properties. The trace based properties (NDIs,
GNs, FCs) are PSPACE-complete. Furthermore, we have proposed some heuristics
based on bisimulation minimization and argued that they may be effective. We
leave the work of implementation and empirical evaluation of this claim for future
work. It will be interesting, in particular, to compare the performance of BDD
and explicit state model checking approaches with the compositional approaches to
noninterference verification of [8], which are based on process algebraic modelling.

References

[1] Alpern, B. and F. B. Schneider, Defining liveness, in: Information Processing Letters, 21(4):181–185,
1985.

[2] Barthe, G., P. R. D’Argenio and T. Rezk, Secure information flow by self-composition, in: 17th IEEE
Computer Security Foundation Workshop (2004), pp. 100–114.

[3] Bevier, W. R. and W. D. Young, A state-based approach to noninterference, in: Proc. 7th Computer
Security Foundations Workshop, 1994, pp. 11–21.

[4] Bossi, A., R. Focardi, C. Piazza and S. Rossi, Bisimulation and unwinding for verifying possibilistic
security properties, in: Proc. of Int. Conference on Verication, Model Checking, and Abstract
Interpretation (VMCAI’03), 2003.

[5] Darvas, A., R. Hähnle and D. Sands, A theorem proving approach to analysis of secure information
flow, in: Workshop on Issues in the Theory of Security, (WITS’03), 2003.

[6] Fisler, K. and M. Y. Vardi, Bisimulation and model checking, in: Conference on Correct Hardware
Design and Verification Methods (CHARME’99), 1999, pp. 338–341.
URL citeseer.ist.psu.edu/fisler99bisimulation.html

[7] Focardi, R. and R. Gorrieri, A classification of security properties for process algebras, in: Journal of
Computer Security, 1, IOS Press, 1995 pp. 5–33.

[8] Focardi, R. and R. Gorrieri, The compositional security checker: A tool for the verification of
information flow security properties, Technical Report UBLCS-96-14, Università di Bologna (1996).

[9] Focardi, R., C. Piazza and S. Rossi, Proofs methods for bisimulation based information flow security,
in: Proc. of Int. Conference on Verication, Model Checking, and Abstract Interpretation (VMCAI’02),
2002, pp. 16–31.

[10] Garey, M. R. and D. S. Johnson, “Computers and Intractability - A Guide to the Theory of NP-
Completeness,” W.H. Freeman and Company, 1979.

[11] Goguen, J. and J. Meseguer, Security policies and security models, in: IEEE Symp. on Security and
Privacy, 1982, pp. 11–20.

[12] Goguen, J. and J. Meseguer, Unwinding and inference control, in: IEEE Symp. on Security and Privacy,
1984.

[13] Greve, D., M. Wilding and W. van Fleet, A separation kernel formal security policy, in: ACL2
Workshop, 2003.

[14] Johnson, D. M. and F. J. Thayer, Security and the composition of machines, in: Proc. IEEE Computer
Security Foundations Workshop, 1988, pp. 72–89.

14

citeseer.ist.psu.edu/fisler99bisimulation.html

van der Meyden, Zhang

[15] Kanellakis, P. C. and S. A. Smolka, CCS expressions, finite state processes, and three problems of
equivalence, in: Proc. 2nd Annual ACM Symposium on Principles of Distributed Computing, New
York, NY, 1983, pp. 228–240.

[16] McCullough, D., Specifications for multi-level security and a hook-up property, in: Proc. IEEE Symp.
on Security and Privacy, 1987, pp. 161–166.

[17] McCullough, D., Noninterference and the composability of security properties, in: Proc. IEEE Symp.
on Security and Privacy, 1988, pp. 177–186.

[18] McCullough, D., A hookup theorem for multi-level security, IEEE Transactions on Software Engineering
16 (1990), pp. 563–568.

[19] McLean, J., A general theory of composition for trace sets closed under selective interleaving functions,
in: Proc. IEEE Symp. on Security and Privacy, 1994, pp. 79–93.

[20] Oheimb, D. v., Information flow control revisited: Noninfluence = Noninterference + Nonleakage, in:
Computer Security – ESORICS 2004, LNCS 3193 (2004), pp. 225–243.

[21] Paige, R. and R. Tarjan, Three partition refinement algorithms, in: SIAM Journal of Computing, 16,
1987, pp. 973–989.

[22] Roscoe, A., CSP and determinism in security modelling, in: Proc. IEEE Symp. on Security and Privacy,
1995, pp. 114–221.

[23] Rushby, J., Proof of separability a verification technique for a class of security kernels, in: Proc. 5th
International Symposium on Programming, Turin, Italy, 1982, pp. 352–367.

[24] Rushby, J., Noninterference, transitivity, and channel-control security policies, Technical report, SRI
international (1992).
URL http://www.csl.sri.com/papers/csl-92-2/

[25] Sutherland, D., A model of information, in: Proc. 9th National Computer Security Conference, 1986,
pp. 175–183.

[26] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, in: Pacific J. Math, 1955 pp.
285–309.

[27] van der Meyden, R. and C. Zhang, A comparison of semantic models for noninterference (2006), to
appear in FAST’06, available at http://www.cse.unsw.edu.au/˜czhang/fast.ps.

[28] Wittbold, J. T. and D. M. Johnson, Information flow in nondeterministic systems, in: Proc. IEEE
Symp. on Security and Privacy, 1990, pp. 144–161.

[29] Zakinthinos, A. and E. Lee, A general theory of security properties, in: Proc. IEEE Symp. on Security
and Privacy, 1997, pp. 94–102.

15

http://www.csl.sri.com/papers/csl-92-2/

	Introduction
	State-Observed Model
	State Based Security Definitions
	Noninterference
	Nondeducibility on Inputs
	Generalised Noninterference
	Forward Correctability
	Restrictiveness

	Verifying Noninterference Properties
	Unwinding Characterizable Properties
	Trace Set Properties

	Heuristics
	Conclusion
	References

