
To appear in EPTCS. c© X. Huang & R. van der Meyden

The complexity of approximations for epistemic synthesis
(extended abstract)

Xiaowei Huang
UNSW Australia

xiaoweih@cse.unsw.edu.au

Ron van der Meyden
UNSW Australia

meyden@cse.unsw.edu.au

Epistemic protocol specifications allow programs, for settings in which multiple agents act with
incomplete information, to be described in terms of how actions are related to what the agents know.
They are a variant of the knowledge-based programs of Fagin et al [Distributed Computing, 1997],
motivated by the complexity of synthesizing implementations in that framework. The paper proposes
an approach to the synthesis of implementations of epistemic protocol specifications, that reduces the
problem of finding an implementation to a sequence of model checking problems in approximations
of the ultimate system being synthesized. A number of ways to construct such approximations is
considered, and these are studied for the complexity of the associated model checking problems.
The outcome of the study is the identification of the best approximations with the property of being
PTIME implementable.

1 Introduction

Knowledge-based programs [9] are an abstract specification format for concurrent systems, in which the
actions of an agent are conditional on formulas of the logic of knowledge [8]. This format allows the
agent to be described in terms of what it must know in order to perform its actions, independently of
how that knowledge is attained or concretely represented by the agent. This leads to implementations
that are optimal in their use of the knowledge implicitly available in an agent’s local state. The approach
has been applied to problems including reliable message transmission [12], atomic commitment [11],
fault-tolerant agreement [6], robot motion planning [4] and cache coherency [1].

The process of going from an abstract knowledge-based program to a concrete implementation is
non-trivial, since it requires reasoning about all the ways that knowledge can be obtained, which can be
quite subtle. Adding to the complexity, there is a circularity in that knowledge determines actions, which
in turn affect the knowledge that an agent has. It is therefore highly desirable to be able to automate
the process of implementation. Unfortunately, this is known to be an inherently complex problem: even
deciding whether an implementation exists is intractable [9].

Sound local proposition epistemic specifications [7] are a generalization of knowledge-based pro-
grams proposed in part due to these complexity problems. These specifications require only sufficient
conditions for knowledge, where knowledge-based programs require necessary and sufficient conditions.
By allowing a larger space of potential implementations, this variant ensures that there always exists an
implementation. However, some of these implementations are so trivial as to be uninteresting. In prac-
tice, one wants implementations in which agents make good use of their knowledge, so that the condi-
tions under which they act closely approximate the necessary and sufficient conditions for knowledge.
To date, a systematic approach to the identification of good implementations, and of automating the con-
struction of such good implementations, has not been identified. This is the problem we address in the
present paper. Ultimately, we seek an automated approach that is implementable in a way that scales



2 The complexity of approximations for epistemic synthesis (extended abstract)

to handling realistic examples. In this paper, we use a CTL basis for specifications, and use PTIME
complexity of an associated model checking problem in an explicit state representation as a proxy for
practical implementability.

The contributions of the paper are two-fold: first, we present a general approach to the identification
of good implementations, that extends the notion of sound local proposition epistemic specification by
ordering the knowledge conditions to be synthesized, and then defining a way to construct implemen-
tations using a sequence of approximations to the final synthesized system, in which implementation
choices for earlier knowledge conditions are fed back to improve the quality of approximation used to
compute later implementation choices. This gives an intuitive approach to the construction of implemen-
tations, which we show by example to address some unintuitive aspects of the original knowledge-based
program semantics. The approach is parametric in a choice of approximation scheme.

Second, we consider a range of possibilities for the approximation scheme to be used in the above
ordered semantics, and evaluate the complexity of the synthesis computations associated with each ap-
proximation. The analysis leads to the identification of two orthogonal approximations that are optimal
in their closeness to a knowledge-based program semantics, while remaining PTIME computable. This
identifies the best prospects for future work on synthesis implementations.

The paper is structured as follows. Section 2 recalls basic definitions of temporal epistemic logic.
Section 3 defines epistemic protocol specifications. In Section 4 we define the ordered semantics ap-
proximation approach for identification of good implementations. Section 5 defines a range of possible
approximation schemes, which are then analyzed for complexity in Section 6. We discuss related work
in Section 7 and conclude with a discussion of future work in Section 8.

2 A Semantic model for Knowledge and Time

In this section we lay out a general logical framework for agent knowledge, and describe how knowledge
arises for agents that execute a concrete protocol in the context of some environment.

Let Prop be a finite set of atomic propositions and Ags be a finite set of agents. The language
CTL∗K(Prop,Ags) has the syntax:

φ ::= p | ¬φ | φ1∨φ2 | Xφ | (φ1Uφ2) | Aφ | Kiφ

where p ∈ Prop and i ∈ Ags. This is CTL∗ plus the construct Kiφ, which says that agent i knows that φ
holds. We freely use standard operators that are definable in terms of the above, specifically Fφ= trueUφ,
Gφ=¬F¬φ, φ1Rφ2 =¬((¬φ1)U(¬φ2)), Eφ=¬A¬φ. Our focus in this paper is on the fragment CTLK, in
which the branching operators may occur only as Aφ and Eφ, where φ is a formula in which the outermost
operator is one of the temporal operators X,U,R,F or G. A further subfragment of this language CTLK+,
specified by the grammar

φ ::= p | ¬p | φ1∨φ2 | φ1∧φ2 | AXφ | AFφ | AGφ | A(φ1Uφ2) | A(φ1Rφ2) | Kiφ

where p ∈ Prop and i ∈ Ags. Intuitively, this is the sublanguage in which all occurrences of the operators
A and Ki are in positive position.

To give semantics to all these languages it suffices to give semantics to CTL∗K(Prop,Ags). We do
this using a variant of interpreted systems [8]. Let S be a set, which we call the set of global states. A
run over S is a function r : N→ S . A point is a pair (r,m) where r is a run and m ∈ N. Given a set R
of runs, we define Points(R) to be the set of all points of runs r ∈ R. An interpreted system for n agents



X. Huang & R. van der Meyden 3

is a tuple I = (R,∼,π), where R is a set of runs over S , the component ∼ is a collection {∼i}i∈Ags, where
for each i ∈ Ags, ∼i is an equivalence relation on Points(R) (called agent i’s indistinguishability relation)
and π : S →P(Prop) is an interpretation function. We say that a run r′ is equivalent to a run r up to time
m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m.

We can define a general semantics of CTL∗K(V,Ags) by means of a relation I, (r,m) |= φ, where I
is an intepreted system, (r,m) is a point of I and φ is a formula. This relation is defined inductively as
follows:

• I, (r,m) |= p if p ∈ π(r(m)), for p ∈ Prop;

• I, (r,m) |= ¬φ if not I, (r,m) |= φ;

• I, (r,m) |= φ1∨φ2 if I, (r,m) |= φ1 or I, (r,m) |= φ2;

• I, (r,m) |= Aφ if I, (r′,m) |= φ for all runs r′ ∈ R equivalent to r up to time m;

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ;

• I, (r,m) |= φ1Uφ2 if there exists m′ ≥ m such that I, (r,m′) |= φ2, and I, (r,k) |= φ1 for m ≤ k < m′;

• I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all points (r′,m′) ∼i (r,m) of I.

For the knowledge operators, this semantics is essentially the same as the usual interpreted systems
semantics. For the temporal operators, it corresponds to a semantics for branching time known as the
bundle semantics [5, 22]. We write I |= φ when I, (r,0) |= φ for all runs r of I.

We are interested in systems in which each of the agents runs a protocol in which it chooses its
actions based on local information, in the context of a larger environment. An environment for agents
Ags is a tuple E = 〈S , I, {Actsi}i∈Ags,−→, {Oi}i∈Ags,π〉, where

1. S is a finite set of states,

2. I is a subset of S , representing the initial states,

3. for each agent i, component Actsi is a finite set of actions that may be performed by agent i; we
define Acts = Πi∈AgsActsi to be the corresponding set of joint actions

4. −→⊆ S ×Acts×S is a transition relation, labelled by joint actions,

5. for each i ∈ Ags, component Oi is a mapping from S to some set O of observations,

6. π : S →P(Prop) is an interpretation of some set of atomic propositions Prop.

Intuitively, a joint action a represents a choice of action ai for each agent, performed simultaneously, and
the transition relation resolves this into an effect on the state. We assume that −→ is serial in the sense
that for all s ∈ S and a ∈ Acts there exists t ∈ S such that s

a
−→ t. We assume that Actsi always contains at

least an action skip, and that for the joint action a with ai = skip for all agents i, we have s
a
−→ t iff s = t.

The set O of observations is an arbitrary set: for each agent i, we will be interested in the equivalence
relation s ∼i t if Oi(s) = Oi(t) induced by the observation function Oi rather than the actual values of Oi.

A proposition p is local to agent i in the enviroment E if it depends only on the agent’s observation,
in the sense that for all states s, t with Oi(s) = Oi(t), we have p ∈ π(s) iff p ∈ π(t). We write Propi for
the set of propositions local to agent i. Intuitively, these are the propositions whose values the agent can
always determine, based just on its observation. We similarly say that a boolean formula is local to agent
i if it contains only propositions that are local to agent i. We assume that the set of local propositions is
complete with respect to the observations, in that for each observation o there exists a local formula φ
such that for all states s, we have Oi(s) = o iff π(s) |= φ. (This can be ensured by including a proposition



4 The complexity of approximations for epistemic synthesis (extended abstract)

po that is true at just states s with Oi(s) = o, or by including a proposition v = c for each possible value c
of each variable v making up agent i’s observation.)

A concrete protocol for agent i ∈ Ags in such an environment E is a Dijkstra style nondeterministic
looping statement Pi of the form

do φ1→ a1 [] . . . [] φk→ ak od (1)

where the a j are actions in Actsi and the φ j are boolean formulas local to agent i. Intuitively, this
is a nonterminating program that is executed by the agent repeatedly checking which of the guards
φ j holds, and then nondeterministically performing one of the corresponding actions ai. If none of
the guards holds, then the action skip is performed. That is, implicitly, there is an additional clause
¬φ1∧ . . .¬φn→ skip. Without loss of generality, we may assume that the ai are distinct. (We can always
amalgamate two cases φ1 → a and φ2 → a with the same action a into a single case φ1 ∨φ2 → a.) We
say that action a j is enabled in protocol Pi at state s if φ j holds with respect to the assignment π(s), and
write en(Pi, s) for the set of all actions enabled in protocol Pi at state s.

A joint protocol P is a collection {Pi}i∈Ags of protocols for the individual agents. A joint action
a ∈ Acts is enabled by P at a state s if ai ∈ en(Pi, s) for all i ∈ Ags. We write en(P, s) for the set of all joint
actions enabled by P at state s.

Given an environment E = 〈S , I, {Acts}i∈Ags,−→, {Oi}i∈Ags,π〉 and a joint protocol P for the agents
in E, we may construct an interpreted system I(E,P) = (R(E,P),∼,π) over global states S as follows.
The set of runs R(E,P) consists of all runs r : N→ S such that r(0) ∈ I and for all n ∈ N there exists
a ∈ en(P,r(n)) such that r(n)

a
−→ r(n + 1). The component ∼= {∼i}i∈Ags is defined by (r,m) ∼i (r′,m′) if

Oi(r(m)) = Oi(r′(m′)), i.e., two points are indistinguishable to agent i if it makes the same observation at
the corresponding global states; this is known in the literature as the observational semantics for knowl-
edge. The interpretation π in the interpreted system I(E,P) is identical to that in the environment E.

Note that in I = I(E,P), the satisfaction of formulas of the form Kiφ in fact depends only on the
observation Oi(r(m)). We therefore may write I,o |= Kiφ for an observation value o to mean I, (r,m) |=
Kiφ for all points (r,m) of I with Oi(r(m)) = o.

3 Epistemic Protocol Specifications

Protocol templates generalize concrete protocols by introducing some variables that may be instantiated
with local boolean formulas in order to obtain a concrete protocol. Formally, a protocol template for
agent i ∈ Ags is an expression in the same form as (1), except that the φ j are now boolean expressions, not
just over the local atomic propositions Propi, but may also contain boolean variables from an additional
set X of template variables. We write Vars(Proti) for the set of these additional boolean variables that
occur in some φi.

An epistemic protocol specification is a tuple S = 〈Ags,E, {Pi}i∈Ags,Φ〉, consisting of a set of agents
Ags, an environment E for Ags, a collection of protocol templates {Pi}i∈Ags for environment E, and a
collection of epistemic logic formulas Φ over the agents Ags and atomic propositions X ∪ Prop. In
this paper, we assume Φ ⊆ CTLK(Ags,X ∪Prop). We require that Vars(Pi) and Vars(P j) are disjoint
when i , j.

Intuitively, the protocol templates in such a specification lay out the abstract structure of some con-
crete protocols, and the variables in X are “holes” that need to be filled in order to obtain a concrete
protocol. The formulas in Φ state constraints on how the holes may be filled: it is required that these
formulas be valid in the model that results from filling the holes.



X. Huang & R. van der Meyden 5

To implement an epistemic protocol specification with respect to the observational semantics, we
need to replace each template variable v in each agent i’s protocol template by an expression over the
agent’s local variables, in such a way that the specification formulas are satisfied in the model resulting
from executing the resulting standard program. We now formalize this semantics.

Let θ be a substitution mapping each template variable x ∈ Vars(Pi), for i ∈ Ags, to a boolean formula
local to agent i. We may apply such a substitution to a protocol template Pi in the form (1) by applying θ
to each of the formulas φ j, yielding

do φ1θ→ a1 [] . . . [] φkθ→ ak od

which we write as Piθ. Since the φ jθ contain only propositions in Propi, this is a concrete protocol
for agent i. Consequently, we obtain a joint concrete protocol Pθ = {Piθ}i∈Ags, which may be executed
in the environment E, generating the system I(E,Pθ). The substitution θ may also be applied to the
specification formulas in Φ. Each φ ∈ Φ is a formula over variables X ∪Prop, so φθ is a formula over
variables Prop. We write Φθ for {φθ | φ ∈Φ}. We say that such a substitution θ provides an implementation
of the epistemic protocol specification S, provided I(E, {Piθ}i∈Ags) |= Φθ. The problem we study in this
paper is the following: given an environment E and an epistemic protocol specification S, synthesize an
implementation θ.

Knowledge-based programs [8, 9] are a special case of epistemic protocol specifications. Essentially,
knowledge-based programs are epistemic protocol specifications in which the set Φ is a collection of
formulas of the form AG(x ⇔ Kiψ), with exactly one such formula for each agent i ∈ Ags and each
template variable x ∈ Vars(Pi). That is, each template variable is associated with a formula of the form
Kiψ, expressing some property of agent i’s knowledge, and we require that the meaning of the template
variable be equivalent to this property. The following example, an extension of an example from [4],
illustrates the motivations for knowledge-based programs that have been advocated in the literature.
Example 1 Two robots, A and B, sit on linear track with discretized positions 0 . . .10. Initially A is at
position 0 and B is at position 10. Their objective is to meet at a position at least 2, without colliding.
Each robot is equipped with noisy position sensor, that gives at each moment of time a natural number
value in the interval [0, . . . ,10]. (We consider various different sensor models below, each defined by a
relationship between the sensor reading and the actual position.) The robots do not have a sensor for
detecting each other’s position. Each robot has an action Halt and an action Move. The Halt action
brings the robot to a stop at its current location, and it will not move again after this action has been
performed. The Move action moves the robot in the direction that it is facing (right, i.e., from 0 to 10 for
A, and left for B). However, the effects of this action are unreliable: when performed, the robot either
stays at its current position or moves one step in the designated direction.

Because of the nondeterminism in the sensor readings and the robot motion, it is a non-trivial matter
to program the robots to achieve their goal. In particular, the programmer needs to reason about how the
sensor readings are related to the actual positions, in view of the assumptions about the possible robot
motions. However, there is a natural abstract description of the solution to the problem at the level of
agent knowledge, which we may capture as a knowledge-based program as follows: A has the epistemic
protocol specification

PA = do
¬x→Move
[] x →Halt

od

AG(x⇔ KA(positionA ≥ 2))



6 The complexity of approximations for epistemic synthesis (extended abstract)

and B has the epistemic protocol specification

PB = do
y→Move
[] ¬y→Halt

od

AG(y⇔ KB(
∧

p∈[0,...10] positionB = p⇒ AG(positionA < p−1)))

Intuitively, the specification for A says that A should move to the right until it knows that its position is at
least 2. The specification for B says that B should move to the left so long as its knows that, if its current
position is p, then A’s position will always be to the left of the position p−1 that a move might cause B
to enter. If this does not hold then there could be a collision.

One of the benefits of knowledge-based programs is that they can be shown to guarantee correctness
properties of solutions for a problem independently of the way that knowledge is acquired and repre-
sented. This gives a desirable level of abstraction that enables a single knowledge level description to
be used to generate multiple implementations that are tailored to different environments.

In the case of the above knowledge-based program, we note that it guarantees several properties
independently of the details of the sensor model. Informally, since A halts only when it knows that its
position is at least 2, and KA p⇒ p is a tautology of the logic of knowledge, its program ensures that
when A halts, its position will be at least 2. Similarly, since B moves at most one position in any step,
and moves only when it knows that moving to the position to its left will not cause a collision with A,
a move by B will not be the cause of a collision. It remains to show that A does not cause a collision
with B — this requires assumptions about A’s sensor. (Note that if A is blind it never halts, and could
collide with B even if B never moves, so assumptions are needed.) For termination, moreover, we require
fairness assumptions about the way that A and B move (e.g., an action Move performed infinitely often
eventually causes the position to change.).

What implementations exist for the knowledge-based program depend on the assumptions we make
about the error in the sensor readings. We assume that for each agent i, and possible sensor value v,
there are propositions sensori = v, sensori ≥ v, and sensori ≤ v in Propi, with the obvious meaning.
Suppose that we take the robots’ position sensor to be free of error, i.e. for each agent i, we always have
sensori = positioni. Then agent i always knows its exact position from its sensor value. In this case,
the knowledge-based program has an implementation with θ(x) is sensorA = 2 and θ(y) is sensorB ≥ 4.
In this implementation, A halts at position 2 and B halts at position 3 (assuming that they reach these
positions.)

On the other hand, suppose that the sensor readings may be erroneous, with a maximal error of 1, i.e.,
when the robot’s position is p, the sensor value is in {p−1, p, p + 1}. In this case, there exists an imple-
mentation θ in which θ(x) is sensorA = 3∨ sensorA = 4∨ sensorA = 5, and θ(y) is sensorB = 4∨ sensorB =

5∨ sensorB = 6. In this implementation, A moves until it gets a sensor reading in the set {3,4,5}, and
then halts. The effect is that A halts at a location in the set {2,3,4}; which one depends on the pattern of
sensor readings obtained. For example, the sequence (0,0), (1,1), (2,2), (3,2), (4,3) of (position, sensor)
values leaves A at position 4, whereas the sequence (0,0), (1,1), (2,3) leaves A at position 2. The effect of
the choice of θ(y) is that B moves to the left and halts in one of the positions {5,6,7}. One run in which B
halts at position 5 has (position, sensor) values (10,10), (9,9), (8,8), (7,7), (6,7), (5,4). A run in which B
halts at position 7 is where these values are (10,10), (9,9), (8,8), (7,6). Note that here the sensor reading
6 tells B that it is in the interval [5,7], so it could be at 5. It is therefore not safe to move, since A might
be at 4.



X. Huang & R. van der Meyden 7

Pi = do
start∧ xi→ c

[] start∧¬xi→ w
[] ¬start→ p

od

AG(xi⇔ KiAXw)

start

(w,w)

w

(w,c)

(c,w)

(c,c)

w,c

c

Figure 1: Knowledge-based program and environment

One of the advantages of the knowledge-based programs is that their implementations are optimal in
the way that they use the information encoded in the agent’s observations. For example, the program for
A says that A should halt as soon as it knows that it is in the goal region. In the case of the sensor with
noise at most 1, the putative implementation for A given by θ(x) = sensorA ≥ 4 would also ensure that
A halts inside the goal region [2,10], but would not implement the knowledge-based program because
there are situations (viz. sensorA = 3), where A does not halt even though it knows that it is safe to halt.

The semantics for knowledge-based programs results in implementations that are highly optimized
in their use of information. Because knowledge for an implementation θ is computed in the system
I(E,Pθ), agent’s may reason with complete information about the implementation they are running in
determining what information follows from their observations. This introduces a circularity that makes
finding implementations of knowledge-based programs an inherently complex problem. Indeed, it also
has the consequence that it is possible for a knowledge-based program to have no implementations. The
following provides a simple example where this is the case. It also illustrates a somewhat counterintuitive
aspect of knowledge-based programs, that we will argue is improved by our proposed ordered semantics
for epistemic specifications below.

Example 2 Alice and Bob have arranged to meet for a picnic. They are agreed that a picnic should have
both wine and cheese, and each should bring one or the other. However, they did not think to coordinate
in advance what each is bringing, and they are now not able to communicate, since Alice’s phone is in the
shop for repairs. They do know that each reasons as follows. Cheese being cheaper than wine, they prefer
to bring cheese, and will do so if they know that there is already guaranteed to be wine. Otherwise, they
will bring wine. This situation can be captured by the knowledge-based program (for each i ∈ {A,B}) and
environment depicted in Figure 1. Here start is a proposition, local to both agents, that holds before the
picnic (at time 0). We use w,c as propositions that hold if there is wine (respectively, cheese) in the picnic
state (at time 1). Actions w,c,p represent bringing wine, bringing cheese, and picnicking, respectively.
For any omitted joint actions a from a state s in the diagram, we assume an implicit self-loop s

a
−→ s. We

assume that for all states s and i ∈ {A,B}, we have Oi(s) = s, i.e., both agents have complete information
about the current state.

This epistemic specification has no implementations. Note that in any implementation, each agent i
must choose either w or c at the initial state. For each such selection, there is a unique successor state
at time 1, so each implementation system I(Pθ,E) has exactly one state at time 1. If this state satisfies
w, then we have I(Pθ,E) |= Ki(AXw), and this implies that both agents select action c at the start state.
But then the state at time 1 does not satisfy w. Conversely, if the unique state at time 1 does not satisfy
w, then I(Pθ,E) |= ¬Ki(AXw), and this implies that both agents select action w at the start state, which
produces a state at time 1 that satisfies w, also a contradiction. In either case, the assumption that we
have an implementation results in a contradiction, so there are no implementations. �



8 The complexity of approximations for epistemic synthesis (extended abstract)

Testing whether there exists an implementation of a knowledge-based program when the temporal
basis of the temporal epistemic logic used is the linear time logic LTL is PSPACE complete [9]. However,
the primary source of the hardness here is that model checking LTL is already a PSPACE complete
problem.

In the case of CTL as the temporal basis, where model checking can be done in PTIME, the problem
of deciding the existence of an implementation of a given knowledge-based program in a given environ-
ment can be shown to be NP-complete. NP hardness follows from Theorem 5.4 in [9], which states that
for atemporal knowledge-based programs, in which the knowledge formulas Kiφ used do not contain
temporal operators, the complexity of determining the existence of an implementation is NP-complete.
However, the construction in the proof in [9] requires both the environment and the knowledge-based pro-
gram to vary. In practice, the size of the knowledge-based program is likely to be significantly smaller
than the size of the environment, inasmuch as it is created by hand and effectively amounts to a form of
specification. An alternate approach is to measure complexity as a function of the size of the environment
for a fixed knowledge-based program. Even here, it turns out, the problem of deciding the existence of
an implementation is NP-hard for very simple knowledge-based programs.

Theorem 1 There exists a fixed atemporal knowledge-based program P for a single agent, such that the
problem of deciding, given an environment E, whether P has an implementation in E, is NP-hard.

The upper bound of NP for deciding the existence of implementations of knowledge-based programs
is generalized by the following result for our more general notion of epistemic protocol specification.

Theorem 2 Given an environment E and an epistemic protocol specification S expressed using CTLK,
the complexity of determining the existence of an implementation for S in E is in NP.

Theorem 2 assumes that the environment is presented by means of an explicit listing of its states and
transitions. In practice, the inputs to the problem will be given in some format that makes their repre-
sentation succinct, e.g., states will be represented as assignments to some set of variables, and boolean
formulas will be used to represent the environment and protocol components. For this alternate input
format, the problem of determining the existence of an implementation of a given epistemic protocol
specification is NEXPTIME-complete [14].

Under either an implicit or explicit representation of environments, these results suggest that synthe-
sis of implementations of general epistemic protocol specifications, and knowledge-based programs in
particular, is unlikely to be practical. An implementation using symbolic techniques is presented in [14],
but it works only on small examples and scales poorly (it requires the introduction of exponentially many
fresh propositions before using BDD techniques; the number of propositions soon reaches the limit that
can be handled efficiently by BDD packages.) In the following section, we consider a restricted class
of specifications that weakens the notion of knowledge-based program in such a way that implementa-
tions can always be found, and focus on how to efficiently derive implementations that approximate the
implementations of corresponding knowledge-based programs as closely as possible.

4 An Ordered Semantics

Sound local proposition epistemic protocol specifications are a generalization of knowledge-based pro-
grams, introduced in [7], with one of the motivations being that they provide a larger space of potential
implementations, that may overcome the problem of the high complexity of finding an implementation.
(There is the further motivation that the implementation of a knowledge-based program, when one exists,



X. Huang & R. van der Meyden 9

itself may be intractable; e.g., it is shown in [19] that for perfect recall implementations of atemporal
knowledge-based programs, deciding whether Kiφ holds at a given point of the implementation may be
a PSPACE-complete problem. This specific motivation is less of concern for the observational case that
we study in this paper.)

Formally, a sound local proposition epistemic protocol specification is one in which Φ is given by
means of a function κ with domain Vars(P), such that for each agent i and each template variable x ∈
Vars(Pi), the formula κ(x) is of the form Kiψ. The corresponding set of formulas for the epistemic
protocol specification is Φ = Φκ = {AG(x⇒ κ(x)) | x ∈ Vars(P)}.

As usual for epistemic protocol specifications, an implementation associates to each template vari-
able a boolean formula local to the corresponding agent, such that the resulting system satisfies the
specification Φ.1 Thus, whereas a knowledge-based program requires that each knowledge formula in
the program be implemented by a necessary and sufficient local formula, a sound local proposition spec-
ification requires only that the implementing local formula be sufficient.

It is argued in [7] that examples of knowledge-based programs can typically be weakened to sound
local proposition specifications without loss of the desired correctness properties that hold of all imple-
mentations. However, implementations of knowledge-based programs may guarantee optimality proper-
ties that are not guaranteed by the corresponding sound local proposition specifications. For example, an
implementation of a knowledge-based program that states “if Kiφ then do a” will be optimal in the sense
that it ensures that the agent will do a as soon as it knows that φ holds. By contrast, an implementation
that replaces Kiφ by a sufficient condition for this formula may perform a only much later, or even fail
to do so, even if the knowledge necessary to do a is deducible from the agent’s local state. (An example
of such a situation is given in [1], which identifies a situation where a cache coherency protocol fails to
act on knowledge that it has.)

Note that the substitution θ⊥, defined by θ⊥(x) = false for all template variables x, is always an
implementation for a sound local proposition specification S in an environment E. It is therefore trivial
to decide the existence of an implementation, and it is also trivial to produce a succinct representation
of an implementation. Of course, an implementation of a program “if x then do a” that sets x to be
false will never perform a, so this trivial implementation is generally not of much interest. What is
more interesting is to find good implementations, that approximate the corresponding knowledge-based
program implementations as closely as possible in order to behave as close to optimally as possible,
while remaining tractable.

Consider the order on substitutions defined by θ ≤ θ′ if for all variables x and states s ∈ S of the envi-
ronment we have π(s) |= θ(x)⇒ θ′(x). If both are implementations of S in E, we may find θ′ preferable
in that it provides weaker sufficient conditions (i.e., ones more often true) for the knowledge formulas
Kiφ of interest. Pragmatically, if φ is a condition that an agent must know to be true before it can safely
perform a certain action, the more often the sufficient condition θ(x) for Kiφ holds, the more often will
the agent perform the action in the implementation. It is therefore reasonable to seek implementations
that maximize θ with respect to the order ≤. The maximal sufficient condition for Kiφ is Kiφ itself, in the
system I(E,Pθ) corresponding to an implementation θ, expressed as an equivalent local formula.2

The following result makes this statement precise:

1By the assumption of locality of θ(x), validity of AG(θ(x)⇒ Kiψ) in a system is equivalent to validity of AG(θ(x)⇒ ψ),
but we retain the epistemic form for emphasis and to maintain the connection to knowledge-based programs.

2 The existence of such a formula follows from completeness of the set of local propositions. If we extend the propositions
in an environment to include for each agent i and possible observation o of the agent, a proposition pi,o that holds at a state
s iff Oi(s) = o, then the formula θ(x) such that I |= AG(θ(x)⇔ κ(x)), where κ(x) = Kiφ, can be constructed as

∨
{pi,o | o ∈

Oi(S ), I,o |= κ(x)}, and has size of order the number of observations.



10 The complexity of approximations for epistemic synthesis (extended abstract)

Theorem 3 Suppose that S is a sound local proposition epistemic protocol specification, and let S′ be
the knowledge-based program resulting from replacing each formula AG(x⇒ κ(x)) in Φ by the formula
AG(x⇔ κ(x)). Then every implementation θ of S′ is an implementation of S.

However, to have θ(x) equivalent to Kiφ in I(E,Pθ) would mean that θ implements a knowledge-
based program. The complexity results of the previous section indicate that this is too strong a require-
ment, for practical purposes, since it is unlikely to be efficiently implementable. The compromise we
explore in this paper is to require θ(x) to be equivalent to Kiφ not in the system I(E,Pθ) itself, but in
another system that approximates I(E,Pθ). The basis for the correctness of this idea is the following
lemma.

Lemma 1 Suppose that I⊆I′, that r is a run of I and that φ is a formula in which knowledge operators
and the branching operator A occur only in positive position. Then I′, (r,m) |= φ implies I, (r,m) |= φ.

In particular, if, for a sound local proposition epistemic protocol specification S, the formula κ(x)
associated to a template variable x is in CTLK+, then this result applies to the formula AG(x⇒ κ(x))
in Φκ, since this is also in CTLK+. Suppose the system I′ approximates the ultimate implementation
I(E,Pθ) in the sense that I′ ⊇ I(E,Pθ). Let θ(x) be a local formula such that I′ |= AG(θ(x)⇔ κ(x)).
Then also I′ |= AG(θ(x)⇒ κ(x)), hence, by Lemma 1, θ(x) will also satisfy the correctness condition
I(E,Pθ) |= AG(θ(x)⇒ κ(x)) necessary for θ to be an implementation of S.

Our approach to constructing good implementations of S will be to compute local formulas θ(x)
that are equivalent to κ(x) in approximations I′ of the ultimate implementation being constructed. We
take this idea one step further. Suppose that we have used this technique to determine the value of
θ(x) for some of the template variables x of S. Then we have increased our information about the
final implementation θ, so we are able to construct a better approximation I′′ to the final implementation
I(E,Pθ), in the sense that I′ ⊇I′′ ⊃I(E,Pθ). Note that if I′ |= AG(φ′⇔ κ(y)) and I′′ |= AG(φ′′⇔ κ(y)),
then it follows from I′ ⊇ I′′ that I′′ |= AG(φ′ ⇒ φ′′). That is, φ′′ is weaker than φ′, and hence a
better approximation to the knowledge condition κ(y) in the ultimate implementation I(E,Pθ). Thus, by
proceeding iteratively through the template variables, and improving the approximation as we construct a
partial implementation, we are able to obtain better approximations to κ(y) in I(E,Pθ) for later variables.

More precisely, suppose that we have a total pre-order on the set of all template variables Vars(P) =

∪i∈AgsVars(Pi), i.e., a binary relation ≤ on this set that is transitive and satisfies x ≤ y∨ y ≤ x for all
x,y ∈ Vars(P). Let this be represented by the sequence of subsets X1, . . . ,Xk, where for i ≤ j and x ∈ Xi

and y ∈ X j we have x < y if i < j and x ≤ y ≤ x if i = j. Suppose we have a sequence of interpreted systems
I0 ⊇ . . . ⊇ Ik. Define a substitution θ to be consistent with this sequence if for all i = 1 . . .k and x ∈ Xi,
we have Ii−1 |= AG(θ(x)⇔ κ(x)). That is, consistent substitutions associate to each template variable x a
local formula that is equivalent to (not just sufficient for) κ(x), but in an associated approximation system
rather than in the final implementation.

Proposition 1 Suppose that Ik is isomorphic to I(E,Pθ), and that for all x ∈ Vars(P), the formula κ(x)
contains knowledge operators and the branching operator A only in positive position. Then θ implements
the epistemic protocol specification 〈Ags,E,P,Φκ〉.

We will apply this result as follows: define an approximation scheme to be a mapping that, given
an epistemic protocol specification S = 〈Ags,E,P,Φ〉 and a partial substitution θ for S, yields a system
I(S, θ), satisfying the conditions

1. if θ ⊆ θ′ then I(S, θ) ⊇ I(S, θ′), and

2. if θ is total, then I(S, θ) is isomorphic to I(E,Pθ).



X. Huang & R. van der Meyden 11

Assume now that S is a sound local proposition specification based on the mapping κ. Given the
ordering ≤ on Vars(P), with the associated sequence of sets X1 . . .Xk, we define the sequence θ0, θ1, . . . , θk

inductively by θ0 = ∅ (the partial substitution that is nowhere defined), and θ j+1 to be the extension
of θ j obtained by defining, for x ∈ X j+1, the value of θ j+1(x) to be the local proposition φ such that
I(S, θ j) |= AG(φ⇔ κ(x)). Plainly θ0 ⊆ θ1 ⊆ . . . ⊆ θk, so we have I(S, θ0) ⊇ I(S, θ1) ⊇ . . . ⊇ I(S, θ′k). It
follows from the properties of the approximation scheme and Proposition 1 that the substitution θk is
total and is an implementation of S.

This idea leads to an extension of the idea of epistemic protocol specifications: we now consider
specifications of the form (S,≤), where S is a sound local proposition epistemic protocol specification,
and ≤ is a total pre-order on the template variables of S. Given an approximation scheme, the construc-
tion of the previous paragraph yields a unique implementation of S. Intuitively, by specifying an order
≤, the programmer fixes the order in which implementations are synthesized for the template variables,
and the approach guarantees that variables later in the order are synthesized using information about the
values of variables earlier in the order.

5 A spectrum of approximations

It remains to determine which approximation scheme to use in the approach to constructing implemen-
tations described in the previous section. In this section, we consider a number of possibilities for the
choice of approximation scheme. A number of criteria may be applied to the choice of approximation
scheme. For example, since the programmer must select the order in which variables are synthesized, the
approximation scheme should be simple enough to be comprehensible to the programmer, so that they
may understand the consequences of their ordering decisions.

On the other hand, since synthesis is to be automated, we would like the computation of the values
θ(x) to be efficient. This amounts to efficiency of the model checking problem I(S, θ′) |= κ(x) for partial
substitutions θ′ and formulas κ(x) ∈ CTLK+. To analyze this complexity, we work below with a com-
plexity measure that assumes explicit state representations of environments, but we look for cases where
the model checking problem in the approximation systems is solvable in PTIME. We assume that the
protocol template P and the formulas Φ in the epistemic protocol specification are fixed, and measure
complexity as a function of the size of the environment E. This is because in practice, the size of the
environment is likely to be the dominant factor in complexity.

One immediately obvious choice for the approximation scheme is to take the system I(S, θ), for a
partial substitution θ, to be the union of all the systems I(E,Pθ′), over all total substitutions θ′ that extend
the partial substitution θ. This turns out not to be a good choice (it is the intractable case Iii,ir,sc below),
so we consider a number of relaxations of this definition. The following abstract view of the situation
provides a convenient format that unifies the definition of these relaxations.

Given an environment E with states S , define a strategy for E to be a function σ : S + → P(S ) \ ∅
mapping each nonempty sequence of states to a set of possible successors. We require that for each
t ∈ σ(s0 . . . sk) we have sk

a
−→ t for some joint action a. Given a set Σ of strategies, we can construct an

interpreted system consisting of all runs consistent with some strategy in Σ. We encode the strategy into
the run. We use the extended set of global states S ×Σ. We take RΣ to be the set of all r : N→ S ×Σ

such that there exists a strategy σ such that for all n ∈ N we have r(n) = (sn,σ), for some sn ∈ S , and, we
have sn+1 ∈σ(s0s1 . . . sn) for all n ∈N. Intuitively, this is the set of all infinite runs, each using some fixed
strategy in Σ, with the strategy encoded into the state. We define I(E,Σ) = (RΣ,∼,π

′) where ∼= {∼i}i∈Ags

is the relation on points of RΣ defined by (r,m) ∼i (r′,m′) if, with r(m) = (s,σ) and r′(m′) = (s′,σ′), we



12 The complexity of approximations for epistemic synthesis (extended abstract)

have Oi(s) = Oi(s′). The interpretation π′ on S ×Σ is defined so that π′(s,σ) = π(s), where s ∈ S , σ ∈ Σ

and π is the interpretation from E.
A memory definition is a collection of functions µ = {µi}i∈Ags with each µi having domain S +. In

particular, we work with the following memory definitions derived using the observation functions in the
environment E:

• The perfect information, perfect recall definition µpi,pr = {µ
pi,pr
i }i∈Ags where

µ
pi,pr
i (s0 . . . sk) = s0 . . . sk

• The perfect information, imperfect recall definition µpi,ir = {µ
pi,ir
i }i∈Ags where

µ
pi,ir
i (s0 . . . sk) = sk

• The imperfect information, perfect recall definition µii,pr = {µ
ii,pr
i }i∈Ags where

µ
ii,pr
i (s0 . . . sk) = Oi(s0) . . .Oi(sk)

• The imperfect information, imperfect recall definition µii,ir = {µii,ir
i }i∈Ags where

µii,ir
i (s0 . . . sk) = Oi(sk)

A strategy depends on memory definition µ if there exist functions Fi : range(µi)→P(Actsi) for i ∈ Ags
such that for all sequences ρ = s0 . . . sk, we have t ∈ σ(s0 . . . sk) iff s

a
−→ t for some joint action a such that

for all i ∈ Ags, we have ai ∈ Fi(µi(s0 . . . sk)).
Let P be a joint protocol template and let θ be a partial substitution for P. A strategy σ is substitution

consistent with respect to P, θ and a memory definition µ if σ depends on µ and for all sequences s0 . . . sk

there exists a substitution θ′ ⊇ θ mapping all the template variables of P undefined by θ to truth values,
such that

σ(s0 . . . sk) = {t | there exists a ∈ en(Pθ′, sk), sk
a
−→ t} (2)

Note that since the choice of θ′ is allowed to depend on s0 . . . sk, this does not imply that the set of possible
successors states σ(s0 . . . sk) depends only on the final state sk; the reference to sk in the right hand side
of equation 2 is included just to allow the enabled actions to be determined in a way consistent with the
substitution θ, which already associates some of the variables with predicates on the state sk.

Example 3 Consider the maximally nondeterministic, or top, strategy σ>, defined by σ>(s0 . . . sk) =

{t | there exists a ∈ Acts, sk
a
−→ t} for all s0 . . . sk. Intuitively, this strategy allows any action to be taken at

any time. It is easily seen that σ> depends on every memory definition µ. However, it is not in general
substitution consistent, since there are protocol templates for which the set of enabled actions (and hence
the transitions) depend on the substitution.

Consider the protocol template P = do x→ a [] ¬x→ b od for a single agent, in an environment with

states S = {s0, s1, s2} and transitions s0
a
−→ s1, s0

b
−→ s2, s1

a,b
−→ s1 and s2

a,b
−→ s2. Let θ be the empty

substitution. For all substitutions θ′, en(Pθ′, s0) is either {a} or {b}, so for the sequence s0, the right hand
side of equation (2) is equal to either {s1} or {s2}. For the strategy σ>, we have σ>(s0) = {s1, s2}. Hence
this strategy is not substitution consistent in this environment. �

We now obtain eight sets of strategies by choosing an information mode a ∈ {pi, ii}, a recall mode
b ∈ {pr, ir} and a selection c ∈ {sc,nsc} to reflect a choice with respect to the requirement of substitution
consistency. Formally, given a joint protocol template P, a partial substitution θ for P, and an environment
E, we define Σa,b,c(P, θ,E) to be the set of all strategies in E that depend on µa,b, and that are substitution
consistent with respect to P, θ and µa,b in the case c = sc.



X. Huang & R. van der Meyden 13

(ii,ir,sc)

(pi,ir,sc)

(pi,pr,sc) (pi,ir,nsc) (ii,pr,nsc)

(ii,ir,nsc)

(pi,pr,nsc)

(ii,pr,sc)

I(E,Pθ)

σ⊤

PTIME

coNP hard

Figure 2: Lattice structure of the approximations

Corresponding to these eight sets of strategies, we obtain eight approximation schemes. Let S be
an epistemic protocol specification with joint protocol template P, and environment E. Given a partial
substitution θ for P, and a triple a,b,c, we define the system Ia,b,c(S, θ) to be I(Σa,b,c(P, θ,E),E).

Proposition 2 For each information mode a ∈ {pi, ii}, a recall mode b ∈ {pr, ir} and selection c ∈ {sc,nsc},
the mapping Ia,b,c is an approximation scheme.

Additionally we have the approximation scheme I>(S, θ) defined to be I({σ>E,Pθ},E), based on the
top strategy in E relative to the protocol template Pθ, which is defined by taking σ>E,Pθ(s0 . . . sk) to be the
set of all states t ∈ S such that there exists a joint action a ∈ Acts such that for all i ∈ Ags, the protocol
template Piθ contains a clause φθ → ai with φθ satisfiable relative to π(sk). (We note that here π(sk)
provides the values of propositions Prop and we are asking for satisfiability for some assignment to the
variables on which θ is undefined. Because we are interested in the case where P, and hence φ, is fixed,
this satisfiability test can be performed in PTIME as the environment varies.)

For reasons indicated in Example 3, the strategy σ>E,Pθ is not substitution-consistent. However, it is
easily seen to depend only on the values Oi(sk), so we have σ>E,Pθ ∈ Σii,ir,nsc.

Figure 2 shows the lattice structure of the approximation schemes, with an edge from a scheme I to a
scheme I′ meaning that I′ is a closer approximation to the final system I(E,Pθ) synthesized, informally
in the sense that I has more runs and more branches from any point than does I′. (Generally, the relation
is one of simple containment of the sets of runs, but in the case of edges involving I(E,Pθ) and σ>, we
need a notion of simulation to make this precise.)

Besides yielding an approach to the construction of implementations of epistemic protocol spec-
ifications, we note that our approach also overcomes the counterintuitive aspect of knowledge-based
programs illustrated in Example 2.

Example 4 Suppose that we replace the specification formulas AG(xi ⇔ KiAXw) in Example 2 by the
weaker form AG(xi ⇒ KiAXw), and impose the ordering xA < xB on the template variables. We com-
pute the implementation obtained when we use I> as the approximation scheme. We take θ0 to be the
empty substitution. I({σ>E,Pθ0

},E) has all possible behaviours of the original environment, so at the start



14 The complexity of approximations for epistemic synthesis (extended abstract)

state, we have ¬KA(AXw). It follows that substitution θ1, which has domain {xA} assigns to xA a local
proposition that evaluates to false at the initial state. Hence, PAθ1 selects action w at the initial state.
The effect of this is to delete the bottom transition from the state transition diagram for the environment
in Figure 1. It follows that in I({σ>E,Pθ1

},E), we have KB(AXw) at the initial state, so θ2(xB) evaluates
to true at the initial state. This means that the final implementation Pθ2 is the protocol in which Alice
brings wine and Bob brings cheese, leading to a successful picnic, by contrast with the knowledge-based
program, which does not yield any solutions to their planning problem. (We remark that both Alice and
Bob could compute this implementation independently, once given the ordering on the variables. They
do not need to communicate during the computation of the implementation.) �

We noted above in Theorem 3 that a sound local proposition specification that is obtained from a
knowledge-based program includes amongst its implementations all the implementations of the knowledge-
based program. The knowledge-based program, in effect, imposes additional optimality constraints on
these implementations. Our ordered semantics aims to approximate these optimal implementations. It
is therefore of interest to determine whether the ordered semantics for sound local proposition specifi-
cations can sometimes find such optimal implementations. Although it is not true in general, there are
situations where the implementations obtained are indeed optimal. The following provides an example.

Example 5 Consider the sound local proposition specification obtained from the knowledge-based pro-
gram of Example 1 by replacing the⇔ operators in the formulas by⇒. That is, we take Φ to contain the
formulas

AG(x⇒ KA(positionA ≥ 2))

and

AG(y⇒ KB(
∧

p∈[0,...10]

positionB = p⇒ AG(positionA < p−1)))

We consider the setting where sensors readings are within 1 of the actual position. Suppose that we
use I> as the approximation scheme, and order the template variables using x < y, i.e., we synthesize a
solution for A before synthesizing a solution for B (knowing what A is doing.) Then, for A, we construct
θ(x) as the local proposition for A that satisfies

AG(x⇔ KA(positionA ≥ 2))

in a system where both A and B may choose either action Move or Halt at any time. We obtain the
substitution θ1 where θ1(x) is sensorA ≥ 3, which ensures that always positionA ≤ 4, and in which A may
halt at a position in the set {2,3,4}. In the next step, we synthesize θ(y) as the local proposition such that

AG(y⇔ KB(
∧

p∈[0,...10]

positionB = p⇒ AG(positionA < p−1)))

in the system where A runs PAθ1, and where B may choose either action Move or Halt at any time. In
this system, B knows that A’s position is always at most 4, so it is safe for B to move if positionB ≥ 6.
Agent B knows that its position is at least 6 when it gets a sensor reading at least 7. Hence, we obtain the
substitution θ2 where θ2(y) is sensorB ≥ 7 and θ2(x) is sensorA ≥ 3. It can be verified that this substitution
is in fact an implementation of the original knowledge-based program.



X. Huang & R. van der Meyden 15

6 Complexity of model checking in the approximations

To construct an implementation based on the extended epistemic protocol specification (S,≤) using an
approximation scheme I(S, θ), we need to perform model checking of formulas in CTLK+ in the sys-
tems produced by the approximation scheme. We now consider the complexity of this problem for the
approximation schemes introduced in the previous sections. We focus on the complexity of this problem
with the protocol template fixed as we vary the size of the environment, for reasons explained above.

We say that the environment-complexity of an approximation scheme I(S, θ) is the maximal com-
plexity of the problem of deciding I(S, θ),o |= κ(x) with all components fixed and only the environment
E in S varying. More precisely, write S− = 〈Ags,P, κ〉 for a tuple consisting of a set Ags of agents, a col-
lection P = {Pi}i∈Ags of protocol templates for these agents, and a mapping κ associating, for each agent i,
a formula κ(x) = Kiφ of CTLK+ to each template variable x in Pi. Given an environment E, write S−(E)
for the epistemic protocol specification 〈Ags,E, {Pi}i∈Ags,Φκ〉 obtained from these components. Say that
E fits a tuple (S−, θ,o, x) consisting of S− as above, a substitution θ assigning a boolean formula to a
subset of the template variables in P, an observation o and a variable x, if E contains all actions used in
P, o is an observation in E of the agent i such that Pi contains x, and for each x such that θ(x) is defined,
the formula θ(x) is local in E to the agent i such that Pi contains x. Given S− = 〈Ags,P, κ〉 and θ, o and x,
define EC(S−,θ,o,x) to be the set

{E | E fits (S−, θ,o, x) and I(S−(E), θ),o |= κ(x)} .

Then the environment-complexity of an approximation scheme I(S, θ) is the maximal complexity of the
problem of deciding the sets EC(S−,θ,o,x) over all choices of S−, θ, o and x .

We note that even though we have allowed perfect recall and/or perfect information in the strategy
spaces used by the approximation, when we model check in the system generated by the approximation,
knowledge operators are handled using the usual observational (imperfect recall, imperfect information)
semantics. The stronger capabilities of the strategies are used to increase the size of the strategy space
in order to weaken the approximation. (Model checking with respect to perfect recall, in particular,
would increase the complexity of the model checking problem, whereas we are seeking to decrease its
complexity.)

It turns out that several of the approximation schemes, that are closest to the final system synthesized
(which would give the knowledge-based program semantics), share with the knowledge-based program
semantics the disadvantage of being intractable. These are given in the following result.

Theorem 4 The approximation schemes Iii,ir,sc, Iii,pr,sc, and Ipi,ir,sc have coNP-hard environment com-
plexity, even for a single agent.

Each of these intractable cases uses substitution consistent strategies and uses either imperfect recall
or imperfect information. The proofs vary, but one of the key reasons for complexity in the imperfect
recall cases is that the strategy must behave the same way each time it reaches a state. Intuitively, this
means that we can encode existential choices from an NP hard problem using the behaviour of a strategy
at a state in this case. In the case of Iii,pr,sc, we use obligations on multiple branches indistinguishable to
the agent to force consistency of independent guesses representing the same existential choice. All the
remaining approximation schemes, it turns out, are tractable:

Theorem 5 The approximation schemes I>, Iii,ir,nsc, Ipi,pr,sc, Ipi,ir,nsc, Iii,pr,nsc and Ipi,pr,nsc have envi-
ronment complexity in PTIME.



16 The complexity of approximations for epistemic synthesis (extended abstract)

The reasons are varied, but there are close connections to some known results. The scheme I>

effectively builds a new finite state environment from the environment and protocol by allowing some
transitions that would normally be disabled by the protocol, so its model checking problem reduces to
an instance of CLTK model checking, which is in PTIME by a mild extension of the usual CTL model
checking approach. It turns out, moreover, by simulation arguments, that for model checking CTLK+

formulas, the approximations Iii,ir,nsc and Iii,pr,nsc are equivalent to I>, i.e., satisfy the same formulas at
the same states, so the algorithm for I> also resolves these cases.

The cases Ipi,pr,sc and Ipi,pr,nsc are very close to the problem of module checking of universal CTL
formulas, which is known to be in PTIME [16]. The proof technique here involves an emptiness check
on a tree automaton representing the space of perfect information, perfect recall strategies (either substi-
tution consistent or not required to be so), intersected with an automaton representing the complement
of the formula. The cases Ipi,pr,nsc and Ipi,ir,sc can moreover be shown to be equivalent by means of
simulation techniques, so the latter also falls into PTIME.

The demarcation between the PTIME and co-NP hard cases is depicted in Figure 2. This shows there
are two best candidates for use as the approximation scheme underlying our synthesis approach. We
desire an approximation scheme that is as close as possible to the knowledge-based program semantics,
while remaining tractable. The diagram shows two orthogonal approximation schemes that are maximal
amongst the PTIME cases, namely I> and Ipi,pr,sc. The former generates a bushy approximation in
that it relaxes substitution consistency. The latter remains close to the original protocol by using substi-
tution consistent strategies, but at the cost of allowing perfect information, perfect recall strategies. It
is not immediately clear what the impact of these differences will be with respect to the quality of the
implementations synthesized using these schemes, and we leave this as a question for future work.

7 Related Work

Relatively little work has been done on automated synthesis of implementations of knowledge-based
programs or of sound local proposition specifications, particularly with respect to the observational
semantics we have studied in this paper. In addition to the works already cited above, some papers
[18, 17, 20, 21, 3] have studied the complexity of synthesis with respect to specifications in tempo-
ral epistemic logic using the synchronous perfect recall semantics. A symbolic implementation for
knowledge-based programs that run only a finitely bounded number of steps under a clock or perfect
recall semantics for knowledge is developed in [13].

There also exists a line of work that is applying knowledge based approaches and model checking
techniques to problems in discrete event control, e.g., [2, 10, 15]. In general, the focus of these works is
more specific than ours (e.g., in restricting to synthesis for safety properties, rather than our quite general
temporal epistemic specifications) but there is a similar use of monotonicity. It would be interesting to
apply our techniques in this area and conduct a comparison of the results.

8 Conclusion

In this paper we have proposed an ordered semantics for sound local proposition epistemic protocol
specifications, and analyzed the complexity of a model checking problem required to implement the
approach, for a number of approximation schemes. This leads to the identification of two optimal ap-
proximation schemes, I> and Ipi,pr,sc with respect to which the model checking problem has PTIME
complexity in an explicit state representation.



X. Huang & R. van der Meyden 17

A number of further steps are required to obtain a practical framework for synthesis. Ultimately, we
would like to be able to implement synthesis using symbolic techniques, so that it can also be practicably
carried out for specifications in which the environment is given implicitly using program-like represen-
tations, rather than by means of an explicit enumeration of states. The complexity analysis in the present
paper develops an initial understanding of the nature of the model checking problems that may be helpful
in developing symbolic implementations. In the case of the approximation scheme I>, in fact, the associ-
ated model checking problem amounts essentially to CTLK model checking in a transformed model, for
which symbolic model checking techniques are well understood. In work in progress, we have developed
an implementation of this case, and we will report on our experimental findings elsewhere.

In the case of the approximation Ipi,pr,sc, the model checking problem is more akin to module check-
ing, for which symbolic techniques are less well studied. This case represents an interesting question
for future research, as does the question of how the implementations obtained in practice from these
tractable approximations differ.

Our examples in this paper give some initial data points that suggest both that the ordered approach
is able to construct natural implementations for the sound local proposition weakenings of knowledge-
based programs that lack implementations, as well as implementations of such weakenings that are in fact
implementations of the original knowledge-based program. More case studies are required to understand
how general these phenomena are in practice. It would be interesting to find sufficient conditions under
which the ordered approach is guaranteed to generate knowledge-based program implementations.

References
[1] K. Baukus & R. van der Meyden (2004): A knowledge based analysis of cache coherence. In: Proc. 6th Int.

Conf. on Formal Engineering Methods, pp. 99–114, doi:10.1007/978-3-540-30482-1 15.
[2] S. Bensalem, D. Peled & J. Sifakis (2010): Knowledge Based Scheduling of Distributed Systems. In: Time

for Verification, Essays in Memory of Amir Pnueli, Springer LNCS 6200, pp. 26–41, doi:10.1007/978-3-
642-13754-9 2.

[3] R. Bozianu, C. Dima & E. Filiot (2014): Safraless Synthesis for Epistemic Temporal Specifications. In: Proc.
Int. Conf. on Computer Aided Verification, pp. 441–456, doi:10.1007/978-3-319-08867-9 29.

[4] R. I. Brafman, J-C. Latombe, Y. Moses & Y. Shoham (1997): Applications of a logic of knowledge to motion
planning under uncertainty. JACM 44(5), doi:10.1145/265910.265912.

[5] J. Burgess (1979): Logic and time. Journal of Symbolic Logic 44, pp. 556–582, doi:10.2307/2273296.
[6] C. Dwork & Y. Moses (1990): Knowledge and common knowledge in a Byzantine environment: crash fail-

ures. Information and Computation 88(2), pp. 156–186, doi:10.1016/0890-5401(90)90014-9.
[7] K. Engelhardt, R. van der Meyden & Y. Moses (1998): Knowledge and the Logic of Local Propositions. In:

Proc. Conf. Theoretical Aspects of Knowledge and Rationality, pp. 29–41.
[8] R. Fagin, J. Halpern, Y. Moses & M. Vardi (1995): Reasoning About Knowledge. MIT Press.
[9] R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1997): Knowledge-Based Programs. Distributed Computing

10(4), pp. 199–225, doi:10.1007/s004460050038.
[10] Susanne Graf, Doron Peled & Sophie Quinton (2012): Achieving distributed control through model checking.

Formal Methods in System Design 40(2), pp. 263–281, doi:10.1007/s10703-011-0138-9.
[11] V. Hadzilacos (1987): A knowledge-theoretic analysis of atomic commitment protocols. In: PODS ’87: Proc.

6th ACM Symp. on Principles of Database Systems, pp. 129–134, doi:10.1145/28659.28672.
[12] J. Y. Halpern & L. D. Zuck (1992): A little knowledge goes a long way: knowledge-based deriva-

tions and correctness proofs for a family of protocols. Journal of the ACM 39(3), pp. 449–478,
doi:10.1145/146637.146638.

http://dx.doi.org/10.1007/978-3-540-30482-1_15
http://dx.doi.org/10.1007/978-3-642-13754-9_2
http://dx.doi.org/10.1007/978-3-642-13754-9_2
http://dx.doi.org/10.1007/978-3-319-08867-9_29
http://dx.doi.org/10.1145/265910.265912
http://dx.doi.org/10.2307/2273296
http://dx.doi.org/10.1016/0890-5401(90)90014-9
http://dx.doi.org/10.1007/s004460050038
http://dx.doi.org/10.1007/s10703-011-0138-9
http://dx.doi.org/10.1145/28659.28672
http://dx.doi.org/10.1145/146637.146638


18 The complexity of approximations for epistemic synthesis (extended abstract)

[13] X. Huang & R. van der Meyden (2013): Symbolic Synthesis of Knowledge-based Program Implementations
with Synchronous Semantics. In: Proc. TARK, pp. 121–130.

[14] X. Huang & R. van der Meyden (2014): Symbolic Synthesis for Epistemic Specifications with Observational
Semantics. In: Proc. Tools and Algorithms for the Construction and Analysis of Systems, TACAS, pp.
455–469, doi:10.1007/978-3-642-54862-8 39.

[15] Gal Katz, Doron Peled & Sven Schewe (2011): Synthesis of Distributed Control through Knowledge Accu-
mulation. In: Proc. Int. Conf on Computer Aided Verification, pp. 510–525, doi:10.1007/978-3-642-22110-
1 41.

[16] O. Kupferman, M. Y. Vardi & P. Wolper (2001): Module Checking. Information and Computation 164(2),
pp. 322–344, doi:10.1006/inco.2000.2893.

[17] R. van der Meyden (1996): Constructing Finite State Implementations of Knowledge-Based Programs with
Perfect Recall. In: Intelligent Agent Systems, Theoretical and Practical Issues, LNCS, No. 1209, Springer,
pp. 135–151, doi:10.1007/3-540-62686-7 33.

[18] R. van der Meyden (1996): Finite State Implementations of Knowledge-Based Programs. In: Proc. Conf. on
Foundations of Software Technology and Theoretical Computer Science, pp. 262–273, doi:10.1007/3-540-
62034-6 55.

[19] R. van der Meyden (1996): Knowledge Based Programs: On the Complexity of Perfect Recall in Finite
Environments. In: Proc. Conf. on Theoretical Aspects of Rationality and Knowledge, pp. 31–49.

[20] R. van der Meyden & M. Y. Vardi (1998): Synthesis from Knowledge-Based Specifications. In: Proc.
CONCUR’98, Springer LNCS 1466, pp. 34–49, doi:10.1007/BFb0055614. Extended version at http:
//arxiv.org/abs/1307.6333.

[21] R. van der Meyden & T. Wilke (2005): Synthesis of Distributed Systems from Knowledge-Based Specifica-
tions. In: Proc. Int. Conf. on Concurrency Theory, CONCUR, pp. 562–576, doi:10.1007/11539452 42.

[22] R. van der Meyden & K. Wong (2003): Complete Axiomatizations for Reasoning about Knowledge and
Branching Time. Studia Logica 75(1), pp. 93–123, doi:10.1023/A:1026181001368.

http://dx.doi.org/10.1007/978-3-642-54862-8_39
http://dx.doi.org/10.1007/978-3-642-22110-1_41
http://dx.doi.org/10.1007/978-3-642-22110-1_41
http://dx.doi.org/10.1006/inco.2000.2893
http://dx.doi.org/10.1007/3-540-62686-7_33
http://dx.doi.org/10.1007/3-540-62034-6_55
http://dx.doi.org/10.1007/3-540-62034-6_55
http://dx.doi.org/10.1007/BFb0055614
http://arxiv.org/abs/1307.6333
http://arxiv.org/abs/1307.6333
http://dx.doi.org/10.1007/11539452_42
http://dx.doi.org/10.1023/A:1026181001368

	Introduction
	A Semantic model for Knowledge and Time
	Epistemic Protocol Specifications
	An Ordered Semantics
	A spectrum of approximations
	Complexity of model checking in the approximations
	Related Work
	Conclusion

