
Architecture for Smart SAFE Contracts
Ron van der Meyden

UNSW Sydney
Michael J. Maher

Reasoning Research Institute

Abstract—This paper proposes an architecture for imple-
menting Y Combinator’s Simple Agreements for Future Equity
(SAFEs), a class of financial instruments used in funding startups,
as smart contracts. We describe design patterns used and
properties of the architecture that combine to ensure correctness
of the Solidity implementation.

I. INTRODUCTION

Direct sale of shares is just one form of financing used by
companies: others are loans and more complex “convertible”
instruments that mix loans and equity. The present paper is
part of a larger project on the applicability of smart contract
technology to this more complex form of financing contract,
via a case study of a simple form of convertible instrument,
Y Combinator’s Simple Agreement for Future Equity (SAFE)
[Y C16], [Y C18]. These are a form of contract in which an
investor invests a sum of money in a company in exchange
for a promise of shares to be issued at the time of a future
priced equity round. Valuation of early stage ventures can
be difficult given their unproven and speculative status. The
contract enables the investor to defer the question of valuation
of the company, allowing this (and hence a price for the shares)
to be set at the time of the future round.

Although a SAFE contract itself is short, at just 6 pages of
text, developing a smart contract representation, in addition to
the technicalities of design, coding and verification, requires
addressing many difficulties: legal interpretation, the fact that
these contracts are performed in variant ways in practice,
the need to deal with “open textured” language in the legal
text, consideration of privacy concerns related to contract
data, the need to be able to accommodate legal rulings. We
have addressed some of these issues elsewhere [vdMM20],
[vdMM21], and focus in the present paper on the question of
software architecture for this application. Amongst the specific
challenges of the application is the open nature of what needs
to be protected using the DLT platform: the financial contracts
we aim to support come in myriad forms, which are subject
to negotiation with the investors. Similarly, the governance
structures imposed on the company (its board rules, voting
rules, and constraints on its officers) as it matures, are open
ended. We develop an approach to representation of the
scenario that enables flexibility in both the financial contracts
that the company issues and the governance structures adopted.

A further issue, both in analysis of the application and its
implementation on a blockchain, is the potential for inter-
ference between events captured by a single transaction, and
processes (such as an equity round) that are “long-running”,
requiring several transactions initiated by different agents. We

resolve this by serialization using a state-machine that captures
states in which a long-running process is in progress.

We apply a principle of systems architecture, particularly in
the context of secure systems development, which is to isolate
critical functionality in components that are small enough
to be verified (ideally, using formal methods), combined in
the architecture in ways that ensure that the basis supporting
key properties remains small. We apply this methodology,
representing a company that issues SAFE contracts using a
collection of smart contract modules, each of which ensures
some key properties of the overall application.

Key to the architecture are a number of known smart
contract patterns: the owner pattern and the atomic swap
pattern. These are described in Section III. We show how these
patterns support the open ended nature of the application, and
can be combined to enforce a key clause of SAFE contracts
in Section IV. Section V concludes with a brief discussion
of related work.

II. SUMMARY OF SAFE CONTRACT STRUCTURE

SAFE contracts come in a number of forms. As initially
issued by Y Combinator, in a form we call “Pre-money SAFE
contracts”, these contracts have two parameters, a “Valuation
Cap” and a “Discount”, that may or may not be included,
giving four distinct contracts. The Valuation Cap gives a
maximum valuation used to calculate a price at which the
SAFE principal will be converted to shares, and the Discount
relates to a percentage discount given on the price. SAFE
contracts describe the investor’s rights in case of three types of
events: Equity Financing, Liquidity (e.g. sale of the company),
and Dissolution (winding up of the company).

The key clause of the SAFE that we focus on in the present
paper is the following, from the Events section, in the case of
the Pre-money SAFE with cap and no discount [Y C16]:

Equity Financing. If there is an Equity Financing
before the expiration or termination of this instru-
ment, the Company will automatically issue to the
Investor either: (1) a number of shares of Standard
Preferred Stock equal to the Purchase Amount di-
vided by the price per share of the Standard Pre-
ferred Stock, if the pre-money valuation is less than
or equal to the Valuation Cap; or (2) a number of
shares of Safe Preferred Stock equal to the Purchase
Amount divided by the Safe Price, if the pre-money
valuation is greater than the Valuation Cap.

The “price per share of the Standard Preferred Stock” is
treated as a primitive input available at the time of the equity
round, and the “Valuation Cap” is a parameter that is filled

in when instantiating the contract before signing. The “Safe
Price” is defined from the Valuation Cap and the number of
shares and convertible instruments issued.

Y Combinator varied their standard contracts in September
2018, introducing a “Post-Money” version of the SAFEs. The
overall structure of these documents is as before, but there are
substantial changes in the definitions [Y C18]. A significant
issue that this raises is that, whereas the Pre-Money SAFE
gives an explicit definition of the number of shares to be issued
(depending on some undefined terms), the Post-Money SAFE
has a circular definition, that can be understood as stating a set
of constraints that need to be satisfied in order to determine
the shares to be issued to a SAFE investor. (See [vdMM20]
for detailed discussion of the constraints and their solution.)

III. DESIGN PATTERNS

A number of general design patterns prove to be useful
in the development of chaincode representations of SAFE
contracts. In this section we give a general introduction to
two of these patterns.

A. Atomic Swap

Suppose that two parties A and B have agreed to exchange
digital assets a and b, respectively. If the transfers are made
sequentially (e.g., first A transfers a to B and B transfers b
to A), each party faces the risk that the other party will not
abide by their end of the bargain (e.g., B could receive a but
then refuse to transfer b to A, leaving A with a loss). Smart
contracts provide a method to overcome this difficulty, in the
form of atomic swap transactions [Her18], [vdM19].

Atomic swaps can involve multiple blockchains, but for our
purposes in this paper, swaps on a single chain will suffice.
These can be effected by chaincode having the following
structure, in the case of a swap of asset a held by party A for an
asset b held by party B. There are operations Deposit whereby
the parties can transfer their assets to the control of the smart
contract, so that the assets come under the smart contract’s
control. Once both assets have been transferred, the operation
Swap transfers each asset back to the opposite party. In case
the other party fails to perform their Deposit action in a timely
fashion, the action Withdraw can be used to recover an asset
that has already been deposited, so that the swap then fails.
The effect is that the swap happens atomically, either taking
full effect, or leaving both parties with effective control over
their original asset (i.e., either holding it, or able to retrieve it
from the swap contract).

Usually such swaps are asset for asset (e.g., one form of
cryptocurrency for another), but richer forms of swap smart
contract can be constructed (e.g., a multi-party contribution of
cryptocurrency or approval in exchange for a change of state
in chaincode). We use such a richer form of swap below to
secure aspects of equity rounds.

B. Controller

A common form of access control in object oriented pro-
gramming is that some operations may be performed only by

Safe_controller

Company

A=

offer_safe
add_shareholding
payment

permit_A /B

true/false

A

view functions
deposit

equity_investor_consents
finalize_equity_round
abort_equity_round

Equity_round_swap
(create)

B = start_equity_round

B

SafeSafeSafe

{company action}

Fig. 1. Architecture with SAFE controller

Safe

Company

add_shares
convert

convert

view functions
deposit

(during equity round)

EquityRoundSwap

Company

new_controller

(after equity_round)

Fig. 2. Architecture configuration during an equity round

one specific agent. In Solidity code, this is captured by the
controller (or owner) pattern (see, e.g., [Ope]). In Solidity,
this may be done concisely by a modifier that checks that the
caller is equal to the address in a variable controller .

Typically, the value of the controller variable is the
address of the public key of a human agent. However, we note
that once a smart contract has been created with the controller
pattern, it is possible to impose richer forms of access control
by taking the value of controller to be the address of a
controller smart contract that encodes the logic of the richer
form of access control. We use this constrained controller
pattern in the architecture presented below.

IV. ARCHITECTURE AND IMPLEMENTATION

Factors, noted above, that influence the design of our smart
contract solution for SAFE contracts, are the open structure
of the situation we are modelling, and the issue that Post-
Money SAFE contracts are stated as a constraint on the
promised shares rather by a method to compute their number.
To address that there are multiple forms of SAFE contract, we
have abstracted these to an abstract contract (instantiated by
subclassing) that places constraints on the Company and the
way it manages an Equity round. To handle the openness and
dynamic nature of the governance structures of the company
over time, we use the constrained controller pattern.

To address the fact that Post-money SAFEs state but do
not solve a constraint system on the equity round, rather than
have the smart contract calculate the number of shares to be
issued to SAFE investor, we have the company propose the
structure of an equity round, and have this proposal verified
for correctness by the smart contract.

Equity_round_swap

No_equity_round_active Equity_round_active

Terminated

start_equity_round
[set_controller]

abort_equity_round
[set_controller]

finalize_equity_round

{company_action} A
[A]

Safe_Controller

Awaiting_consent

Finalized

finalize_equity_round
[convert,add_shares,

set_controller]

Aborted

abort_equity_round
[set_controller]

Safe equity_investor_consents

Offered

Active

Terminated_withdrawn

accept_safe_offer

withdraw_safe

Safe_offered

offer_safe

accept_safe_offer
[add_safe,
deposit]

withdraw_safe

Terminated_converted

convert

permit_A
permit_equity_round withdraw

Fig. 3. Contract State Transitions

The architecture of our solution is dynamic, with its prin-
cipal configurations shown in Figure 1 and Figure 2. Figure 3
depicts the finite state-machine view of some of the compo-
nents, that underpins some key correctness properties.

A. Company Financial Structure

Our on-chain representation of the state of a company will
be a smart contract of class Company, that

• may hold cryptocurrency, representing some of the assets
of the company, and

• represents the cap table of the company, in the form of a
record of shares held by each investor in the company,

• represents the convertible instruments issued by the com-
pany (assumed to be SAFE contracts only).

It should be possible to update these variables by means of
various operations, such as

• add_shareholding to issue new shares,
• add_safe to issue a new SAFE
• payment, which transfers some of company’s cryptocur-

rency holdings, to pay for goods and services
• deposit, used by other parties to transfer cryptocur-

rency to the company
However, these operations are not unrestricted: only a duly
authorized officer of the company should be able to issue new
shares or SAFEs, and there are circumstances in which the
company will be constrained in performing such actions. For
example, equity round term sheets, i.e., preliminary contracts
setting out the expected conditions of an equity round as
a basis for more detailed negotiations, may constrain the
company from changing its capital structure until closing or
abandonment of the equity round. After an equity round, the
governance structure of the company is likely to have changed,
e.g., by instituting a board with membership from the new
investors, and issuance of new stock will typically require
approval of the board and/or a majority vote of shareholders.

To capture such constraints, we therefore require a means
of access control on the performance of actions on the cap
table. This can be done in an abstract way using the controller
pattern from Section III-B. We take the original controller to be
the agent (address) creating the Company smart contract, and
include a function set_controller whereby the controller

(and only the controller) may transfer control to another agent
(possibly a smart contract).

B. Safe Contract Representation
SAFEs come in multiple forms: Pre-Money SAFEs and

Post-Money SAFEs, each of which may include a cap and/or
a discount. We develop a representation that can accommodate
all of these types of SAFE. Our approach allows a company
to issue a set of SAFE contracts of variant types. We
achieve generality by defining an abstract smart contract class
Safe, which may be subclassed to instantiate specific types
of SAFE. The main variables of this abstract class represent
the amount paid for the SAFE (in Wei), the party holding the
SAFE, the smart contract for the company being invested in,
and the status of the SAFE, a value from the Enumerated
type {Offered, Active, Terminated_withdrawn,
Terminated_converted}. A Safe is offered to the in-
vestor in state Offered and becomes Active once accepted
with payment of principal. A deadline is given for acceptance.

Once a company has issued a SAFE, it needs to comply
with restrictions imposed by the SAFE. In the Safe smart
contract itself, we capture the logic of these constraints, but
do not actually enforce them. Enforcement will be done using
the controller pattern, by setting a controller for the company
that queries the Safe contracts to determine which actions on
the company are consistent with all the SAFE contracts that
the company has issued.

The logic of constraints that the SAFE places on the
company is captured by functions in the Safe smart contract
named permit_A, where A is an action (function) on the
Company. The parameters of permit_A and A are the same.
The function permit_A may query the state of the contracts
at company and safe_controller and returns a boolean
value, which expresses whether the company is permitted to
perform action A in that state. These functions will in fact be
called only when no equity round is active, and no SAFE is
presently on offer, because of the serialization policy described
below, so we focus on that case.

Approval of an equity round is obtained by calling a
function permit_equity_round on each Safe that the
company has issued. The parameters of the function give
a detailed description of the structure of a proposed equity

round1. To support automated enforcement of the SAFE
holder’s interest, the function should verify that that the
proposed equity round is consistent with the terms of the
“Equity Financing” clause of the SAFE.

If the equity round does eventually successfully com-
plete, it is only then that shares are issued to the SAFE
investors in conversion of their SAFEs. To signal to the
Safe smart contract that the conversion has been performed,
the Company calls a function convert() in the Safe
contract, which sets variable status from Active to
Terminated_converted.

C. SAFE controller

The purpose of the Safe_controller smart contract is
to act as the controller of a Company, in order to ensure
that the company is compliant with all SAFEs it has issued.
Before issuing a SAFE, a company should set its controller
to be an instance of a Safe_controller smart contract
and, to ensure that their interests will be protected by the
code, a SAFE investor should not invest in a Safe unless
a Safe_controller is in place.

The Safe_controller serializes the permitted company
actions with the compound processes of issuing a SAFE and
conducting an equity round. This is achieved by means of state
variable with values in enumerated type

{No_equity_round_active, Equity_round_active,
Safe_offered,Terminated}

and transitions as depicted in Figure 3. Functions are enabled
only at states from which they label an outgoing transition.
Operations on the Company contract called by these functions
are indicated in square brackets. Dashed lines between states
in different smart contracts indicates that transitions to these
states occur simultaneously in response to some action.

D. Atomic Swap Implementation of the Equity Round

An atomicity issue similar to that solved by the atomic swap
of assets between two parties (see Section III-A) arises at the
time of the equity round, but involving a larger number of
parties (the Company, the SAFE investors, and the equity
round investors). Each would like to be assured that they
will be issued the number of shares negotiated, or due from
a SAFE, and that variations from the agreement will not
alter their expected relative stake. Suppose that the parties
with negotiation rights come to agreement on the number
and type of shares to be issued to each of the SAFE and
equity round investors. We can provide assurance to all parties
that the equity round will be conducted in accordance with
this agreement by codifying it in an atomic swap-like smart
contract that first collects (where required) the signed consent
of each the investors, as well as the new investment moneys,
and then issues shares to all of the investors as per the

1The parameters are the price of each share, the pre-money valuation, the
investor, principal paid, and class of shares to be issued for each of the new
investors, the number of shares to issued to each of the SAFE investors in
conversion of their shares and the type of shares to be issued to each SAFE
investor, the address of the controller of the company after the equity round
completes, and a deadline for completion of the round.

agreement. In case some of the required consents or moneys
are not obtained by a deadline, the contract aborts and the
moneys can be recovered by the respective investors.

The Equity_round_swap smart contract in the
implementation realizes this idea. It has local vari-
ables that encode the details of the proposed eq-
uity round. A status variable of enumerated type
{Awaiting_consent,Finalized,Aborted} and ini-
tial value Awaiting_consent records the current state of
equity round workflow.

V. RELATED WORK

Multiple commercial efforts (e.g., by ASX, Vertalo,
MyStake, CoreConX) are presently underway to provide
blockchain-based cap table management services, but they do
not appear to support SAFEs. Simple Agreements for Future
Tokens (SAFT) [BBSC17] was a legal attempt to base ICO’s
on the SAFE model. To our knowledge, SAFTs have been is-
sued only as legal rather than as smart contracts. OpenLaw has
used SAFEs in a demonstration video (https://www.youtube.
com/watch?v=ySIsxEl5yME) relating to launching smart con-
tracts from a template-based legal contract platform, but the
smart contract code does not appear to capture the contract
logic to the depth we have attempted here. They have also
released a contract for an interest bearing convertible bond
with an option to convert to tokens, but the online tool for this
generates only text (https://consensys.net/convertible-note/).

Other related work includes [GIM+18], which develops a
smart contract from a legal contract. But it only addresses
an artificial licensing contract and only makes a comparison
between imperative and declarative programming approaches
to smart contracts.

REFERENCES

[BBSC17] Juan Batiz-Benet, Marco Santori, and Jesse Clayburgh. The SAFT
project: Toward a compliant token sale framework. Online https:
//saftproject.com/static/SAFT-Project-Whitepaper.pdf, Oct 2017.

[GIM+18] Guido Governatori, Florian Idelberger, Zoran Milosevic, Régis
Riveret, Giovanni Sartor, and Xiwei Xu. On legal contracts, im-
perative and declarative smart contracts, and blockchain systems.
Artif. Intell. Law, 26(4):377–409, 2018.

[Her18] M. Herlihy. Atomic cross-chain swaps. In Proc. ACM Symp. on
Distributed Computing, 2018. Version at arXiv:1801.09515.

[Ope] OpenZeppelin. Documentation: Ownership. Online https://docs.
openzeppelin.com/contracts/2.x/api/ownership#Ownable. Ac-
cessed 25/3/20.

[vdM19] R. van der Meyden. On the specification and verification of
atomic swap smart contracts. Online: https://arxiv.org/abs/1811.
06099, 2019. Abstract appears in IEEE International Conference
on Blockchain and Cryptocurrency, 2019, pp. 176–179.

[vdMM20] R. van der Meyden and M. J. Maher. Simple agreeements for
future equity – not so simple? manuscript, http://www.cse.unsw.
edu.au/∼meyden/research/SAFEnss.pdf, 2020.

[vdMM21] R. van der Meyden and M. J. Maher. Indeterminacy and smart
contracts – a case study. submitted, http://www.cse.unsw.edu.au/
∼meyden/research/SAFE-open.pdf, 2021.

[Y C16] Y Combinator. Safe: Cap, no Discount, https:
//web.archive.org/web/20180831020232/http://www.ycombinator.
com/docs/SAFE Cap.rtf 2016.

[Y C18] Y Combinator. Safe: Valuation Cap, no Discount,
https://web.archive.org/web/20190626002912/https:
//www.ycombinator.com/docs/Postmoney\%20Safe\%20-\
%20Valuation\%20Cap\%20-\%20v1.0.docx 2018.

