1

Architectural design is a high level of systems specification, concerned with iden-
tifying the components of a system and the patterns of their interaction. In this
paper, we consider the relationship between information flow security policies
and the architecture development process.

Architectural Refinement and Notions of
Intransitive Noninterference*

Ron van der Meyden
School of Computer Science and Engineering,
University of New South Wales
meyden@cse.unsw.edu.au

May 23, 2012

Abstract

This paper deals with architectural designs that specify components
of a system and the permitted flows of information between them. In
the process of systems development, one might refine such a design by
viewing a component as being composed of subcomponents, and speci-
fying permitted flows of information between these subcomponents and
others in the design. The paper studies the soundness of such refinements
with respect to a spectrum of different semantics for information flow poli-
cies, including Goguen and Meseguer’s purge-based definition, Haigh and
Young’s intransitive purge-based definition, and some more recent notions
TA-security, TO-security and ITO-security defined by van der Meyden. It
is shown that all these definitions support the soundness of architectural
refinement, for both a state- and an action-observed model of systems. A
notion of systems refinement in which the information content of observa-
tions is reduced is also studied. It is also shown that refinement preserves
weak access control structure, an implementation mechanism that ensures
TA-security.

Introduction

* Author version of a paper to appear in Formal Aspects of Computing. Copyright BCS.
The original publication is available at springerlink.com. Version of May 23, 2012. Work
supported by Australian Research Council Discovery grants DP0451529 and DP0987769. An
extended abstract of this work appeared in International Symposium on Engineering Secure
Software and Systems, February 04-06, 2009 Leuven, Belgium, Springer LNCS No 5429, pp.

60-74. The present version adds proofs and the content of Sections 6 and 7.

We use ideas from the literature

on information flow security to give semantics to architectures, and study how
such semantics support a systems development process that refines high level
architectural designs to more detailed architectures.

The type of information flow security policies that form the basis of this
work place constraints on the permitted flows of information, or causal ef-
fects, between system components, and are referred to in the literature as
non-interference policies. These policies can be represented as a binary rela-
tion on the set of components. For classical multi-level security policies, this
relation is transitive. It has been proposed that extensions to multi-level secu-
rity, such as downgraders, require that the policy be intransitive [HY87, Rus92].
An architectural interpretation of intransitive noninterference policies is gain-
ing increased prominence through such efforts as the MILS (Multiple Indepen-
dent Levels of Security and Safety) approach to high-assurance systems design
[AFHOTO06, VBC™'05], which envisages the utilization of recent advances in the
efficiency of separation kernels to increase the degree of componentization of
systems, enabling secure systems to be built from a mix of small, trusted and
more complex, untrusted components [RR83], with global security properties
assured from the separation property and a verification effort focussed on the
trusted components.

During the process of system design, one may refine an architectural diagram
by specifying internal structure for some of the systems components, breaking
them down into sub-components, and specifying the permitted interferences of
these sub-components with each other and with other components in the design.
This leads to the following question: if one now builds a system according to the
refined architecture, is it guaranteed to be compliant to the original architectural
diagram? This property needs to hold in order for the process of architectural
refinement to be sound for designs of information flow secure systems.

Our contribution in this paper is to answer this question for a range of mean-
ings of the notion of a system being compliant with an architectural design. For
the meaning of architectures, we consider several different semantics for security
with respect to intransitive noninterference policies that have previously been
proposed in the literature. The first of these (which we call here P-security) is
Goguen and Meseguer’s original semantics [GM82] for transitive policies, which
has generally been felt to be inappropriate for intransitive policies, although
such application is not without its adherents [RG99]. An alternate semantics
for intransitive noninterference policies (called here IP-security) was proposed by
Haigh and Young [HY87], and propounded by Rushby [Rus92]. We have argued
recently that this definition is flawed: it considers some systems to be secure
that have flows of information that are contrary to the intuitions for intransitive
policies [Mey08]. In response, we have defined [Mey08] several alternate seman-
tics for noninterference policies — TO-security, [ITO-security and TA-security —
that are better behaved, and all equivalent to the classical definition in case the
policy is transitive. Moreover, TA-security can be shown [Mey08] to correspond
in a precise sense to Rushby’s “unwinding” proof technique for intransitive non-
interference. We remark that under certain circumstances, the definitions given
by Roscoe and Goldsmith [RG99] correspond either to P-security or to ITO-

security— for details, we refer the reader to [Mey07], which is concerned with a
detailed comparison of the above definitions of security in a number of different
semantic frameworks.

The answer to our question turns out to be that a common notion of archi-
tectural refinement is sound with respect to all these semantics for intransitive
noninterference policies. Indeed, we show this for two types of systems models,
one in which observations are made at a state, and the other in which observa-
tions take the form of outputs returned on the invocation of an action.

In order to deal with the action-observed model, it proves to be convenient
to first consider also a notion of refinement, on systems rather than on archi-
tectural designs, in which the amount of information in observations is reduced.
This notion is of some independent interest since it is intuitive that security
of a system should be preserved when we reduce the amount of information in
the observations that agents make in the system. In fact, we show that while
the intuition holds for P-security, IP-security and TA-security, not all of the
semantics of intransitive policies are preserved by this notion of systems refine-
ment. The ones that do not, TO-security and ITO-security, state both upper
and lower bounds on permitted information. Our results in this regard help
to clarify the content of these semantics. Nevertheless, we do identify a useful
sufficient condition under which all semantics are preserved under reduction of
observation content, and this condition aids in the derivation of the results on
architectural refinement with respect to the action-observed model.

In the next step of systems development beyond architectural design, one
might apply specific mechanisms to enforce the constraints imposed by the ar-
chitecture. One implementation mechanism that is known to support the satis-
faction of information flow policies is the use of a type of access control structure,
in which domains are restricted with respect to the objects that they may read
and write. A simple statically checkable condition on these restrictions entails
IP-security [Rus92] as well as the stronger notion of TA-security [Mey08]. We
show that a notion of refinement, closely related to architectural refinement, can
also be defined for access control structure, and that refinements at the archi-
tectural level can be satisfied by refinements at the level of the access control
implementation. Moreover, we define a more expressive notion of access control
structure than has previously been considered in the context of intransitive poli-
cies, in which read and write constraints may apply differentially to individual
actions performed within a domain, rather than uniformly across the domain.
We show how such a policy at the action level can implement a policy at the
domain level.

Taken together, these results provide the justification for a systems develop-
ment process that proceeds from high level architectural design, via refinements,
though to implementations using access control mechanisms. We give an exam-
ple that illustrates the process.

The structure of the paper is as follows. In Section 2 we give a formal
model for architectures and define architectural refinement. Section 3 defines
our state-observed system model, noninterference policies, and the spectrum of
different semantics for these policies. In Section 4 we show that architectural re-

finement preserves all the policy semantics for the state-observed model. Next,
in Section 5, we consider access control as a mechanism for the implementa-
tion of architectures, and show that access control structure is also preserved
under architectural refinement. The example of a refinement from architecture
through to access control implementation is presented in this section. Section 6
defines a notion of systems refinement on state-observed systems, in which the
amount of information in observations is reduced, and identifies conditions un-
der which this preserves the architectural semantics we consider. Section 7 deals
with architectural refinement in action-observed systems. Related literature is
discussed in section 8, and we make some concluding remarks in Section 9.

2 Architectural Refinement

We begin by formalising the notion of architecture, and defining a relation of
refinement between architectures. In this section, we leave the question of the
formal semantics of architectures open. In the following sections, we will show
that architectural refinement is sound with respect to several different semantic
interpretations of architectures.

The notion of architecture that we consider expresses only the highest lev-
els of a system design. Intuitively, an architecture specifies that the system
is comprised of a set of components that generate and hold information, and
constrains the permitted flows of information between these components. Us-
ing terminology from the security literature, we refer to these components as
domains.

Define an architecture to be a pair A = (D,—), where D is a set of do-
mains and — is a reflexive binary relation over D. We call the relation — the
information flow policy of the architecture. Several related intuitions may be
associated with this relation. One is that information is permitted to flow from
a domain u to a domain v only if u »— v. Another is that actions in domain u
may have directly observable effects in domain v only if u >~ v. The relation
is assumed to be reflexive because information flow from a domain to itself can
never be prevented. The security literature has frequently assumed information
flow policies to be transitive. The following example illustrates a case where
this assumption is not desirable.

Example 1: Consider the architecture A = ({H, D, L}, —) where — is the
downgrader policy depicted in the upper part of Figure 1 (we omit reflexive
edges). Here H represents the high security domain, L the low security domain
and D the downgrader. Information may flow from L to H, but any flow in
the other direction needs to be mediated by the downgrader (so we would not
want transtivity of). Information flow from L to D is permitted, to allow for
requests by L to D for H information, e.g., freedom-of-information requests. [

The process of systems design may take a component in a high level design,
and specify that it is to be implemented as the composition of a set of lower level

Figure 1: Refinement of a downgrader architecture

components. In this design step, the permitted flows of information between
the lower level components, and others in the design, should also be specified.
One way to understand this process is to view the design step as establishing a
relationship of refinement between low level and high level architectures.

Example 2: The architecture B = ({Hy, Ho, HDB, D, Ly, Lo}, —) (where
the policy — is depicted in the lower part of Figure 1) represents a refinement
of A. We refine H into three components, two high level users H; and Hs and
a database HDB. Similarly, we refine L into two low level users L; and Lo. We
assume that these may transmit information to each other, the high database,
and D, but that all information flow from H; and Hs to L; and Lo is mediated
by HDB and D. O

To formalise the notion of architectural refinement, let A; = (D1, —1) and
As = (D, 2) be architectures. A refinement mapping from A; to As is a
function r : D; — Dy such that

1. r is onto D5, and
2. for all u,v € Dy, if u —1 v then r(u) 2 r(v).

In this case, we write A; <, As, and say that A; is a refinement of As.

The requirement that r be surjective captures that intuition that if a design
calls for the existence of a component, then a more detailed design should include
an implementation of that component. Intuitively, each domain u in the high
level design Aj is implemented by the set of domains in the preimage r~*({u})
in the detailed design. (For brevity, we henceforth write »—(u) for r=1({u}).)
The second condition expresses that the lower level policy should not permit
information flow between two subdomains that was prohibited between their
superdomains. That is, if in a high level design, information is not permitted
to flow directly from component U to a component V, it should be incorrect to
implement U and V using lower level components v and v, respectively, with
information permitted to flow from u directly to v. (Note that the refinement
mapping in Figure 1 satisfies this condition.)

We note that the definition of refinement is transitive in the following sense:
if A7 <, Ay and As <, Az, then A; <, Asz. This is a key property usually
considered to be desirable in theories of refinement, since it permits the develop-
ment of an architectural design to proceed in a number of stages, each of which
refines the previous, by guaranteeing that the final design is a refinement of the
original design.

Our main result in this paper is that the process of replacing a high level
architecture by a lower level refinement is a sound design step, in the sense that
any concrete system that implements the refined architecture also implements
the higher level architecture. In order to make this claim formally precise, we
first need to define what counts as a concrete implementation of an architecture.
As a step towards this, we first consider a range of possible semantic interpreta-
tions of information flow policies. We use these in the semantics of architectures
in Section 4.

3 Semantics of Information Flow Policies

To give semantics to architectures, we recall in this section several classical
semantics for information flow policies [GM82, HY87, Rus92], and several new
definitions proposed by van der Meyden [Mey08]. These definitions can be
given for both state- and action-observed machines. We consider here the state-
observed versions. The action-observed variants are discussed in a later section.
The content of this section is largely definitional, and drawn from [Mey08].

The state-observed machine model [Rus92] for these definitions consists of
deterministic machines of the form (S5, s¢, A, step, obs, dom), where S is a set of
states, sg € S is the initial state, A is a set of actions, dom : A — D associates
each action to an element of the set D of security domains, step: S x A — S
is a deterministic transition function, and obs : S x D — O maps states to an
observation in some set O, for each security domain. We write s -« for the state
reached by performing the sequence of actions @ € A* from state s, defined
inductively by s- e =s, and s- aa = step(s- a,a) for « € A* and a € A. Here
€ denotes the empty sequence.

Transitive information flow policies have been given a formal semantics using
a definition based on a “purge” function [GM82]. Given a set F C D of domains
and a sequence o € A*, we write o | E for the subsequence of all actions a in «
with dom(a) € E. Given a policy —, define the function purge : A* x D — A*
by

purge(a,u) =al{ve D |v— u}.

For clarity, we may use subscripting of domain arguments of functions, writing

e.g., purge(a,u) as purge, (a).

Definition 1 A system M is P-secure with respect to a policy — if for all
sequences a, ' € A* such that purge, (o) = purge,(a), we have obs,(so-) =
obs,(sp - o).

This can be understood as saying that domain u’s observation depends only
on the sequence of interfering actions that have been performed. By idempo-
tence of purge,,, this definition is equivalent to the classical formulation, accord-
ing to which the system M is secure when for all @« € A* and domains u € D, we
have obs,,(sg - &) = obs,(sg - purge, («)). This formulation can be understood
as saying that each domain’s observations are as if only interfering actions had
been performed. We note that we will apply P-security to intransitive policies
as well as the transitive policies for which it was originally intended.

While P-security is well accepted for transitive policies, it has been felt to
be inappropriate for intransitive policies, since it does not permit L to ever
learn about H actions if the policy is H — D — L, even if D is intended to
be a trusted downgrader of H information. To address this deficiency, Haigh
and Young [HY87] proposed to generalise the definition of the purge function
to intransitive policies. (We follow the presentation of [Rus92].) Intuitively, the
intransitive purge of a sequence of actions with respect to a domain w is the
largest subsequence of actions that could form part of a causal chain of effects
(permitted by the policy) ending with an effect on domain w. More formally, the
definition makes use of a function sources : A* x D — P(D) defined inductively
by sources(e,u) = {u} and

sources(aa, u) = sources(a, u) U {dom(a) | Jv € sources(a, u)(dom(a) — v)}

for a € A and a € A*. Intuitively, sources(a,u) is the set of domains v such
that there exists a sequence of permitted interferences from v to v within a.. The
intransitive purge function ipurge : A* x D — A* is then defined inductively
by ipurge(e,u) = € and

a - ipurge(a,u) if dom(a) € sources(aa, u)

ipurge(ac,u) = { ipurge(a, u) otherwise

for a € A and a € A*. An alternative, equivalent formulation that we will find
useful is the following: given a set X C D, define ipurge y(a) inductively by
ipurge (¢) = € and

ipurge (aa) = ::Lpurgexu{dom(a)}(a) -a if Ju E'X(dom(a) — u)
ipurge v () otherwise

Then ipurge,(c) is identical to ipurgey,; (). Haigh and Young’s definition

can then be formulated as the following variant of P-security in which we use

the ipurge function in place of the purge function.

Definition 2 M is IP-secure with respect to a policy — if for all w € D and all
sequences o,/ € A* with ipurge, (o) = ipurge, (o), we have obs,(so - o) =
obs,(sp -).

It can be seen that ipurge,(a) = purge,(«) when — is transitive, so IP-
security is in fact a generalisation of the definition of security for transitive
policies.

These definitions are critiqued in [Mey08], where it is shown that IP-security
sometimes allows quite unintuitive flows of information. In response, several
alternative definitions are proposed. Each is based on a concrete model of the
maximal amount of information that a domain may have after some sequence
of actions has been performed, and states that a domain’s observation may
not give it more than this maximal amount of information. The definitions
differ in the modelling of the maximal information, and take the view that a
domain increases its information either by performing an action or by receiving
information transmitted by another domain.

In the first model of the maximal information, what is transmitted when
an domain performs an action is information about the actions performed by
other domains. The following definition expresses this in a weaker way than the
ipurge function.

Given sets X and A, let the set 7(X, A) be the smallest set 7 containing
X and such that if z,y € 7 and z € A then (z,y,2) € 7. Intuitively, the
elements of 7 (X, A) are binary trees with leaves labelled from X and interior
nodes labelled from A.

Given a policy —, define, for each domain u € D, the function ta, : A* —
7 ({e}, A) inductively by ta,(e) = ¢, and, for « € A* and a € A,

1. if dom(a) > u, then ta,(aa) = ta,(a),
2. if dom(a) — u, then ta,(aa) = (tay (), tagen(a) (@), a).

Intuitively, ta,(«) captures the maximal information that domain v may, con-
sistently with the policy ~—, have about the past actions of other domains. (The
nomenclature is intended to be suggestive of transmission of information about
actions.) Initially, a domain has no information about what actions have been
performed. The recursive clause describes how the maximal information ta,, («)
permitted to u after the performance of o changes when the next action a is
performed. If @ may not interfere with u, then there is no change, otherwise, u’s
maximal permitted information is increased by adding the maximal information
permitted to dom(a) at the time a is performed (represented by tagen(a)(t)), as
well the fact that a has been performed. Thus, this definition captures the intu-
ition that a domain may only transmit information that it is permitted to have,
and then only to domains with which it is permitted to interfere.

Definition 3 A system M is TA-secure with respect to a policy — if for all
domains u and all o, € A* such that ta,(a) = ta,(a’), we have obs, (sp-a) =
obs,(sg -).

Intuitively, this says that each domain’s observations provide the domain with no
more than the maximal amount of information that may have been transmitted
to it, as expressed by the functions ta.

The notion of TA-security can be shown to be a better fit to the intended
applications and theory of IP-security. On the other hand, it may still be too
weak for some applications. For example, it considers to be secure a system
where a downgrader transmits to L an email attachment that it received from H,

without opening the attachment first (so that it does not know what information
it is transmitting!) The second of van der Meyden’s definitions is intended to
address this potential deficiency.

The definition uses the following notion of view. The definition uses an
absorptive concatenation function o, defined over a set X by, for s € X* and
x € X, by sox = sif s # € and x is equal to the final element of s, and
sox = sx (ordinary concatenation) otherwise. Represent the view of domain u
with respect to a sequence @ € A* using the function view, : A* — O(AUO)*
(where O is the set of observations in the system), defined inductively by

view,(€) = obs,(sp), and
view(aa) — v%ewu(a) aobsy(sp-a) if dom(c.z) =u
view,(a) o obsy(sp -) otherwise

That is, view, («) is the sequence of all observations and actions of domain u
in the run generated by «, compressed by the elimination of stuttering obser-
vations. Intuitively, view,(«) is the complete record of information available
to domain u in the run generated by the sequence of actions «. The absorp-
tive concatenation is intended to capture that the system is asynchronous, with
domains not having access to a global clock. Thus, two periods of different
length during which a particular observation obtains are not distinguishable to
the domain.

Given a policy »—, for each domain v € D, define the function to, : A* —
T(O(AUO)*, A) by to,(€) = obs,(sp) and

tou(aa) = { toy, () . when d.om(a) o,
(tou(a), viewgon(q)(a),a) otherwise.

Intuitively, this definition takes the model of the maximal information that an
action a may transmit after the sequence a to be the fact that a has occurred,
together with the information that dom(a) actually has, as represented by its
view viewgon(q)(). By contrast, TA-security uses in place of this the maximal
information that dom(a) may have. (The nomenclature ‘to’ is intended to be
suggestive of transmission of information about observations.)

Another variant of these definitions is mentioned in [Mey08] because of its
relationship to a definition of Roscoe and Goldsmith [RG99]. Given a policy
—, for each domain v € D, define the function ito, : A* — 7 (O(AU O)*, A)
by ito,(€) = obs,(sp) and

ito, () when dom(a) /> u,
itoy(aa) = ¢ (itoy(a), viewgon(q)(a),a) if dom(a) = u.
(itoy(a), viewgon(q)(@a), a) otherwise.

This definition is just like that of to, with the difference that the information
that may be transmitted by an action a to domains u such that dom(a) — u but
dom(a) # u, includes the observation obsgon(a)(So - @a) produced by the action
a. Intuitively, the definition of security based on this notion will allow that the

\ h -~ d -~
> >
H 0 0 0
D 0 0 1
L 0 0 1

Figure 2: A system for the downgrader policy

action @ transmits not just the information observable to dom(a) at the time
that it is invoked, but also the new information that it computes and makes
observable in dom(a). This information is not included in the value itogon(q)(c)
itself, since the definition of security will state that the new observation may
depend only on this value. The nomenclature in this case is intended to be
suggestive of immediate transmission of information about observations.

We may now base the definition of security on either the function to or ito
rather than ta.

Definition 4 The system M is TO-secure with respect to — if for all domains
u € D and all o,/ € A* with to,(a) = toy(a), we have obs,(sp - a) =
obs,(sp - o).

The system M is ITO-secure with respect to — if for all domains u € D and
all o, € A* with ito,(a) = itoy(a/), we have obs, (s - @) = obs,(sg - &).

We remark that under certain circumstances, the definitions given by Roscoe
and Goldsmith [RG99] correspond either to P-security or to ITO-security— see
[Mey07] for details. The following result shows how these definitions are related:

Theorem 1 ([Mey08]) With respect to a given policy —, P-security implies
TO-security implies ITO-security implies TA-security implies IP-security.

Examples showing that all these notions are distinct are presented in [Mey08].
We give just one example here to illustrate how the definitions work.

Example 3: Figure 2 illustrates a system for the downgrader architecture
A of Figure 1. There are two actions h,d, with dom(h) = H and dom(d) = D.
Transitions on taking an action are indicated by edge labels, and the observation
made at a state is indicated below the state for each domain. For example, at
the initial (leftmost) state sg we have obsp(sg) = 0, and at the (rightmost)
state ¢ reached from sg by the sequence of actions hd we have obsp(t) = 1.

This system is not TO-secure (hence also not P-secure). To see this, consider

10

the sequences a = d and 0 = hd. We have

tor(d) = (tor(e),viewp(e),d)
= (e 0, d)
= (tor(e),viewp(h),d)
= tOL(hd).

but obsy(so-d) = 0 and obsy,(so - hd) = 1, so this is a violation of TO-security.
On the other hand, these sequences do not yield a violation of ITO-security,
because

itor(d) = (itor(e),viewp(d),d)
= (e, 0d0, d) .
and
itor(hd) = (itop(h),viewp(hd),d)
= (itog(e),viewp(hd),d)
= (e, 0d1, d) .

so itor(d) # itor(hd). It can be shown that the system is in fact ITO-secure
(and therefore also TA-secure and IP-secure. Intuitively, L learns that the H
action has been performed, but this (according to ITO-security) is considered
secure because D also acquires this information (at the same time), and D is
in fact responsible for having transmitted the information to L. TO-security
involves the more stringent requirement that D know (by seeing in its view)
that h has been performed before D performs the action d that transmits the
information to L. On the other hand TA-security is more liberal: the system
would remain TA-secure even if we were to replace the final D observation
of 1 by the observation 0, so that D never learns whether H has performed
h. Intuitively, TA-security requires just that D be causally involved in any
transmission of information about H activity to L. O

Since definitions of security like those introduced above quantify over the
infinite set of sequences of actions, it is desirable to have a proof technique
for security that avoids having to examine an infinite number of possibilities.
One approach that is prominent in the literature is the use of “unwinding”
relations [GM84]. Rushby [Rus92] discusses the following unwinding relations
for intransitive noninterference

Definition 5 A weak unwinding for a system M with respect to a policy —
is an indexed collection of equivalence relations { ~y }uep on the states of M
satisfying the following conditions:

OC: If s ~y t then obs,(s) = obs,(t). (Output Consistency)

WSC: If s ~y t and s ~gom(a) t then s-a ~y t-a.
(Weak Step Consistency)

LR: If dom(a) = u then s ~, s - a. (Left Respect)

Rushby shows that this notion provides a sound proof technique for IP-
security. The following result of van der Meyden [Mey08] shows that it is in fact
also a sound proof technique for the stronger notion TA-security.

11

Theorem 2 Suppose that there exists a weak unwinding for M with respect to
—. Then M is TA-secure with respect to —.

The converse implication does not quite hold, but it turns out that unwinding
is in fact a complete proof technique for TA-security if we allow consideration of a
bisimilar variant of M. Given a system M = (S, s¢, step, obs, dom) with actions
A, define the “unfolded” system uf(M) = (S’, si,, step’, obs’, dom) with actions
A having the same domains as in M, by S’ = A*, s, = ¢, step’(a,a) = aaq,
and obs! (a) = obs,(so - @), where sg - « is computed in M. Intuitively, this
construction unfolds the graph of M into an infinite tree. It is easy to see that
uf (M) is bisimilar to M in an obvious sense. The following result of van der
Meyden [Mey08] provides a sense in which unwindings are a complete proof
technique for TA-security.

Theorem 3 The system M is TA-secure with respect to — iff there exists a
weak unwinding on uwf (M) with respect to —.

‘We use this characterization in the results that follow.

4 Soundness of Architectural Refinement

We are now in a position to assign a formal meaning to architectures, and to
state precisely the main result of the paper.

Let X-security be a notion of security for information flow policies, like those
discussed in the previous section. We say that a system M is X -compliant with
an architecture A = (D, —), where X is a definition of security, if

1. D is the set of domains of M, and
2. M is X-secure with respect to —.

Intuitively, M is X-compliant with an architecture if it has an implementation
for each of the components required by the architecture, and the information
flows between these implementation components is consistent with the architec-
ture’s policy (with consistency defined by X-security.)

Consider now the definition of architectural refinement introduced in Sec-
tion 2. In a system design process we may have started with a high level archi-
tecture A, refined this to a lower level architecture B, and then constructed a
system that implements B. In what sense have we then implemented the archi-
tecture A that formed the highest level specification of the system? For this, we
need to be able to view the system from the perspective of the set of domains
of the higher level architecture A rather than those of B. This is the intent of
the following definition.

Let M = (S, sg, A, step,obs!,dom!) be a system with set of domains Dy,
and suppose r : Di — Dy is surjective. Then we may construct a system
r(M) = (S, s0, A, step, obs?, dom?) as follows:

12

1. the actions A, set of states 5, initial state s¢, and transition function step
of r(M) are exactly as in M,

2. the set of domains of (M) is Dy
3. dom?(a) = r(dom!(a)) for each a € A,

4. for u € Dy and s € S, the observation obs? (s) is the function f : r=1(u) —
O, given by f(v) = obsl(s) for v € r~1(u).

Intuitively, each domain u € D5 is viewed by the refinement mapping as being
broken down into the collection of subdomains 7~1(u). An action of a subdomain
in M is interpreted in r(M) as belonging to its superdomain. The observation
of a superdomain in r(M) is taken to be the collection of all observations of its
subdomains.

We can now give a formal meaning to soundness of architectural refinement.
Say that a notion of compliance X is preserved under architectural refinement
if whenever r : A; — As is a refinement mapping, if M is a system that is
X-compliant with A;, then r(M) is X-compliant with As. That, is, if the goal
of design was to construct a system that complies with architecture Az, we may
do so by building a system M that complies with architecture A; and viewing
this system from the perspective of Ay through the mapping r.

Our main result is the following. (We give the proof later.)

Theorem 4 The following notions are all preserved under architectural refine-
ment: P-compliance, TO-compliance, ITO-compliance, TA-compliance and IP-
compliance.

One might also view a system to be secure if it has a weak unwinding,
although there are some difficulties with this in view of the fact that weak un-
winding is not preserved under bisimulation [Mey08]. Nevertheless, the following
result is useful for the proof of Theorem 4, and is of independent interest in that
it shows that a sound proof technique for security is preserved by architectural
refinement.

Theorem 5 Let (D1,—1) <, (D2, —2) and suppose that M is a system with
set of domains Dy. If there exists a weak unwinding on M then there exists a
weak unwinding on r(M).

Proof: Let {~,},ep be a weak unwinding on M. Define the family of binary
relations {~, }uep on the states of r(M) by s a2, t if s ~, t for all v € r~1(u).
We show that this is a weak unwinding on (M), i.e., that it satisfies OC, WSC
and LR.

OC: If s ~, t then s ~, t for all v € r! u). Since ~ satisfies OC, this
means that obs(s) = obs}(¢) for all v € r~!(u). This in turn implies that
osz(M)(s) = osz(M)(t), as required for OC.

WSC: Suppose s /2, t and s Rgopran) (4 t. Note that dom™ (a) € 7~ (dom" M) (a)),
so the latter implies s ~gonn(4) . The former gives that for all v € r~(u), we

13

have s ~, t. Since ~ satisfies WSC, we conclude that s-a ~, t-a for all
v € r~Y(u). This yields that s-a =, t - a.

LR: Suppose dom"M)(a) /5 u. Then also dom™(a) /1 v, for all v €
r~1(u). By LR for ~, we obtain that s-a ~, s for all v € r~*(u). Thus,
S-a Ry, S. O

To prove Theorem 4, we first prove a number of technical lemmas. The
following lemma captures a uniform pattern of explanation for the proof of
Theorem 4. Note that the definitions of security are expressed in terms of
mappings X taking as arguments a system M, a domain u of this system, a
sequence of actions « in this system, and an information flow policy — on the
set of domains of the system. (In our notation above, the parameters M and —
have generally been left implicit). The system is classified as secure according
to the notion X with respect to policy — if for all systems M, domains u and
sequences of actions a, o/, if X(M,u,a,—) = X(M,u,a’,—) then obs,(so
a) = obs,(sg -).

Lemma 1 Let (Dq,—1) <, (D2, —2) and suppose that M is a system with
set of domains Dy. Suppose M is X -compliant with (D1,—1) and that for all
domains v € Dy and all sequences of actions a, o, if

X(r(M),r(v), o, —=2) = X (r(M),r(v),, —2)
then
X(M,v,a,—1) = X(M,v,a’,—1).
Then r(M) is X -compliant with (Da,—2).
Proof: Suppose M is X-compliant with (D;,—1). To show that r(M) is X-

compliant with (Dz,—2), suppose that «,a’ are sequences of actions of r(M)
(hence also of M), and u a domain of r(M), such that

X(T(M)7 u, @, >_>2) = X(T(M)v U, 0/7 >_)2)~
We need to show that osz(M)(so ca) = osz(M)(so - a'). By definition of

r(M), this amounts to showing that for all v € 7~1(u), we have obsM (s - o) =
obsM (sq - a'). For this, note that we have, by the assumed property, that

X(M7’U7OZ,>—>1) = X(M7U7O/7>_)1)

for all v € r~!(u), Since M is X-compliant with (Dq,1), this implies that

obsM (sg - @) = obsM (50 - '), as required. 0

In practice, we will often establish the condition of the lemma by constructing
for all domains v € D, a mapping F,, such that

X(M,v,0,—1) = Fy(X(r(M), r(v), a,—2))

for all sequences of actions « of M.
The following lemma is useful when showing preservation of TO-security and
ITO-security.

14

Lemma 2 Let r : D1 — Dy and suppose that M is a system with set of do-
mains Dy. Then for all sequences of actions a,a’ and domains v of M, if
view:giv)[) () = Viewigg)(a’) then viewM (o) = viewM (o).

Proof: Note that views with respect to r(v) in r(M) are sequences consisting
of actions a such that dom” ™) (a) = r(v), and observations which are mappings
f from r=1(r(v)) to observations in M. Define the function F, mapping such
sequences with respect to r(v) in (M) to views with respect to v in M by the
following induction: F,(€) =€,

[Fy(0)a ifdomM(a) =0
Fy(oa) = { F,(oc) otherwise

when a is an action, and F,(of) = F,(0) o f(v) when f is an observation. We
claim that for all sequences of actions «, we have F, (view:gﬂ/)l) () = viewM(a).
The result then follows.

The proof is by induction on the length of a. In case a = €, we have

. M M . .
Fv(v1ew:EU))(a)) = Fv(obs:gv))(so)) = obsM(s9) = viewM (). For the induc-
tive case of a sequence aa where a is an action and the result holds for «a, we
consider two cases, depending on whether dom™ (a) = v.

Suppose first that dom™ (a) = v. Then dom”™)(a) = r(v). Hence

Fv(view:E%)(aa)) = FU(Viewiéﬂ/)[)(a) a obs:E%) (so - aa))
= F, (v1ewr(1\/)[) a))aobsM(sg - aa)
= viewM(a)aobs}M (sq - aa)
= viewM(aa)

Next, suppose that dom™ (a) # v. Here we consider two subcases, depending
on whether dom”™)(a) = 7(v). If dom" ™) (a) = r(v) then we have

Fv(view:E%)(aa)) = Fv(view:gﬁ/)[)(a) aobs:g/)[)(so aa))
= F, (view:(iv)[)(a)) aobsM(sg - aa)
= viewM(a)oobsM(sy - aa)
= viewM(aa)

If dom™ (a) # v and dom"M)(a) # r(v) then we consider two further sub-
cases, depending on whether obs:gg)(so ‘qa) = obs:E%)(so -a). If this condition

holds, then it follows that obs} (sq - aa) = obsM (s¢ - @), hence

F, (viewigg) (aa)) = F, (VieW:Ef,V)[) ()
= viewM(a)
= viewM(aa).

15

On the other hand, if obs Ef}v)[)(aa) # obs:Ei\/)[)(so -), then we have

F, (v1ewrgﬂ/)[)(oza)) = F, (viewrgi\/)[) (@) obs:E%)(so caa))
oy (@) 0 0bsY(so - aa)
a) o obsM(sg - aa)

aa).

= F,(view
viewM (
= view(

Hence, in all cases we have the desired equation. O

We can now give the proof of Theorem 4.

Proof: Let (Dy,—1) <, (D2,—2) and suppose that M is a system with set of
domains D;. We show in each case that the conditions of Lemma 1 hold. If o
is a sequence and S is a set, write o | S for the subsequence of ¢ consisting of
all elements in S.

For v a domain of a system M, and — a policy, let I(M, —,v) be the set of
actions a of M with dom(a) — v. Note that I(M,—1,v) C I(r(M) —2,r(v)).
For, if a € I(M,—1,v) then dom;(a) —1 v, so by the definition of refinement,
domg(a) = r(dom; (a)) —q r(v), hence a € I(r(M), —2,7(v)).

P-security: For v € Dy, define F,,(o) = a | I(M,—1,v). To see that this
function has the required property, note that

F,(purge, () (a)) = purge/(() | I(M,1,0)
= (a1 I(r(M),—2,7(v))) 1 I(M,—1,0)
= Ck] I(Mlev’U)
= purge)(a))

where we use the fact that [(M,—1,v) C I(r(M) —2,r(v)) in the third step.
TO-security: For TO-security we show that for all sequences of actions
a,o, and v € Dy, if tolé%)() = toTEﬂ/)[)(') then to} (a) = to}M(a’). The
proof is by induction on the combined length of o and o’. The base case of
a =o' = € is trivial.
Consider sequences aa and o', where a is an action, a domain v € D», and

suppose that to:gff)(aa) = torgﬁ/)[)(). We consider two cases, depending on

whether dom (M)() —o (V).

If dom™ ™) (a) /5 7(v), then to r(M (—to:%{)(a) = to (M)("). Hence,

7(v)) r(v)
by induction, we have to}(a) = toM(a/). Since dom"™)(a) /9 r(v), also
dom™(a) /+; v. Hence toM(aa) = toM(a). It follows that to}M(aa) =
toM (o).
Alternately, if dom”™)(a) =5 7(v), then it follows from to;Ef}V)[)(aa) =
:Ex)(a’) that o/ is not e. Let o/ = (b, where b is an action. If dom”(M)(b) >4,
r(v), then we may apply the previous case with the roles of ca and o’ swapped.

We may assume, therefore, that dom” (™) (b) 5 r(v). It then follows that a = b
and torgiv)[)(a) = toigg) (8) and v1ewd§i{<)M)(a)(a) = viewzgﬁf()M)(a)(ﬂ). From

the former, we have by induction that to} (a) = to} (). From the latter, we

to

16

domM (a) domM)(a)(ﬁ). In both the case that

dom™(a) »—1 v and the case that dom™ (a) 7/~ v, it follows from these that
toM(aa) = toM(Ba).
ITO-security: In the case of ITO-security, we show that if M is ITO-secure,

then ito:E%)(a) = ito:E%)(a') implies itoM (a) = itoM (a/). The proof is by

have by Lemma 2 that view %) (o) = view M

induction on the combined length of o and o/. The base case of a = o/ = € is
trivial. Consider sequences ca and o', where a is an action, a domain v € Do,
and suppose that ito:E%)(aa) = itoigi\f)(a’). The case of dom” ™) (a) »—5 r(v)
proceeds exactly along the lines of the argument for TO-security, and is left to
the reader.

In case dom” (M) (@) 4 7(v), it follows from itolgg) (aa) = ito:g)[)(o/) that
o is not €. Let o/ = 3b, where b is an action. If dom” ™) (b) 455 r(v), then we
may apply the previous case with the roles of aa and o’ swapped. We may
assume, therefore, that dom”™)(b) »—5 r(v). Tt then follows that a = b and

itoigg)(a) = ito:g%) (8) and either
1. viewggﬁ/f()M)(a)(aa) = Viewggi/f()M)(a) (Ba) (in case dom” M) (a) # r(v)) or
2. view M) (a) = view M) (B). (in case dom"™M)(a) = r(v)).

dom” (M) (a) dom” (M) (a)

By induction, we have that ito} (a) = itoM(3). Note that in the case that
dom” ™) (a) = r(v), we also have by the induction hypothesis that ito’/ () =

dom™ (a)
itoé‘gmM(a)(ﬁ). Hence

itogme(a)(aa) = (itoggmM(a)(oz), 7vievnr(]i\inM(a)(04),a)
= (itoé\/‘fmlv[(a)(ﬁ)) ,viewé‘me(a)(ﬁ y @
= itoggmM(a) (Ba).

By ITO-security of M, it then follows that obsgeni () (S0 - @) = 0bSgonM (4)(S0 -

Ba). Together with view;()ﬁ/ng)(a)(a) = viewgiﬁgm(a)(ﬁ), this gives the con-

(a) = views(M) (Ba). Thus, we in fact have

om” (M) (a)
(aa) = view;();\f()m(a) (Ba) irrespective of whether dom”(™)(a) =

. . (M)
clusion that VIeWy () (g)

. (M
VIeW () (a)
r(v).

Thus, in both the case that dom™ (a) »; v and the case that dom™ (a) % v,
it follows from these that itoM (aa) = ito (Ba).

TA-security: By Theorem thm:ta-unwind-equiv, a system N is TA-secure
if there exists a weak unwinding on the unfolded system uf(N). It is easy to
verify that uf(r(M)) = r(uf(M)). Hence if M is TA-secure then there exists a
weak unwinding on uf(M). By Theorem 5, there exists a weak unwinding on
r(uf(M)), hence on uf (r(M)). It follows that (M) is TA-secure.

IP-security: We claim that if X C D; and Y C D5 are sets of domains such

that 7(X) C Y, then ipurge¥ (o) = ipurge)]\é[(ipurge;(M) (a)). Taking YV =

17

{r(v)} and X = {v}, we then obtain ipurgejvw(oz) = ipurge) (1purgergi\§)(a)),
so we may take F,(a) = ipurgeM (o).

To prove the claim, we proceed by induction on the length of . If S is set of
domains and u a domain, we write u — S if there exists v € S such that v — v.
The base case is trivial. Consider a sequence of actions aa, where the claim
holds for «, and suppose r(X) C Y. We consider a number of cases, depending
on whether dom” ™) (a) —, Y.

Suppose first that dom” ™) (a) /5 V. Note that if we were to have dom™ (a) =
v € X, then by the definition of refinement we would have dom”™)(a) =
r(dom™ (a)) 5 r(v) € 7(X), hence dom”™)(a) =, Y. Thus, we must in
fact have dom™ (a) 4+ X. Hence

ipurgel (ipurgegM) (aa))

= ipurge%(ipurgeg}(M)(a)) since dom” ™) (q) /59 YV
= ipurgel(a) by induction
= ipurged (aa)

This proves the claim for the sequence aa.

Next, suppose that dom”™)(aq) —5 Y. We further break this case into two
subcases, depending on whether dom™ (a) —; X. Suppose first that dom™ (a) /1
X. Note that r(X) C Y implies r(X) C Y U {dom™ (a)}. Hence

ipurge%(ipurge;(M) (cva))

= ipurgey (lpurgey(ﬁzlomv(M)(a)}(a)a) since dom” M) (a) =2 ¥
ipurge AX4(1purgeYﬁdomr<M)(a)}(a)) since dom™ (a) /1 X

= ipurge)Ag[(a) by induction

= ipurgel (aa) since dom™ (a) /1 X

Alternately, suppose that dom™ (a) »—; X. Note that r(X U {dom™(a)}) C
Y U {r(dom™(a))} = Y U {dom" ™) (a)}. Hence

ipurgel (ipurge;(M) (ava))

~ spurge} (spurge] o) (2)0) snce don’ 00 (a) 3 ¥
A M .
= 1Purge)]\?u{domM(a)}(1Purgey(u{2iomr<m(a)}())a since dom™ (a) —1 X
= ipurgeg(/lu{domM(a)}(a)a by induction
= ipurgel(aa) since dom™ (a) —; X.
This completes the proof of the claim. O

We remark that it can be shown independently of other assumptions that if
X is one of purge, ipurge, ta, or to then (with all parameters made explicit),
if
X(r(M),r(v),a,—2) = X(r(M),r(v),a',—2)
then
X(M,v,a,—1) = X(M,v,d,—1).

18

\ h -~ I _
> >

H 0 0 0

/ 0 0 1

J 0 0 1

Figure 3: ito not preserved under refinement

The following example shows this is not true for X = ito, but the proof of
Theorem 4 handles this case by showing that it does hold under the further
assumption that M is ITO-secure.

Example 4: Consider system in Figure 3, where there are domains H, I, J
with actions h of domain H and ¢ of domain I. Observations in the domains are
given under the states in the order H, I, J. Intuitively, action 7 is used to test
whether there has been an occurrence of h. If so, this fact is made observable
to both I and J simultaneously.

Let ~—1 be the reflexive closure on {H, I, J} of the fact I »—1 J, and let r
be given by r(H) = H and r(I) = r(J) = K. Let —3 be the smallest reflexive
relation on {H,K}. Then r is a refinement mapping. Take o« = hi and § = 1.
Then
ito
ito

"M () (E
(

e, (0107
(ito ™"

itoh! (h), v1ew;§M)(h),z)
()e) (0%07), 4)
(e), viewi ™ (e), 1)

o} (9)

where (OI 07) denotes the function mapping I to 0 and J to 0. However,

itod () = (it)M (n), view, ™ (h),)
= (itoM(e), 0il, i)
and
itoM(8) = (itod(e), view, ™ (i),4)

(itodl (), 0i0, i)

so although 7(J) = K, we do not have that ito (a) = itod(3). O

19

5 Access Control

The interpretations of policies discussed above are somewhat abstract. We now
consider a further, more concrete interpretation, that is closer to the level of
mechanisms for control of information flow. One of the key mechanisms for
implementation of secure systems is access control. Rushby [Rus92] defined the
notion of access control system and showed that access control systems are IP-
secure with respect to a policy — if they are consistent with the policy in an
appropriate sense. We present here a variant of Rushby’s definitions due to van
der Meyden, that strengthens Rushby’s result (see [Mey08] for an explanation
of how this variant improves on Rushby’s.)

Define an access control structure for a machine (S, sg, A, step, obs, dom)
with domains D to be a tuple AC = (V, V, contents, alter, observe), where

1. N is a set, of names,
2. V is a set, of values,

3. contents : S x N — V, with contents(s,n) interpreted as the value of
object n in state s,

4. observe : D — P(N), with observe(u) interpreted as the set of objects
that domain u may observe, and

5. alter : D — P(N), with alter(u) interpreted as the set of objects whose
values domain u is permitted to alter.

We call the pair (M,AC) a system with structured state. For a system with
structured state, define for each domain u € D, an equivalence relation on the
states S of M, of observable content equivalence, by s ~°¢ t if contents(s,n) =
contents(t,n) for all n € observe(u). That is, two states are related for w if
they are identical with respect to the values of objects that u may observe.

The following conditions are a variant of Rushby’s “Reference Monitor” con-
ditions.

WACIH. If s ~2° ¢ then obs,(s) = obs,(t) .

WACQC2. For all actions a, states s,t and objects n € alter(dom(a)), if
§ ~gen(a) ¢ and contents(s,n) = contents(t,n) then contents(s-a,n) =

contents(t - a,n).
WACS3. If contents(s - a,n) # contents(s,n) then n € alter(dom(a)).

Intuitively, WAC1-WAC3 capture the conditions under which the machine oper-
ates in accordance with the intuitive interpretations of the structure AC. WAC1
and WAC3 are identical to Rushby’s RM1 and RM3, respectively. WACI says
that a domain’s observation depends only on the values of the objects observ-
able to it. WAC2 (a modification of Rushby’s condition RM2) says that if an
action in domain w is permitted to change the value of an object n, then the

20

new value of n depends only on its old value and the values of objects of domain
u. WAC3 says that if an action can change the value of an object, then the
domain of that action is in fact permitted to alter that object. We call the pair
(M, AC) a weak access control system if it satisfies WAC1-WAC3. We say that
M admits a weak access control interpretation if there exists an access control
structure AC such that (M, AC) is a weak access control system.

Plainly, if there is an object that domain v may alter and domain v may
observe, then information flow from domain u to v cannot be prevented. We say
that a policy — is consistent with a weak access control system if the following
condition is satisfied:

AOL If alter(u) Nobserve(v) # @ then u — v.

Access control interpretations are closely related to TA-security in a way that
is similar to the connection between weak unwinding and TA-security already
noted above in Theorem 3. The following result is shown in [Mey08].

Theorem 6 The following are equivalent
1. M is TA-secure with respect to —,
2. uf(M) admits a weak access control interpretation consistent with —,

Moreover, if M admits a weak access control interpretation consistent with —,
then so does uf (M) (hence M is TA-secure).

This result shows that TA-security captures, in a precise sense, the notion of
information flow security that may be enforced by access control mechanisms.

We now consider the interaction of refinement and access control structure.
Suppose that M is a system for the set of domains Dy, with access control struc-
ture AC; = (Ny, Vi, contentsy, observe, alter;) with respect to which M is a
weak access control system. Let r : (D, —1) — (D2, —2) be a refinement map-
ping. Define r(AC1) = (Ng, V3, contentss, observey, alters) to be the access
control structure given by

1. N = Ny and V, = V3 and contents, = contentsy,
2. observes(u) = Uye,—1(y) Observe; (v),
3. altery(u) = Uyer—1(y) alteri(v).

Intuitively, AC5 has the same set of objects, with the same contents at each state
of M as in ACy, and each domain of Dy observes and alters the objects in all
of its subdomains in D;. The following result shows that weak access control
structure is preserved under architectural refinement.

Theorem 7 Let r: (D1,—1) — (D2, —2) be a refinement mapping.

1. If (M, ACy) is a weak access control system then (r(M),r(ACy)) is a weak
access control system.

21

2. If ACy is consistent with — then r(ACy) is consistent with —o.

Proof: Write ~! and ~?2 for the relations of observable content equivalence on
the states of M with respect to AC; and ACy = r(ACy), respectively. Let O? be
the observation function on r(M). Since contents; = contentss, we write just
contents in either case. For part (1), we prove WAC1-WAC3.

WAC1: We need to show that s ~2 ¢ implies O2(s) = O2(t), for all u € Ds.
By definition, s ~2 ¢ implies that s ~! ¢ for all v € r~!(u). By WAC1 for M
and ACy, we have Ol(s) = OL(t) for all v € r~!(u). By construction of O? we
obtain that O2(s) = O2(t).

WAC3: Suppose that n ¢ altery(dom?(a)). Then for all v € r~!(u),
we have n ¢ alter;(v). In particular, since r(dom!(a)) = dom?(a), we have
n ¢ alter;(dom!(a)). By WAC3 for AC;, we obtain that contents(s-a,n) =
contents(s,n), as required.

WAC2: Let a be an action of M with dom!(a) = v and dom?(a) = u = r(v).
Suppose that n € alters(u) and s ~2 t and contents(s,n) = contents(t,n)
We need to show that contents(s - a,n) = contents(t - a,n). There are
two possibilities: n € alter;(v) or n ¢ alter;(v). In case n ¢ alter;(v),
then we have by what we proved above for WAC3 that contents(s - a,n) =
contents(s,n) and contents(¢,n) = contents(t - a,n), from which it is im-
mediate that contents(s-a,n) = contents(t - a,n), as required. Alternately,
suppose that n € alter;(v). By definition of observe? and contents? and the
fact that v € r~1(u), it follows that s ~. ¢. Thus, by WAC2 for AC;, we again
obtain that contents(s - a,n) = contents(t - a,n).

For part (2) suppose AC; is consistent with —;. Let alters(u;)Nobserves(us) #
(), with this set containing, say, the object n. Then there exists vy € r~*(uy)
and vy € 7 1(ug) such that n € alter;(v;) and v € observej(vy). Thus
alter;(vy)Nobserve;(vy) # @, and by WAC3 on ACq, we obtain that vy —1 vs.
Since r is a refinement mapping, it follows that u; = r(v1) 9 r(v2) = ug, as
required. O

It is worth noting that we could also work with a more expressive notion
of access control structure in which the functions alter and observe take as
inputs the actions of a system M (rather than the domains.) Intuitively, this
amounts to specifying constraints on the objects that each action is permitted
to read and write. We will call an access control structure of this type an action-
based access control structure, and refer to the former type as a domain-based
access control structure.

Given AC = (N, V, contents, observe, alter), an action-based access con-
trol structure over actions A, and a domain mapping dom : A — D, we may
construct AC/dom = (N, V, contents, observe’, alter’), a domain-based access
control structure, by defining

observe’(u) = U{observe(a) | a € A, dom(a) = u}
and

alter’'(u) = U{alter(a) | a € A, dom(a) = u}.

22

Given a system M, with domain u, let ~2° be the relation defined above, with
respect to AC/dom, and for an action a define the relation ~2° on the states of
M by s ~°¢ ¢ if contents(s,n) = contents(t,n) for all n € observe(a).

The semantic conditions defining an action-based access control system can

now be stated as a variant of WAC1-WAC3.
WAC1,. For u € D, if s ~3° ¢ then obs,(s) = obs,(t) .

WAC2,. For all actions a, states s,t and names n € alter(a), if s ~°° ¢
and contents(s,n) = contents(¢,n) then contents(s-a,n) = contents(¢-
a,n).

WACS3,. If contents(s - a,n) # contents(s,n) then n € alter(a).

Intuitively, WAC1, says that the observations of a domain depend only on the
contents of objects that actions in that domain may observe. The remaining
conditions are similar to the domain-based versions, except that we work at the
level of actions rather than domains.

Proposition 1 If M satisfies WAC1,-WACS, with respect to the action-based
access control structure AC and —, then M satisfies WAC1-WACS3 with respect
to AC/dom and —.

Example 5: To illustrate the interaction of architectural refinement and
the implementation of architectures using access control structure, we recon-
sider the refinement of Example 2. As a further step of refinement towards
the implementation of the system, we choose to implement architecture B using
an action-based access control structure (N, V, contents, observe, alter). The
set N consists of the following objects:

1. local data Iy, (s, h1, ha,d, hdb for L1, Lo, Hy, Hy, D, HD B, respectively,
2. high level files f1, fo

3. input buffers hin, diny, din;, lin for messages to H, D and L. (In the case
of D, we have separate buffers din; and din; to receive communications
from H and L respectively — this allows the sender to receive acknowl-
edgements without creating a covert channel from H to L.)

The table in Figure 4 gives the actions associated to each domain, and the
functions observe and alter.

Finally, we define observations in the system using the pairs (L;, {l;}), (D, {d}),
(H;,{h;}), (HDB,{hdb, f1}). Here the first component of a pair gives a domain
u, and the observation O, (s) at state s is defined to be the sequence of values
contents(s,n) where n is an element of the second component. Note that we
have not made f; observable - this might represent, e.g., that fo is used for
internal data structures of the database and is not visible at the interface of the
database.

23

Domain Actions observe alter Purpose

L;, 1=1,2 | request(L;) l; ding, l; request information from D
send(L;, H) l; hin, l; send information to H
get(L;) lin lin, 1; read L input buffer
internal(L;) l; l; local computation

D gety (D) ding, ding, d read D input buffer from H
gety (D) diny ding, d read D input buffer from L
query(D) d d, hdb send query to H database
respond(D) d d,lin send response to L request
internal(D) d d local computation

H;, i=1,2 | request(H;) h; h;, hdb send query/update to HDB
internal(H;) h; h; local computation

HDB get(HDB) hin hin, hdb read H input buffer
respond(HDB, H;) | hdb, f1, fa | hi, hdb respond to H; request
respond(HDB, D) | hdb, f1, f2 | d, hdb respond to D request
internal(H DB) hdb, f1, fo | hdb, f1, fo | local computation

Figure 4: Actions of an access control system

It is straightforward to check that this action-based access control structure
induces a domain-based access control structure that is consistent with the
policy of B. Thus, by Theorem 6, any system M for this access control structure
that satisfies the conditions WAC1,-WAC3, is TA-compliant with 5. Further,
using either the preservation of TA-compliance under refinement (Theorem 4),
or the preservation of access control structure under refinement (Theorem 7)
and then Theorem 6, it also follows that (M) is TA-compliant with A. Here
r(M) is the system where the observations are defined by the pairs (L, {l1,l2}),
(D, {d}) and (H,{h1, ha, hdb, f1}).

Note that this result applies to a class of systems, as we have not yet de-
fined a unique system. To do so we would need to also give the values V', and
define the effect that actions have on states. Once this is done, one way to
ensure WAC2, and WAC3, might be by using static analysis to verify that the
code implementing an action a reads only from observe(a) and writes only to
alter(a). O

6 System Refinement

A plausible intuition concerning security is that reducing the amount of infor-
mation that domains can observe will make the system more secure. Intuitively,
this is because, with less information, domains are less likely to be able to learn
secrets that they are not supposed to know. In this section we consider refine-
ment from this perspective. Not all the definitions we consider in this paper, it
turns out, support the intuition.

Suppose that M = (S, sg, A, dom, step, obs) and M’ = (5, s{,, A, dom, step’, obs’)

24

are two systems with the same set of domains D, actions A and domain assign-
ment dom. Write M < M’ if for all sequences a, 3 € A*, and all domains u € D
we have obs/, (s - @) = obs/,(s{, - #) implies obs,(sg - &) = obsy(so - §). That
is, the observations in system M contain less information than those in system
M.

For reasons that will become clear below, it turns out to be useful to have
a more general version of this notion. Let X be a function mapping domains
u € D and sequences o € A* to some value. We write M <X M’ if for
all sequences o, € A*, and all domains v € D, if X, (o) = X,(8) then
obs! (s - &) = obs) (s} - B) implies obs,(sg - &) = obsy(sp - §). Note that
M < M’ implies M <X M’ for all X, so this is a weaker notion.

Say that the system M is X-secure if for all a,o’ € A* and v € D, if
Xu(a) = X, (a) then obsy,(sg -) = obs,(sp -). Plainly, the notions of P-
security, TO-security, ITO-security, TA-security and IP-security of a system M
with respect to a policy — correspond to X-security for appropriate choices of
the function X, viz., purge, to, ito, ta and ipurge as defined with respect to
M and —.

The following result formalises the intuition that reducing the information
in observations makes a system more secure.

Proposition 2 If M <X M’ and M' is X -secure then M is X -secure.

Proof: Suppose M <X M’ and M’ is X-secure. Consider a, o/ € A* and v € D
such that X, (o) = X, («’). Then obs!, (s; - a) = obs!,(s(, - @) by X-security of
M'. Tt follows using M <X M’ that obs, (s - @) = obs,(s¢ - 3). This is exactly
what we need to show that M is X-secure. O

Corollary 1 For X any of P, TA, or IP, if M <X M’ and M’ is X -secure
with respect to — then M is X -secure with respect to »—.

We note that we need to take some more care with the notions of ITO-
security and TO-security, since the functions ito and to depend on the obser-
vations in the system to which they are applied, whereas Proposition 2 concerns
the same function X in the systems M and M’. Indeed, it is not the case that if
M < M'"and M' is TO-secure (ITO-secure), then M is TO-secure (ITO-secure).

Example 6: For this, consider the system M’ in Figure 5, where there are
domains H, D, L with policy H — D ~— L. Intuitively, H is a high security
domain, D is a downgrader and the downgrader action d releases the information
that the H action h has been performed. This system is TO-secure (hence ITO-
secure also). For, suppose obsy(so - @) = 1 and obsy(so -) = 0. Then
does not contain an h followed later by a d, so must be of the form 8 = d*h!
with k,1 > 0. Thus, tor(3) = toz(d¥), which contains no D view containing
observation 1. On the other hand, « contains an h and later d, so tor(f)
contains a D view containing observation 1. Thus, toy(«) # tor(83), and there

25

~ h R d -~
() >
H 0 0 0
D 0 1 1
L 0 0 1

Figure 5: ITO-security and TO-security not preserved under system refinement

can be no violation of the condition for TO-security involving L. The argument
for D is similar, and there is nothing to prove for L.

On the other hand, let M be the system obtained from M’ by reducing the
information observable to D, taking obsp(s) = L for all states s. Then in M

we have

itoy (hd) (tor(h),viewp(hd),d)
= (itog(e), LdLl,d)
= (itor(e),viewp(d),d)

= itOL(d)

but obsy (hd) =1 and obsy(d) = 1. Hence M is not ITO-secure (and therefore
also not TO-secure). O

Intuitively, TO-security and ITO-security do more than place upper bounds
on domains’ information: they also add a type of lower bound constraint: in-
formation observable to a recipient must also have been observed by its sender.
Thus, a further constraint on the systems M and M’ is required in order for
these properties to be preserved by the systems refinement. The following result
identifies a sufficient condition for preservation of these properties.

For a sequence of actions «, and a domain u define res,(«) to be a1 {u},
i.e. the subsequence of actions of domain u.

Proposition 3 Suppose that M <*** M’ and for all sequences of actions a, o’
and domains u, if viewM (o) = viewM (B3) then view (a) = viewM (3). Then

if M is TO-secure (ITO-secure) with respect to — then M is TO-secure (ITO-
secure) with respect to .

Proof: An easy induction using the property on the views shows that to} (a) =
toM () implies toM’ () = toM (). This yields the result. For, we get as an im-
mediate consequence of this and the TO-security of M’ that to(a) = to} ()
implies obs™(sq -) = obs™ (sq -). Also, by an easy induction, toM(a) =
toM(B) implies res,(a) = res,(3). Thus, using M <¥* M’ we conclude that
toM(a) = toM(B3) implies obsM(sg - @) = obs™ (s - B), as required for TO-
security. The argument in the case of ITO-security is similar. O

26

We remark that under the condition M <*** M’ we in fact have the deter-
mination of views in the other direction as well.

Proposition 4 Suppose that M <™ M'. Then for all sequences of actions
a, B3, if viewM (a) = view (B) then viewM (a) = view ().

Proof: Since M <*° M’ there exists for each domain u a function f, : A% x
O’ — O mapping sequences of actions of domain u and observations in M’ to
observations in M, such that for all sequences o € A¥, we have

fulres, (@), 0M (s - a)) = OM(sy -).

For each domain u, define the mapping F, from views in M’ to views in M
inductively, by

1. Fy (o) = fu(e,0), when o is an observation,
2. Fy(oa) = F,(c)a when a € A, and

3. F,(00) = Fy(o)o fu(o 1 Ay,0) when o is an observation and o # .
We claim that for all sequences a € A*, we have F,(viewM (o)) = view! ().
The base case of & = € is immediate from the definitions. For the inductive case

of a sequence ca where a € A, consider three cases:
1. Case 1: dom(a) # u and OM' (s}, -) = OM' (s} - a). Note that in this case

we have res, (aa) = res,(a), hence OM (s} -a) = OM (s - aa) by the fact
that M <*°® M’'. Hence

F,(viewM (aa)) = F, (viewM/(oz))
= viewM(a) (by induction)
= v1ewM(aa)

2. Case 2: dom(a) # u and OM (s, - &) # OM' (s, - aa). Note that in this

case we have res,(aa) = res, (o) = view! (a) 1 A,. Hence
Fy(viewM (aa)) = F,(view (o) OM (s} - aa))
= Fu(v1equ:(a)) fu(view ()1 Ay, OM'(s} - aa))
= F,(viewM'(a)) o fu(res,(aa), OM (s} - aa))
= viewM(a)o OM(sy - aa))
= viewM(aa)
3. Case 3: dom(a) = u. Then

F,(viewM (aq)) = F,(viewM (@) aOM (s - aa))
= F, (v1ewfy:(a))a W(viewM (@)a 1 Ay, OM (s} - aa))
= Fu(view) () a fu(resq(aa), O} (sf - aa))
= v?ew% Ea) ;L OM(sq - aa))

O

Thus, under the conditions of Proposition 3, we have view! (a) = viewM ()
iff view! (o) = viewM(3). This may seem to make Proposition 3 uninterest-
ingly weak. Below, we show that Proposition 3 is not as weak as it may seem, by
giving a non-trivial application of Proposition 3 in which information is spread

out through the views in M and M’ rather different ways.

7 Action Observed Systems

The definitions of the previous sections are concerned with a machine model in
which observations are made on states. A variant model has been considered in
the literature, in which observations are associated to actions instead [Rus92].
A comparison between the two models for the set of semantics of intransitive
information flow policies discussed above was carried out in [Mey07]. In this
section we consider how the results on refinement in state-observed systems
carry over to this model.

An action-observed machine is a tuple (S, sg, A, step, out, dom), where all
the components are as in the state observed system model, except that the
observation function obs is replaced by a function out : S x A — O. Intuitively,
if s is a state and a is an action, then out(s,a) is the output, or return value,
observed in domain dom(a) when action a is performed.

Each of the definitions of security for the state-observed system model has
the form

M is secure with respect to — if for all sequences a, o’ and domains
u, if Xy (o) = Xy (') then obs,(sg - @) = obs, (s -).

where X, («) is a function of «,u,— and M. We may obtain corresponding
action-observed versions that have the form

M is secure with respect to »— if for all sequences «,a’, domains
u and actions a with dom(a) = u, if X, (a) = X, (') then out(sy -
a,a) = out(sg - o, a).

In the cases of P-security, TA-security and IP-security, the corresponding func-
tions purge, ta and ipurge in fact depend only on u,a and —, and we may
use exactly the same functions as X to obtain the action-observed definitions
of security.

In the case of TO-security and ITO-security, there is also a dependence on
observations in the model, which become outputs in the action-observed case.
Here we need to reformulate the definitions somewhat. This is done as follows.
First, the notion of view is adapted to the action-observed system model by
defining view? : A* — (AU O)* for u € D inductively by view?(e) = ¢, and

view?(a)aout(sp - a,a) if dom(a)=u
view? () otherwise.

view) (aa) = {

28

That is, the view of a domain is just the sequence of actions that the domain
has performed, together with the outputs obtained from those actions.
We now define an action-observed variant tof of to,, by tof(¢) = € and

tog () if dom(a) - u,
to?(aa) = { (tog(a), viewgom(a)(aa), a) if dom(a) = u,
(tOZ(a)7 Viewgo[u(a) (Oé)7 a) if u # dom(a) — U.

ito?(« if dom(a u,
ito,(aa) _{ (itouz((o)z),viewgom(a)(aa),a) othervEfis)e.?L)
Taking these functions as X in the above pattern for action-observed security
yields the definitions of TO-security and ITO-security in the action-observed
case. (The reader may note some subtle differences between these definitions in
the state- and action-observed cases. We refer to [Mey07] for an explanation of
these differences.)

These definitions of security on action-observed systems may be shown to be
related to the similarly named definitions on state-observed systems, by means
of mapping from the action-observed to the state-observed domain. Given an
action-observed machine M = (S, sg, A, step, out,dom) with domains D and
outputs O, define the state observed machine F,s(M) = (5, s{,, A, step’, obs, dom)
by

1. §'=8x(D—0U{L)}),

2. s}, = (s0, fo), where fo(d) = L for all d € D,

3. step/((s, /), a)) = (step(s, a), f[don(a) — out(s,a)]),
4. obs,((s, f) = f(u).

Here, we write f[u — z] for the function f’ that is identical to f except that
f/(u) = x. Intuitively, in a state (s, f), the value f(d) for a domain d represents
the observation most recently obtained in domain d, and is L if there has been
no observation in domain d.

The following result states relationships between the definitions of security
on the two types of model under this mapping.

Theorem 8 [Mey07] Let X be any of P, TO, ITO, TA, or IP. Then an action-
observed machine M is X -secure with respect to a policy — (using the action-
observed definitions) iff Fos(M) is X -secure with respect to — (using the state-
observed definitions).

We will use this result to derive a result on the soundness of architectural
refinement that similar to Theorem 4, but for action-observed systems.

29

First, we define the result of applying a refinement mapping to an action-
observed system. Let M = (.5, Sy, A, step, out,dom) be an action-observed sys-
tem with set of domains D;. Let r : Dy — Dy. Then we define the system
r(M) = (S, So, A, step, out,dom’) simply by defining dom’(a) = r(dom(a)) for
all a € A; all other components are exactly as in M.

The following result characterizes how this operation relates to the mapping
from action-observed to state-observed systems.

Lemma 3 Letr: Dy — Do, and let M be an action-observed system with set of
domains Dy. Then Fos(r(M)) <*° r(Fos(M)), and for all sequences «, § € A*,

and domains u € Dy we have that viewf“s(r(M))(a) = viewf”(r(M))(ﬁ) mmplies
view, F M) () = viewy T M) ().

Proof: We first characterize the observations in the systems Fyq(r(M)) and
r(Fus(M)). Let dom: A — D; be the domain function of M.

Note that in (M), the output of an action a is observed by domain r(dom(a)).
Since the observation made by domain w in the state reached after a sequence «
in F,5(r(M)) is the output obtained by the latest action of domain u, this obser-
vation is the output obtained from the latest action a in o with dom(a) € r=1(u).

On the other hand, in F,s(M) the observation of domain v is the output
obtained from the latest v action, so in r(Fys(M)), the observation of domain
u in the state reached after a sequence « is the mapping taking v € r=(u) to
the output of the latest action a in o with dom(a) = v.

To see that Fus(r(M)) < r(F,s(M)), suppose that res,(a) = res,(0)

and osz(F”'S(M))(sO ca) = osz(F“'S(M))(so - 3). Then the most recent action of

domain v with r(v) = u is the same in « and 3. Thus,

obsgaS(r(M))(So ‘) = osz(F‘”(M))(So - a)(v)
= obsi (s) ()
obs e+ TD) gy
as required.
To see that views "M) (o) = viewg‘“(r(M))(ﬁ) implies view, ")) (a) =
ViewZ(F”(M))(ﬁ), we define for each u € Dy a mapping G, taking views of

r(Fas(M)) to views of Fys(r(M)), by the following induction. Note that, by
construction, the views of r(F,s(M)) and F,s(r(M)) have the property that
they alternate actions and observations, i.e., there are no adjacent observations.
(This is because actions a with r(dom(a)) # u do not produce output in any
domains observable to u, hence u observations are invariant under such actions,
and repeated observations are removed by the absorptive concatenation oper-
ator.) The base case is given by Gy (L) = L") where we write 1S for the
function | with domain S and constant value 1. For ¢ a view, a € A and o an
observation in M, the inductive case is given by G, (cao) = Gy (0)a0’, where
O’ = O[dom(a) — o] and O is the final observation in G, (o), which is a mapping
from r~!(u) to observations in M.

30

We claim that Gy (views "™ (q)) = view, ") (q) for all a € A*,

from which it follows that views* "™ (q) = viewh*"™))(8) implies that

viewZ(F“(M))(a) = viewZ(F“S(M))(ﬁ). The proof of the claim is by induction.

The base case is trivial. For the inductive step, we consider two cases. First,
suppose that dom(a) # uw. Then

Gu(views "M (aa)) = G (view; "™ (a

o e (Fas (M) . .

viewy () (by induction)
s oo T (Fas (M)

= Viewy (aa).

Alternately, if dom(a) = u, then
G (viewl= M) (q)) = G\ (viewt= ")) (q)ao))

where 0 = out(sg-, a) (in M). Let O be the final observation in Gu(viewfw(T(M)) (@)

and O’ = O[dom(a) — o]. Then, by induction,

)

O (@)ao) = Gu(view, "™ (a))a0’
= viewf“S(r(M))(a)aOl'

Gu (viewg‘”

In particular, since O is also the final observation in viewg”(r(l\/f))(oz)7 we have

that O = obsf“'*(T(M))(so - o), and, by construction, O’ = obsf“s(r(M))(so -oa).

We conclude that G, (views ") (aa)) = view, "™ ™)) (qa), as required. O

We now obtain the following:

Corollary 2 Let M be an action-observed system with domains Dy, let r :
Dy — D, and let — be a policy on Dy. For X any of P, TO, ITO, TA or IP,
if T(Fas(M)) is X-secure with respect to — then Fos(r(M)) is X-secure with
respect 1o .

Proof: It is easily checked that for X equal to any of purge, ta or ipurge,
if X,(a) = X,(B) then res,(o) = res,(f). Hence from F, (r(M)) <res
r(F,s(M)) we obtain that F,,(r(M)) <X r(F,s(M)) for these values of X.
Hence by Lemma 3 and Corollary 1, we obtain that if r(F,s(M)) is X-secure
with respect to ~— then Fy(r(M)) is X-secure with respect to —.

For the case of X equal to to or ito, we obtain this conclusion from Propo-
sition 3 and Lemma 3. O

We may now conclude that each of our definitions of security is preserved
under refinement of action-observed systems.
Corollary 3 Let A; <, Ay, and let X any of P, TO, ITO, TA or IP. If M
is an action-observed system and M is X -compliant with Ay then r(M) is X -
compliant with As.

31

Proof: We have the following chain of implications:

1. M is X-secure with respect to »—1

2. implies F,s(M) is X-secure with respect to —1 (by Theorem 4)
implies 7(Fos(M)) is X-secure with respect to =2 (by Theorem 8)

implies F,s(r(M)) is X-secure with respect to »—o (by Corollary 2)

orok W

implies (M) is X-secure with respect to 2 (by Theorem 4)

8 Related Work

To the best of our knowledge, our work is the first consideration of the relation-
ship between architectural refinement and intransitive noninterference. How-
ever, both formal theories of architecture refinement and refinement of nonin-
terference security properties have been presented in the past.

In general, work on architectural refinement [PR97, Bar05] is concerned with
behavioural notions of refinement, and has not taken security into account. An
interesting exception is a sequence of papers by Moriconi et al., [MQR95, MQ94],
who develop a very abstract formal account of architecture refinement in which
architectural designs are represented as logical theories and refinement is treated
as a mapping of the symbols of the abstract theory to those of the concrete the-
ory that must satisfy the logical condition of being a faithful interpretation. In
order to apply this account to a particular type of architectural design nota-
tion, it is necessary to concretize the abstract theory by giving both a syntax
for the architectural elements in the notation, and to develop a logical theory
that represents the semantics of this notation. (E.g. this is done in [MQ94] for
dataflow and shared-memory architectural styles.) In [MQRG97], the frame-
work is applied to establish security properties of a number of secure variants
of the X/Open Distributed Transaction Processing architecture. The security
policy considered here is the Bell La-Padula policy [BP76], which lacks the kind
of information flow semantics that we have studied here, although it can be
related to noninterference for transitive policies [Rus92]. It is not clear whether
a concretization of the Moriconi et al. theory could be developed that would
enable it to represent the content of our results, but this would be an interest-
ing topic for further study. Zhou and Alves-Foss [ZAF06] have also proposed
a number of architecture refinement patterns for Multi-Level Secure systems
development, but do not provide any formal semantics for their work.

The other area of related work, dealing with preservation of noninterference
properties under notions of refinement, has typically been concerned with just
the (transitive) two-domain policy stating that High level information may not
flow to Low, rather than with the more general intransitive policies that we have

32

considered in this paper. (All of the literature discussed below differs from our
work in this regard.)

That we have obtained positive results concerning refinement of security
properties may be surprising to those familiar with the literature on formal
security properties, where it is folklore that such properties are not preserved
under refinement [Jac89], a fact known as the “refinement paradox”. However,
our notions of refinement differ from the notions of refinement usually studied.
Refinement is usually understood as a reduction in the set of possible behaviours
of the system, which would be contrary to our assumptions that systems are
input-enabled (actions always enabled) and deterministic.

It is possible to identify conditions under which reduction of the possible
behaviours of a system preserves information flow security properties. Jacob
[Jac89] presents a method in which an insecure system is first developed using
a standard refinement methodology for functional properties, then made secure
by a further deletion of behaviors in a fixpoint calculation. It is not guaranteed
that this last step terminates, nor that it produces a useful system. Mantel
[Man01] defines refinement operators that take as input a secure system, a set
of transitions to be disabled, and a type of unwinding relation on the system
that establishes the security property. The operators produce as output a refined
system, as well as a new unwinding relation that establishes the security of the
refined system. This is achieved by either disabling transitions other than those
requested, or by maintaining some transitions whose disablement was requested.
He considers a richer notion of information flow policy than we have treated, but
with respect to a semantics that seems appropriate only for transitive policies.
The practicality of these approaches has not been established.

A number of authors have also identified sufficient conditions under which
data-refinement preserves transitive information flow policies [GCS91, O’H92].
Bossi et al. [BFPRO03] develop conditions under which refinement of process
algebra terms preserves bisimulation-based information flow security properties
using a simulation-based notion of refinement. Roscoe [Ros95] defines Low-
determinism, a very strong notion of security, which is always preserved un-
der refinement, but at the cost of a significantly restricted range of applica-
bility. Some recent works have also sought to overcome the refinement para-
dox by drawing a distinction between specification-level non-determinism and
non-determinism that is inherent in a system, with the latter preserved under
refinement [SS06, Jiir05, Bib06].

We note that the notions of refinement we have considered in this paper
are somewhat different from the standard notion of refinement considered in
the literature, which reduces the set of possible behaviours of a system. In-
formation flow properties are not generally preserved under such refinements
[Jac89], although some authors have tried to obtain such results by modifica-
tion of the refined system [Jac89, Man01]. Others have identified sufficient
conditions for behavioral refinement to preserve information flow properties
[GCS91, O’HI2, BFPRO3, Ros95]. Some recent works have also sought to over-
come the refinement paradox by drawing a distinction between specification-
level non-determinism and non-determinism that is inherent in a system, with

33

the latter preserved under refinement [SS06, Jiir05, Bib06].

Another area in which refinement has been considered in the context of in-
formation flow security concerns refinement at the level of extended program
notations [Mor09]. This approach aims to preserve the ignorance of a given agent
during refinement, and has the advantage of providing an expressive framework
for representing what an agent does not know. (We remark that [Mor09] con-
tains a result related to the concerns of Section 6, showing that security is
preserved by reducing the content of observations.) On the other hand, this
line of work does not deal with the concerns of causal structure in a multi-agent
setting that are our focus in the present paper.

9 Conclusion

This work is a contribution towards a formal design theory for information flow
secure systems. Much remains to be done to realise such a theory. The notions of
security studied here are based on an asynchronous modelling of systems - they
do not take into account issues such as timing attacks and scheduling. Proba-
bilistic reasoning, which is critical in practical security settings, is also ignored.
Suitable variants of our definitions for the semantics of intransitive noninterfer-
ence policies that take these concerns into account remain to be developed. We
have considered only refinement of systems as a whole; it would be desirable
to develop also an account of composition of architectural designs and policies,
and to study how these interact with refinement, so that refinement can be car-
ried out at the component level. Integrating our approach with approaches to
refinement operating at lower levels of system description would also be desir-
able. We hope to address issues such as these in future work. Ultimately, one
would like to have a theoretically sound and tool supported methodology that
enables a system to be developed from the very abstract architectural level we
have considered in this paper, all the way through to code running on particular
hardware configurations.

References

[AFHOTO06] J. Alves-Foss, W.S. Harrison, P. Oman, and C. Taylor. The MILS
architecture for high-assurance embedded systems. International
Journal of Embedded Systems, 2(3/4):239-47, Feb 2006.

[Bar05] M. A. Barbosa. A refinement calculus for software components and
architectures. ACM SIGSOFT Software Engineering Notes, 30(5),
September 2005.

[BFPRO3] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement operators
and information flow security. In Proc. Int. Conf. on Software
Engineering and Formal Methods, pages 44-53, 2003.

34

[Bib06]

[BP76]

[GCS91]

[GMS82]

[GMS4]

[HYS87]

[Jac89]

[Jiir05]
[Man01]

[Mey07]

[MeyO08]

[Mor09]

IMQY4]

David Bibighaus. Applying the doubly labeled transition system to
the refinement paradox. PhD thesis, Naval Postgraduate School,
Monterey, 2006.

D.E. Bell and L.J. La Padula. Secure computer system: unified
exposition and multics interpretation. Technical Report ESD-TR-
75-306, Mitre Corporation, Bedford, M.A., March 1976.

J. Graham-Cunning and J. Sanders. On the refinement of noninter-
ference. In Proc. IEEE Computer Security Foundations Workshop,
pages 35—42, 1991.

J.A. Goguen and J. Meseguer. Security policies and security mod-
els. In Proc. IEEE Symp. on Security and Privacy, pages 11-20,
Oakland, 1982.

J.A. Goguen and J. Meseguer. Unwinding and inference control.
In IEEE Symp. on Security and Privacy, 1984.

J.T. Haigh and W.D. Young. Extending the noninterference ver-
sion of MLS for SAT. IEEE Trans. on Software Engineering, SE-
13(2):141-150, Feb 1987.

J. Jacob. On the derivation of secure components. In Proc. IEEE
Symp. on Security and Privacy, pages 242—247, 1989.

J. Jurjens. Secure Systems Development with UML. Springer, 2005.

H. Mantel. Preserving information flow properties under refine-
ment. In Proc. IEEE Symp. Security and Privacy, pages 78-91,
2001.

R. van der Meyden. A comparison of semantic models of in-
transitive noninterference. submitted for publication, copy at
http://www.cse.unsw.edu.au/~meyden, Dec 2007.

R. van der Meyden. What, indeed, is intransitive non-
interference? (submitted for publication, copy at
http://www.cse.unsw.edu.au/~meyden - an extended ab-

stract of this paper appears in Proc. ESORICS 2007), Jan
2008.

Carroll Morgan. The shadow knows: Refinement and security in
sequential programs. Sci. Comput. Program., 74(8):629-653, 2009.

M. Moriconi and X. Qian. Correctness and composition of soft-
ware architectures. In Proc. 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 164-174, 1994.

35

[MQR95]

[MQRG97]

[07H92

[PRO7]

[RG9Y]

[Ros95]

[RRS3]

[Rus92]

[SS06]

[VBC+05]

[ZAF06]

M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct archi-
tecture refinement. IEFE Transactions on Software Engineering,
21(4):356-372, April 1995.

M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong. Se-
cure software architectures. In Proc. IEEE Symp. on Security and
Privacy, pages 84-893, 1997.

C. O’Halloran. Refinement and confidentiality. In Fifth Refinement
Workshop, pages 119-139. British Computer Society, 1992.

J. Philipps and B. Rumpe. Refinement of information flow ar-
chitectures. In Proc. 1st IEEE Int. Conf. on Formal Engineering
Methods, pages 203 — 212, 1997.

A. W. Roscoe and M. H. Goldsmith. What is intransitive nonin-
terference? In IEEE Computer Security Foundations Workshop,
pages 228-238, 1999.

A W. Roscoe. CSP and determinism in security modelling. In
Proc. IEEE Symp. on Security and Privacy, pages 114-221, 1995.

J.M. Rushby and R. Randell. A distributed secure system. I[EEE
Computer, 16(7):55-67, 1983.

J. Rushby. Noninterference, transitivity, and channel-control secu-
rity policies. Technical Report CSL-92-02, SRI International, Dec
1992.

F. Seehusen and K. Stolen. Information flow property preserving
transformation of UML interaction diagrams. In Proc. ACM sym-
posium on access control models and technologies, pages 150 — 159,

2006.

W.M. Vanfleet, R.W. Beckworth, B. Calloni, J.A. Luke, C. Taylor,
and G. Uchenick. MILS:architecture for high assurance embedded
computing. Crosstalk: The Journal of Defence Engineering, pages
12-16, Aug 2005.

J. Zhou and J. Alves-Foss. Architecture-based refinements for se-
cure computer system design. In Proc. Policy, Security and Trust,
Nov 2006.

36

