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Abstract

A first order theory RC of a real closed field and its algebraic clo-
sure is presented. The non-logical axioms combine the axioms of the
theories of real closed fields and the algebraically closed fields, but
distinguish the real closed field as a subfield by means of a monadic
predicate and a constant for a square root of -1. The resulting the-
ory has several desirable properties: decidability, completeness, model-
completeness and quantifier elimination. A decision procedure is pre-
sented for the problem of satisfiability of a formula, and its complexity
is analysed.

1 Introduction

Two of the most thoroughly studied first order theories in model theory
are the theories of algebraically closed fields (ACF) and real closed fields
(RCF) [CK73, Poi00]. In some sense the former is simpler with equality
as the only relation. In case of real closed fields we also have the predicate

∗Work of this author done primarily while at UNSW.
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“<”. Both ACF and RCF have nice properties. They admit quantifier
elimination, are decidable and complete. The most common model of ACF
is the field of complex numbers, and that of RCF is the field of real numbers.
However, there are other models. We note that any model M of RCF has
an algebraic closure M′ which is a model of ACF. The model M′ can be
obtained from M by adjoining the “imaginary” element

√
−1.

One of the objectives of the present work is to give a theory of such
a pair (M,M′). We work on first order structures in which the carrier is
that of M′ and which (like the theories RCF and ACF) has operations
for addition, multiplication and constants 0 and 1. The novelty is that we
distinguish M as a substructure of M′ by means of a unary predicate R.
We also introduce a constant i to represent

√
−1. We axiomatize these

structures by a theory RC.
The motivation for this comes from our work on formal reasoning about

quantum probabilities [MP03, Pat05]. These probabilities, as usual, are
non-negative real numbers ≤ 1 but they arise from complex amplitudes
characterizing the quantum state. Therefore, we need both real and complex
numbers for representing quantum phenomena.

The structure of the paper is as follows. In Section 2 we present the
theory RC and discuss some of its models. Section 3 establishes quantifier
elimination and completeness results for RC. This section also establishes
decidability of satisfiability and analyses its complexity. The proofs of these
results rely on a reduction algorithm which translates a formula of RC to
a formula in RCF. We discuss some significant mathematical results that
can be expressed in the theory in Section ??. In the final section we discuss
related work.

2 The theory RC

In this section, the language RC and its semantics are presented. The theory
of real and algebraically closed fields have been well studied. A rigorous
treatment of the corresponding structures may be found, for example, in van
der Waerden’s classic text on algebra [vdW53]. A large part of model theory
is the formal study of such fields, and they have been treated both from
model theoretic [Hod93] and algorithmic viewpoints [BPR03]. However, the
theory of a real closed field and its algebraic closure, in combination, does
not appear to have been studied from a logical perspective.

The basic idea for our formalization of the combination is the standard
construction of complex numbers as pairs of real numbers. The resulting
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theory is called RC. The theory has models other than the field of complex
numbers, as the same construction can be applied starting with any real
closed field.

The nonlogical symbols of the first order language LRC are given below.
We assume the standard logical symbols, including equality [Sho67].

1. Function Symbols: The function symbols include the binary sym-
bols ‘+’ and ‘·’ in the infix notation. We use xn as a shorthand for the
n-fold product x · · ·x

2. Predicate Symbols: The only nonlogical symbols are a binary pred-
icate ‘<’ and a unary predicate ‘R’. The former is written in infix
notation. The intended interpretation of R(x) is that x is real.

3. Constant Symbols: The four principal constants are 0, 1,−1 and i.

We use the abbreviations Rx1x2 . . . xn for Rx1 ∧ Rx2 ∧ . . . ∧ Rxn, and
−x for (−1) · x. The standard notation and the binding rules for addition
and multiplication are used throughout.

When dealing with complexity results, it is important that we have an
efficient representation of the integers since the size of the input depends on
this representation. The standard representation for the positive integers
is 1 + 1 + · · · + 1 (unary representation). However, it is more efficient to
represent them as a k-ary expansion, where k > 1 is a positive integers
such that all integers up to and including k are assumed to be defined. For
example, for k = 2 we first define 2 = 1 + 1. Then the binary number
anan−1 . . . a0, where each ai ∈ {0, 1}, may be written as

a0 + 2(a1 + 2(a2 + 2(a3 + . . . 2(an−1 + 2an) . . .)

This is a term of RC of size linear in n. In the complexity theory of real or
algebraically closed field we often have to deal with multivariate polynomials
with integer (or rational) coefficients. The size of the polynomial may be
defined to be proportional to the sum of the bitlengths of the coefficients
[BKR86].

2.1 Axioms

The axioms of the theory RC are as follows. Throughout, n and k are pos-
itive integers.
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FL1 (x+ y) + z = x+ (y + z)
FL2 x+ 0 = x
FL3 x+ (−1 · x) = 0
FL4 x+ y = y + x
FL5 (x · y) · z = x · (y · z)
FL6 x · 1 = x
FL7 x 6= 0⇒ ∃y(x · y = 1)
FL8 x · y = y · x
FL9 x · (y + z) = (x · y) + (x · z)
FL10 0 6= 1
AC yn 6= 0⇒ ∃x(yn · xn + yn−1 · xn−1 + . . .+ y1 · x+ y0 = 0) .
CR ∃xy(Rx ∧Ry ∧ z = x+ i · y)
R1 R0 ∧R1 ∧R(−1)
R2 Rxy ⇒ R(x+ y) ∧R(x · y)
R3 x < y ⇔ Rx ∧Ry ∧ ∃z(Rz ∧ z 6= 0 ∧ y = x+ z2)
R4 (Rx1x2 . . . xn ∧ x2

1 + x2
2 + . . .+ x2

n = 0)⇒
∧

i xi = 0
I i2 + 1 = 0

The axioms FL1-FL10 specify a field. The axiom AC states that the
field is algebraically closed. In particular, we have the instance

y 6= 0⇒ ∃x(yx− 1 = 0)

so we could dispense with FL3. Axioms R1 and R2 state that the set of
elements x satisfying R(x) forms a subring. It will be shown below that the
axioms imply that these elements in fact form a field. R4 then states this
field has characteristic zero, so is a ‘formally real field’. This implies that it
can be ordered, but the ordering need not be unique. Axiom R3 defines <
as a particular ordering (the ordering properties will be established below).
The axiom CR states that every number may be obtained by the usual
construction of the complex numbers from the reals. The axiom I gives the
defining property of i.

2.2 Structures and Models

The theory RC is interpreted in first order structures for the language LRC .
These are tuples (S,+, ·, <,R, 1,−1, 0, i) where S is a set and the function,
predicate and constant symbols are interpreted as functions, relations (of
the appropriate arity) over S and elements of S, respectively. We may use
the same symbols for the object language RC and for the structure. The
intended interpetation will be clear from the context.
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As noted above, it follows from the axioms that (S,+, ·, 1, 0) must be a
field of characteristic 0. Therefore, any model of RC must be an extension
field of Q. The following are some examples of models.

1. Let S = C be the set of complex numbers with the usual definition
addition and multiplication, the constants 0, 1,−1, i and R(x) inter-
preted as holding for the real numbers. Take the interpretation of the
relation < to be the set {(x, y)|Rx and Ry and x < y} where the real
numbers have the usual ordering. This yields a model of RC.

2. Recall that an algebraic number is complex number that is a root of a
polynomial with integer coefficients. Let A ⊂ C be the set of algebraic
numbers. We identify RA as the set of real algebraic numbers. The
ordering is the one induced from the real numbers. Clearly A contains
all the constants. The structure in which we take S = A and R = RA

and all other symbols by restriction from their interpretations for the
complex numbers is a model of RC.

3. In the two examples above the ordering is Archimedean. Recall that
an ordered field F is Archimedean ordered if for any x ∈ F there is an
integer n > x. In the next example the ordering is not Archimedean.

Let Q(x) be the set of polynomials in an indeterminate x with ra-
tional coefficients. Define an ordering on Q(x) by defining p(x) =
a0 + a1x + · · · + anx

n > 0 iff an > 0. This defines an ordering on
the domain Q(x) which can be extended to the field Q[x] of rational
functions. Now let Q[x] be the real closure of Q[x]. Such a real closure
is always possible [vdW53]. We further extend Q[x] to Q[x](

√
−1) by

adjoining
√
−1. Take S = Q[x](

√
−1) and R = Q[x], interpret the

constants and function symbols as in Q[x](
√
−1), and interpret < as

the set {(x, y)|Rx and Ry and x < y}, i.e., the ordering on Q[x]. This
structure is algebraically closed and is a model of RC.

2.3 Definability

It is worth noting that our language for RC is a genuine extension of that
for ACF, in the sense that the new constructs i and R cannot be introduced
as defined terms. Given a language L interpreted in a structure M , say that
a value c in the domain of M is definable in L if there exists a formula φ(x)
with one free variable such that {x | M |= φ(x)} = {c}. Similarly, the set
S of elements of the domain of M is definable if there exists a formula φ(x)
with one free variable such that {x | M |= φ(x)} = S.
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The folowing result shows that when we consider the complex numbers
as the intended model of RC, neither R nor i can be defined in this sense.

Proposition 1 With respect to the complex number model, the set of real
numbers is not definable in the language LACF ∪{i}. Also i is not definable
in LACF ∪ {R}.

Proof: For any formula ψ(x1, x2, . . . , xk) let A(ψ) be the subset of Ck on
which ψ is satisfied.

If φ(z) is quantifier-free formula of ACF and has only the free variable z
then from that fact that any boolean formula can be written in disjunctive
normal form, we conclude that A(φ) is a union of sets of the following form:

S = {z |
∧
i

pi(z) = 0 ∧
∧
i

qi(z) 6= 0}

where pi(z) and qi(z) are polynomials in one variable. It is clear that either
S or its complement in C is finite. Hence this is also true for finite union of
such sets. We conclude that A(φ(z)) cannot represent the reals.

The theory of algebraically closed fields admits elimination of quantifiers
[CK73, Poi00]. Hence, any formula χ(z) with one free variable is equivalent
to a quantifier-free formula φ′(z, y). Note that, φ′ may have other free
variables which are grouped together by the “vector” y. Since M |= χz ⇔
φ′(z, y) we can replace y by constants and still have the equivalence because
the latter are not free in χ. Hence, setting y = 0 (say) we get χ(z) ⇔
φ′(z, y|0) ≡ φ(z). It follows that the set of reals is not definable in LACF.

Next we note that in LACF ∪ {i}, an atomic formula is of the form
p(~z, i) = 0, where p is a polynomial in the language of LACF in several
variables collectively represented by the vector ~z. The arguments above still
apply, since if we extend the theory ACF by adding a new constant i and
an axiom i2 + 1 = 0 it will still have quantifier elimination. To see this,
given a formula χ(~z, i) of LACF∪{i}, consider the formula χ(~z, y) of LACF,
where y is a new variable. This is equivalent to a quantifier free formula
φ(~z, y). Hence, the original formula is equivalent to φ(~z, i).

Finally, we observe that if ψ(x) is a formula of LACF ∪{R} then we can
show by induction that C |= ψ(x) ⇔ ψ(x). Hence if ψ(x) defines i then
i = i, i.e. i = 0, a contradiction. Hence i is not definable. 2
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2.4 Some Theorems

Some simple consequences of the axioms of RC are given in the following
result.

Lemma 1 The following are theorems of RC.

Rx1x2 . . . xn ⇒ x2
1 + . . .+ x2

n 6= −1 for n > 0 (1)

(x+ i · y = x′ + i · y′ ∧Rxyx′y′)⇔ x = x′ ∧ y = y′ (2)

Rx ∧ x 6= 0⇒ ∃y(Ry ∧ x · y = 1) (3)

Rx⇒ ∃y(Ry ∧ (x = y2 ∨ −x = y2)) (4)

R(x)⇒ R(−x) (5)

¬Ri (6)

Ra if a is variable free term which does not contain i (7)

Rxy ⇒ (R(x+ iy)⇔ y = 0) (8)

Rxy ⇒ (x+ iy > 0⇔ x > 0 ∧ y = 0) (9)

Proof: We sketch informal proofs. Formula (1) follows from the fact that
1 = 12 (FL6) and (Rx1x2 . . . xn ⇒ x2

1 + . . .+ x2
n = −1)⇔ (Rx1x2 . . . xn ⇒

x2
1 + . . . + x2

n + 12 = 0). Hence, from R4, we get 1 = 0, which contradicts
FL10.

For formula (2), it will be sufficient to show that 0 = x+ i · y ∧ Rxy ⇒
x = 0 ∧ y = 0. The latter follows immediately from the fact that x+ i · y =
0⇒ x = −i ·y, which in turn implies that x2 +y2 = 0 (using I). Hence from
R4 it follows that x = y = 0.

For formula (3), note that it follows from FL7 and CR that z 6= 0 ⇒
∃xy(Rxy∧z ·(x+i·y) = 1). From this we deduce that (z ·x−1)2+(z ·y)2 = 0
and thus from R1, R2 and R4, Rz ∧ z 6= 0 implies that Rx ∧ z · x = 1.

The formula (4) can be inferred as follows. From CR and AC it follows
that ∃xy(Rxy∧z = (x+i·y)2). Expanding the right side z = x2−y2+2·i·x·y.
If Rz then 2 · i · x · y = 0. This follows from arguments similar to those used
above. Hence x = 0 ∨ y = 0 and it follows that Rz ⇒ ∃x(Rx ∧ z =
x2) ∨ ∃y(Ry ∧ z = −y2) from which the claim follows easily.

We prove that R(−1). By CR ∃xy(−1 = x+ iy). This implies (x+ 1) +
iy = 0. Hence x+ 1 = 0 and R(−1). Formula (5) follows from R1 and R2.
Formula (6) follows from I, FL6, FL10, and R4.

Formula (7) follows fom R1 and R2.
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For formula (8), note that we get from Rxy∧R(x+iy)∧y 6= 0 by R2, (3)
and the field axioms that Ri, contradicting (6). That R(x) ∧ y = 0 implies
R(x+ iy) is immediate from the field axioms.

Formula (9)is straightforward from R3, (8) and the field axioms. 2

Formula (2) formalizes the notion that the ‘real’ and ‘imaginary’ parts
of a complex number are unique. Using this fact, we may introduce complex
conjugation as a defined function symbol, with the conjugate of z denoted
by z. The defining axiom is

Conj Rxy ⇒ (z = x+ i · y ⇔ z = z = x− i · y)
It can be proved that (z1 + z2) = z1 + z2 and (z1 · z2) = z1 · z2.

The definition of real fields is usually in given in the form of formula (1)
[Sho67]. The advantage of R4 over the formula (1) is that with the former
we have to only postulate that the reals form a subring, and the fact that
they also constitute a subfield can then be deduced. Note that it is also
immediate from the field axioms and R4 that the real elements constitute
a formally real field.

A real closed field is a formally real field in which every polynomial of
odd degree with has a root and in which ∀x∃y(x = y2 ∨ −x = y2) holds.
The fact that the real elements form a real closed field follows using (4) and
the following lemma.

Lemma 2 For each odd positive integer n, the formula
RF Rx0x1 . . . xn∧xn 6= 0⇒ ∃y(Ry∧xn ·yn + . . .+x1 ·y+x0 = 0.)

is a theorem of RC.

Proof: To prove this first observe that a polynomial of degree n over
any algebraically closed field has exactly n roots (counting repetitions). The
standard elementary proof [vdW53] can be formalized using only the field
axioms FL1 through FL10 and AC. We need AC to show that for any
polynomial p(x) = ynx

n + . . .+ y0, we have ∀x(p(x) = 0)⇔ ∧iyi = 0. This
can be proved by induction on n. Thus, ∀x(p(x) = 0) ⇒ ∀x(p(x) + 1 6= 0).
Hence AC implies that yn = 0, and the assertion follows by induction. As
a consequence, we have: two polynomials are equal iff all the coefficients
are equal. In particular, two polynomials of different degree can not be
equal. It follows from the division algorithm that, if a is a root of a poly-
nomial p(x) then x − a divides p(x). Then one proves that a polynomial
of degree n has at most n roots. For example, the formula for degree=2 is
∀y2y1y0∃x1x2∀x(y2x

2 + y1x+ y0 ⇔ x = x1 ∨ x = x2).
Now, using complex conjugation it follows that Rz ⇔ z = z. Writing

z = x+ i · y where Rxy, this may be seen as follows. In one direction, z = z
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implies y = 0 and z = x and hence Rz. Conversely, suppose Rz. From the
identity ((z2−x2 + y2)2 + 4x2y2 = 0) and Rz we have 4x2y2 = 0 by R2 and
R4. Hence, x = 0 or y = 0. If y = 0 then z = x = z. But, if x = 0 then
z = iy and z2 + y2 = 0 which implies z = x = 0, so again z = x = z. Thus,
in either case z = z.

If p(x) has real coefficients then p(z) = 0 ⇔ p(z) = 0. That is, nonreal
roots come in distinct pairs. Hence if n is odd, then a real polynomial of
degree n has a real root. We note that the informal arguments above can
be formalised in RC. 2

Corollary 1 Suppose M is a model of RC. Let MR be the restriction of M
to the set of elements x satisfying R(x). Then MR is a model of RCF.

Proof: That all the field axioms FL1-FL10, except FL7 hold in MR is
immediate from their universal form. In fact, FL7 also holds, by Lemma 1
part (3). That MR is a formally real field follows from the fact that it satis-
fies R4. Every polynomial with odd degree has a root in MR by Lemma 2,
and ∀x∃y(x = y2 ∨ −x = y2) holds by Lemma 1 part (4). 2

The next lemma shows that the relation < is a total linear order on
values satisfying R.

Lemma 3 It can be proved in RC that the relation < is irreflexive, asym-
metric, and transitive and satisfies the formula

Rxy ⇒ x < y ∨ x = y ∨ y < x. (10)

Proof: The formula ¬(x < x) (irreflexivity) can be deduced from x =
x+ z ⇒ z = 0 and R3. Using the formula (4) and R4 we deduce

Rxy ⇒ ∃z(Rz ∧ z2 = x2 + y2)

Transitivity (x < y∧y < z ⇒ x < z) is an easy consequence of this and R3.
The formula x < y ⇒ ¬(y < x) (assymetry) is a consequence of transitivity
and irreflexivity.

Observe that Rxy ⇒ x < y ⇔ x − y < 0 is a theorem. Hence, to prove
(10), it is sufficient to prove Rx ⇒ x < 0 ∨ x = 0 ∨ 0 < x. But this follows
from (4) and the axiom R3. 2
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3 Quantifier Elimination and Decidability

A theory T is said to admit elimination of quantifiers if for any formula A
in T there is an open (i e. quantifier free) formula B such that A ⇔ B is
provable in T. A theory T is a complete theory if every closed formula A is
decided, i.e., A or ¬A is a theorem. Complete theories have many pleasant
properties [Sho67]. Some of them are listed below for later use.

1. For any two models of a complete theory T the same formulas are
valid.

2. To prove that a formula F is a theorem it suffices to show its validity
in any model.

Actually, each of the above properties characterizes complete theories. As
a consequence of the second property we may use any method to prove the
validity of a formula in some model. For example, since the theory of real
closed fields RCF is complete we may use analytical tools (e.g. differentia-
tion and integration) in the field of real numbers to prove a formula of RCF.
Then we are guaranteed that it is a theorem of RCF.

The main result of this section is the following.

Theorem 1 The theory RC admits elimination of quantifiers. It is a com-
plete theory.

To prove this result, we develop a type of quantifier elimination result
for RC. For the following, if ψ is a formula of RCF, we define ψR to be the
formula obtained from ψ by replacing each occurrence of a quantifier ∃x(φ)
by ∃x(Rx∧φ). Note the following: if we have a model M of RC, then we can
obtain a model MR of RCF by restriction to the set of elements satisfying
R. Moreover, a closed formula φ of RCF holds in MR iff φR holds in M .

We suppose that for each variable x of RC there is a pair of fresh variables
xr, xi of RCF. If ~z = xy . . . is a vector of variables, we write ~zr for xryr . . .,
and ~zi for xiyi . . .. We abbreviate x = xr + ixi ∧ y = yr + iyi ∧ . . . to
~z = ~zr + i~zi.

Lemma 4 For any formula φ(~z) of RC there is formula ψ(~zr~zi) of RCF
such that the following is provable in RC:

∀~zr~zi(R~zr~zi ∧ ~z = ~zr + i~zi ⇒ (φ(~z)⇔ ψR(~zr~zi)).

Moreover, ψ can be computed from φ in linear time.
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Proof: We note that by replacing atomic formulas of the form t1 = t2
by t1 − t2 = 0, and atomic formulas t1 > t2 by t1 − t2 > 0, we may assume
that all atomic formulas are of the form t = 0, t > 0 or Rt.

We define a mapping T : Fm(RC)→ Fm(RCF) from the set of formulas
of the theory RC to the theory RCF. Auxilliary to the definition is another
mapping τ : t(RC)→ t(RCF)× t(RCF) from the set of terms of RC to a
pair of terms of RCF, represented by τ(t) = (τr(t), τi(t)). Intuitively, τr(t)
and τi(t) are, respectively, the real and imaginary parts of the term t. The
definition of τ is given by the recursion

τ(ı) = (0, 1), and τ(k) = (k, 0), k an integer
τ(x) = (xr, xi), x a variable

τ(t1 + t2) = (τr(t1) + τr(t2), τi(t1) + τi(t2)),
τ(t1 · t2) = (τr(t1)τr(t2)− τi(t1)τi(t2), τr(t1)τi(t2) + τi(t1)τr(t2)).

(11)

Next, we define T . Let φ be an atomic formula. Then φ must be of the
form t = 0, t > 0 or Rt. We define T (φ) in each case:

T (t = 0) is Tr(t) = 0 ∧ Ti(t) = 0
T (t > 0) is Tr(t) > 0 ∧ Ti(t) = 0

T (Rt) is Ti(t) = 0

The inductive cases are given by:

T (∃xφ) = ∃xrxi(T (φ))
T (φ1 ∧ φ2) = T (φ1) ∧ T (φ2)

T (¬φ) = ¬T (φ)

Note that for a formula φ(~z) with free variables ~z, the formula T (φ(~z))
has free variables ~zr~zi. We need to show that

∀~zr~zi(R~zr~zi ∧ ~z = ~zr + i~zi ⇒ (φ(~z)⇔ T (φ)R(~zr~zi)) (12)

is a theorem of RC. For φ an atomic formula, this follows using Lemma 1
parts (2), (8) and (9) and the fact that if t is a term with variables ~z, then
it can be shown using the field axioms and I that

~z = ~zr + i~zi ⇒ t = τr(t) + iτi(t).

Proceeding inductively, assume that (12) is a theorem for φ(~z). For the
case of an existential, note that T (∃xφ(~z))R ≡ ∃xrxi(R(xrxi) ∧ T (φ(~z))R).
Thus, we need to show

∀~yr~yi(R~yr~yi ∧ ~y = ~yr + i~yi ⇒ (∃xφ(~z)⇔ ∃xrxi(R(xrxi) ∧ T (φ(~z))R))).
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where y is ~z minus x. For this note that the implication from left to right
of the ⇔ follows from (12) by AC, and the implication from right to left
follows from (12) by taking x = xr + ixi. The cases for conjunction and
negation are straightforward.

While this construction gives a formula that satisfies the theorem, we
note that T (φ) may be of size exponential in the size of φ. This is because
if we apply τ to a product t = t1 . . . tn of n terms, we obtain that τr(t) and
τi(t) are of size exponential in the size of t. To prevent this blowup, we can
first massage formulas so as to remove terms that will cause such blowup
under τ . We assume that for each term t of RC there is a distinct fresh
variable zt of RCF.

For this, we define the function N : Fm(RC)→ Fm(RC), which reduces
the multiplicative depth of subterms as follows. Say that a term t is basic
if all its multiplicative subterms t1 · t2, have both t1 and t2 equal to either
constants or variables. A formula is basic if all its terms are basic. Note
that for any atomic formula φ(t1 · t2) containing a multiplicative term t1 · t2,
the formula

φ(t1 · t2) ≡ ∃zt1zt2(φ(z1 · z2) ∧ z1 − t1 = 0 ∧ z2 − t2 = 0)

is provable. Repeatedly applying this equivalence, we may transform any
quantifier free formula φ in linear time into an equivalent basic formula
N(φ) of the form ∃~z(φ′) where φ′ is quantifier free. We also assume that the
variables introduced do not occur in the original formula. We extend the
operation N to the case where the original formula φ contains quantifiers
by the inductive definition

N(∃xφ) = ∃x(N(φ))
N(φ1 ∧ φ2) = N(φ1) ∧N(φ2)

N(¬φ) = ¬N(φ)

A straightforward induction shows that for all formulas φ, we haveN(φ) ≡ φ.
Moreover, the size of N(φ) is linear in the size of φ.

Observe that for basic terms t, the size of τ(t) is linear in the size of t.
Thus, ψ = T (N(φ)) is a formula satisfying the theorem that is of size linear
in the size of φ.

2

Since RCF admits quantifier elimination, the formula ψ may be assumed
to be quantifier free. We remark that Lemma 4 is not quite a quantifier
elimination theorem in the usual sense, since φ is proved equivalent to a
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a quantifier free formula in the context of an assumption that makes use
of the outer universal quantifiers and the predicate R; the latter prevents
application of the quantifier elimination for LACF ∪ {i}. However, if we
introduce function symbols Re(z), Im(z) for the real and imaginary parts
of z, then we may eliminate the quantifiers and express the result as

φ(~z)⇔ ψR(Re(~z), Im(~z)).

Alernately, a conjugation operation could be used to express Re(z), Im(z).

Lemma 5 Let ψ be a formula in the language of RCF without free vari-
ables. If ψ is a theorem of RCF then ψR is a theorem of RC.

Proof: We prove the contrapositive. Suppose that ψR is not a theorem
of RC. Then by completeness of first order logic, there exists a model M of
RC in which ψR is false. Let MR be the submodel of M obtained by restrict-
ing the domain to the set of elements x satisfying R(x). An easy induction
on the construction of ψ shows that MR satisfies ¬ψ. By Corollary 1, MR

satisfies the axioms of RCF. Hence, by soundness of first order logic, ψ is
not a theorem of RCF. 2

Completeness of RC is an immediate consequence of this result.

Theorem 2 If a formula φ of RC has no free variables, then either φ or
¬φ is a theorem of RC.

Proof: By Lemma 4, RC has a theorem of the form φ⇔ ψR where ψ is
a formula of RCF without free variables. Since RCF is complete, either ψ
or ¬ψ is a theorem of RCF. By Lemma 5, either ψR or ¬ψR is a theorem
of RC. It follows that RC decides φ. 2

We also obtain decidability of RC, and can characterize its complexity.

Theorem 3 The satisfiability of a formula in A in RC may be decided in
exponential space. If A is quantifier free then satisfiability may be decided
in polynomial space.

Proof:By Lemma 4, given a formula φ(~z) of RC we can compute in
linear time a formula ψ(~zr~zi) of RCF such that the following is provable in
RC:

∀~zr~zi(R~zr~zi ∧ ~z = ~zr + i~zi ⇒ (φ(~z)⇔ ψR(~zr~zi)).

13



It follows that if φ is satisfiable in a model of RC, then so is ψR(~zr~zi), hence
ψ(~zr~zi) is satisfiable in a model of RCF. Conversely, if ψ(~zr~zi) is satisfiable
M in a model of RCF, then adjoining i =

√
−1 to M we obtain a model M [i]

of RC and a satisfying assignment of ψR(~zr~zi). Hence, taking z = zr + izi
we obtain a satisfying assignment of ψ(~z) in M [i].

Thus φ is satisfiable in a model of RC iff ψ is satisfiable in a model
of RCF. The theorem now follows using the exponential space complexity
bounds for deciding RCF derived by Ben-Or, Kozen and Reif [BKR86]. In
the quantifier free case, the formula ψ is of the form ∃~x(ψ′) where ψ′ is
quantifier free. This is satisfiable iff ψ′ is satisfiable. Hence, in this case,
the polynomial space complexity bounds of Canny [Can88] for the quantifier
free case of RCF gives the result. 2

Lemma 4 gives an algorithm for reducing a formula of RC to a formula
of RCF. We then use the decision procedure for the latter to decide sat-
isfiability of the former. The best-known decision procedures [BPR03] for
RCF are improvements over Collins’ cylindrical decomposition algorithm
[Col75]. Now the time complexity of these algorithms depend crucially on
the number of variables (it grows double exponentially). The procedure in
Lemma 4 can increase the number of variables. First, consider the case of a
single variable. The term zn will be decompesed into terms terms involving
O(n) variables. This will cause an exponential blowup in the complexity.
On the other hand, if we write z = x + iy there are only two (real) vari-
ables. However, if we use this decomposition on the term z1z2 · · · zk then
although the number of variables is only 2k the number of terms becomes
O(2k). Therefore, a judicious combination of the two decomposition proce-
dures is required. For example, we may combine both. Thus, for a monomial
t = zn1

1 · · · z
nk
k we replace each zni

i by a new variable ui in t and follow the
decomposition in Lemma 4 and in the equations ui = zni

i we use zi = xi+iyi.
Combining this with the procedure in [BPR03] Chap. 11, we get that the
time complexity of deciding satisfiability in RC is O(sdk)O(1)k

where s is a
bound on the number of polynomial terms in at most k variables and d is a
bound on their degrees.

4 Examples

The fact RC is a complete theory implies that a formula valid in any model is
a theorem. We may use some techniques specific to the model, for example,
topological arguments or integration. This is illustrated in the case of real
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closed fields by proving the Weirstrass Nullstellansatz: if a continuous real
function f satisfies f(a)f(b) < 0 then it has a zero between a and b. This
can be proved for polynomials using the axioms of real closed fields [vdW53].
In our case we have a richer language. We prove the continuity and open
mapping property of polynomial functions. We use these theorems to prove
the maximum principle of complex function theory for the case of polyno-
mials. We will make free use of the absolute value function: |z| =

√
z̄z.

The square root is a defined symbol for positive real elements (it can be
extended to all elements.) The defining axiom is We can derive all the alge-
braic properties of square roots, for example,

√
x <
√
z ⇔ x > 0∧x < z and

|xy| = |x||y|. It is also easy to see that the standard proof of the triangle
inequality |x+ y| ≤ |x|+ |y| can be formalized as a theorem. Alternatively,
we can deal with |z|2 = z̄z if we want to avoid new symbols, but the proofs
are a bit longer. Further, we have the following

Lemma 6 The following are theorems in RC, for each positive integer n:

0 ≤ x ∧ 0 ≤ y ⇒ (xn ≤ yn ⇔ x ≤ y)
xnz

n
0 + · · ·+ x1z0 + x0 = 0⇒

∃y0y1 . . . yn−1∀z(xnz
n + · · ·+ x0 = (z − z0)(yn−1z

n−1 + · · ·+ y0))

Proof: The first formula is proved by use of the identity

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1)

The second formula is a bit more involved. It expresses the fact that if z0
is a zero of a polynomial p(z) then z − z0 divides p(z). The standard proof
given in any undergraduate textbook can be formalized. We recall that this
involves the use of the division algorithm, a purely algebraic process. 2

The following result expresses the continuity of polynomials.

Proposition 2 For every integer n ≥ 0

∀x0 · · ·xnz0w0(xnz
n
0 + · · ·+ x1z0 + x0 = w0) ∧ t > 0⇒

∃s(s > 0 ∧ ∀z(|z − z0| < s⇒ |xnz
n + · · ·+ x0 − w0| < t))

Proof: We first use the first identity in the preceding lemma to show that
the mononomials p(z) = zk satisfy the above inequality. We assume first
that z0 6= 0.

|zk−zk
0 | = |z−z0||zk−1+zk−2z0+ · · ·+zk−1

0 | ≤ |z−z0|(|z|k−1+ · · ·+ |z0|k−1|)
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Thus if we choose s = min(t(2z0)−k, |z0|) will satisfy the requirements. For
z0 = 0 we take s = t

1
n . The fact that positive real elements of RC possess

unique positive roots of all order can deduced from the two properties: i.
every positive real has a unique positive square root, and ii. every polyno-
mial of odd degree has a real root. Now, to prove continuity for an arbitrary
polynomial we use induction on the number of additive terms. Thus, assume
xn 6= 0. We write p(z) = xnz

n+· · ·+x0. Then w0 = p(z0). We have from the
triangle inequality |p(z)−w0| ≤ |p(z)−xnz

n− (w0−xnz
n
0 )|+ |xnz

n−xnz
n
0 |.

The polynomial q(z) ≡ p(z)−xnz
n has one less term and q(z0) = w0−xnz

n
0 .

Thus there is s1 > 0 such that |z − z0| < s1 implies |q(z)− q(z0)| < t/2 and
there exist s2 > 0 such that |z − z0| < s2 implies |zn − zn

0 | < t(2|xn|)−1.
Then s = min(s1, s2) satisfies the claim for p(z). 2

The next result is the open mapping property of polynomials. A complex
function f is said to be open if it maps open sets to open sets [Ahl79]. This
is a topological property. However, we can chracterize it algebraically by
reducing it to the case of open disks on the complex plane.

Proposition 3 The following is a theorem of RC.

∀sz0w0(p(z0) = w0 ⇒ ∃t > 0∀w(|w−w0| < t⇒ ∃y(|y−z0| < s∧p(y) = w)))

Proof: We prove that the negation of the above formula F leads to a contra-
diction. The negation says that there are s, z0, w0 such that p(z0) = w0 and
for all t > 0 there exists w such that |w −w0| < t and for all y, |y − z0| < s
implies p(y) 6= w. Take t = sn, so that |w0−w| < sn, and consider the poly-
nomial p(z)−w. Since it can be factorized into linear factors (see Lemma 6)
we can write p(z)−w = (z−u1) · · · (z−un). Hence, ¬F implies that all zeros
ui of p(z) − w must lie on the boundary or outside the circle |z − z0| < s.
Hence |w0−w| = |p(z0)−w| = |z0−u1| · · · |z0−un| ≥ sn. This contradiction
proves that F is a theorem. 2

The proof is similar to one in [Tho86]. Finally we prove the maximum
principle for polynomials.

Proposition 4 The following formulas are theorems of RC. For any posi-
tive integer n

∀x0 · · ·xn∀z0rc(¬(x1 = x2 = · · · = xn = 0) ∧ |z0 − c| < r ⇒
∃y(|y − c| < r ∧ |xnz

n
0 + · · ·+ x1z0 + x0| < |xny

n + · · ·+ x1y + x0|))
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Proof: First, let us state the formula in words. Given any non-constatnt
polynomial p(z) = xnz

n + · · · + x1z + x0 of degree n, for any z0 in the
disk C ≡ |z − c| < r there exists a y in the interior of the disk such that
|p(z0)| < |p(y)|. Let w0 = p(z0). By the previous proposition there is some
t > 0 such that all w satisfying |w − w0| < t are in range of p(z) when
restricted to the disk C. If w0 6= 0 then w = w(1 + t(2|w0|)−1) satisfies
|w − w0| < t and |w| > |w0|. Thus there is some y in C such that p(y) = w
and |p(y)| > |w0| = |p(z0)|. 2

We presented proofs of three important theorems in complex analysis.
However, we have to restrict to polynomial functions whereas all the theo-
rems are true for analytic functions. We can extend the theorems to rational
functions, that is, fractions of polynomial functions.

5 Related Work

The model theory of a pair (F,U) where F is a field and U is a subfield has
been discussed before (see e.g. [CK73] Chap. 5 and the references there).
These illustrate some special properties like saturation and model complete-
ness. However, our work was motivated by the need for an axiomatization,
and we have also studied algorithmic aspects of the theory. In particlar,
we focussed on the pair where F is an algebraic closed field and U is its
real closed subfield. As mentioned before, we were also motivated by the
basic underlying structures of quantum information theory. We have shown
elsewhere that based on the theory RC we can build fairly comprehensive
logics [MP03, Pat05] to reason about quantum phenomena.

We also note some more recent works by Zilber [Zil90, Zil03]. The second
paper is especially relevant. In it Zilber gives the theory CR,roots with two
unary predicates R and U . The predicate R is for the real axis as in our case.
However, the predicate U is for the set of complex roots of unity. He gives
a complete axiomatization for the language using some deep results from
number theory. In our case we only use the 4th root of unity (i). Plainly,
the nth roots of unity for any fixed n are definable in our language. This
may be necessary to reason about some quantum protocols notably the Shor
algorithm [NC01, Pat06].
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