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Abstract. Quantum computation deals with projective measurements
and unitary transformations in finite dimensional Hilbert spaces. The
paper presents a propositional logic designed to describe quantum com-
putation at an operational level by supporting reasoning about the prob-
abilities associated to such measurements: measurement probabilities,
and transition probabilities (a quantum analogue of conditional proba-
bilities). We present two axiomatizations, one for the logic as a whole
and one for the fragment dealing just with measurement probabilities.
These axiomatizations are proved to be sound and complete. The logic
is also shown to be decidable, and we provide results characterizing its
complexity in a number of cases.
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1 Introduction

Quantum computing promises to open fresh vistas for computer science - almost
100 years after quantum mechanics revolutionized physics. We expect that logical
methods will play a key role in the development of quantum computer systems,
much like the role they have played in classical computing. (Pratt [Pra92] has
also argued that logical support for reasoning about quantum effects may become
essential in the next ten years to designers of classical hardware.) In this paper,
we study what is potentially one of the building blocks of modal logics for
quantum computing, by developing a logic for expressing properties of quantum
states, in the same way that propositional logic, which expresses properties of
classical states, provides the basis for modal logics of computation.

A new propositional basis is required for a logic of quantum computation
because quantum mechanical description does not fit in the classical paradigm
being inherently probabilistic rather than deterministic. There already exists
an extensive body of literature on logics for reasoning about (classical) prob-
ability [AH94,Bac90,Car50,FHM90,Nil86]. Of these works, relatively few con-
cern explicit statements about probability values; the most expressive and most
fully analyzed framework that does admit such statements is that of Fagin et al
[FHMO90], which permits statements such as X;—1. ,a;P(¢;) < ag41, where the
¢; are propositional formulas and the a; are integer constants.

However, these existing results cannot be directly applied to reasoning about
probabilities in the context of quantum computation. One of the obstacles is



that the space of propositions in quantum mechanics has a significantly more
complicated structure than the space of classical propositions. Unlike its clas-
sical physics counterpart measurements of observables often disturb a quantum
system and there are incompatible obsevables that can not be measured simul-
taneously. In such cases one can only make probabilisitic predictions. These
probabilities are calculated from non-linear equation over the complex number
field. The subject of “quantum logic” [BvN36] studies the algebraic structure
of the subspaces of the quantum state space that are associated with measure-
ments'. This algebra turns out to have a non-boolean structure in which the the
distributive law fails. “Quantum probability” theory [Gud89] goes on to define a
revised notion of probability space based on these non-boolean algebraic spaces.

Our approach in this paper will be somewhat more pragmatic: we will take
the Hilbert space formalization for granted, and focus on the operationally ob-
servable probabilities of quantum measurement outcomes. We take finite dimen-
sional Hilbert spaces as our semantic basis; the restriction to finite dimensions is
precisely that used in quantum computation. We consider two probability oper-
ators: a monadic operator P and a dyadic operator T'. The operator P resembles
a standard probability operator. Unlike quantum logic, which permits boolean
combinations of incompatible propositions, we restrict the application of this
probability operator to boolean combinations of a set of compatible propositions.
A consequence of this is that the logic of this probability operator is similar to
the logic of the classical probability operator. The second type of probability op-
erator T that we consider resembles a classical conditional probability operator:
in the quantum case, this notion corresponds to the probablity of a transition
between subspaces taking place when a measurement is performed.

The main results of the paper are completeness theorems for two axiomatiza-
tions. The first deals with the fragment of the logic containing only the operator
P, and permitting the expression of linear inequalities over probability values.
The complete axiomatization in this case is wholly propositional (i.e. does not
require quantification), and consists of a set of axioms concerning the interac-
tion of the probability operators and boolean logic, together with a set of axioms
for reasoning about linear inequalities. The second axiomatization is for the full
language, with both operators P and T. When axiomatizing reasoning about
classical conditional probabilities, one needs an axiomatization of real closed
fields [Tar51]. For our logic, we need an extended theory of algebraically closed
field with real closed field embedded in it.

In addition to the completeness results, we show that the satisfiability prob-
lem is decidable for both languages we consider, and we characterize its com-
plexity. The complexity classes we identify for the satisfiability problem turn out
to be the same classes as in the complexity results of [FHM90] for the classical
case, viz., NP complete for the language with just the operator P and linear

! The term “quantum logic” is a somewhat of a misnomer, since it is concerned not
with logic in the sense of inferential relations on syntactic expressions, but the with
the analogue of boolean algebra in the quantum world.



constraints, and in exponential space for the language with both operators P
and T and with polynomial equations and quantification over numbers.

The structure of the paper is as follows. Section 2 provides an overview of the
basic definitions of quantum mechanics. We introduce the syntax of the language
in section 3.1, and provide its semantics in Section 3.2. Section 4 provides a few
illustrations of what can be expressed in the logic. The axiomatizations and
completeness results are presented in Section 5.1 (for the logic based on P),
and Section 5.2 (for the logic based on both P and T'.) Section 6 concludes by
discussing some questions raised by these results and sketching future work. Full
proofs of the results are provided in the appendices for the interested reader.

2 Quantum Theory

The most complete description of a physical system is given by its state. Accord-
ing to quantum theory the state of system is a unit vector in a Hilbert space.
Thus, let S be system. Associated with S is a Hilbert space, that is complex vec-
tor space with an inner product. We shall restrict ourselves to finite-dimensional
spaces, which are adequate for quantum computing and our logic. We assume
that all states are pure states, as described below. However, we could easily ex-
tend the syntax and semantics to “mixed” states which are positive, normalised
combination of pure states.

Postulate 1 Associated to S is a finite dimensional complex Hilbert space {H, ()}
called the state space. The dimension n is determined by the system.

We identify H with C™ with standard inner product; if |a) = (z1...2,), |8) =
(y1...yn) then (a|B) = > T;y; where (o] is the conjugate vector (T, -, Tp).
The inner product satisfies («|81 + f2) = (a|B1) + («|B2) and (a|3) = (B]a) and
(aJa) > 0. The quantity |||a)|] = v/{a|a) is called the length of |a). If it is 1
then « is called a unit vector. Note that the length or more generally |{(«|3)| is
invariant w.r.t. multiplication of |«) and |3) by arbitrary complex constants of

modulus 1. With this notation we extend Postulate 1.

Postulate 2 The state of the system is given by a unit vector, determined up
to a scalar multiple of modulus 1. Moreover, each such vector is realisable as a
state.

Thus |a) and |3) represent the same state iff |a) = €¥¢|3) ¢ real.

A basis b = {a1, -+, a,} of H is a linearly independent set of vectors
such that every vector in H is a (unique) linear combination of the |a;)’s. Tt is
orthonormal iff (c;|c) = d;; where d;; = 1 if i = j and 0 otherwise. From any
set of n linearly independent vectors we can construct an orthonormal basis.
It is the set of orthonormal vectors which correspond to the classical notion
of states. Their occurence in any test can be considered as mutually exclusive
events. Henceforth basis will mean an orthonormal one.

Postulate 3 Any orthornormal basis represents a realisable mazimal test.



Let n be the maximum number of different outcomes possible in a given system
for any test. For example we may test for value of the z-component of spin
of an electron or polarisation of a photon. We imagine we have large number
of similarly prepared systems called an ensemble and we test for the values of
different measurable quantities like spin etc.

For a spin-1/2 system we always get a maximum of 2 outcomes ('up’ and
"down’) for any test. So n = 2. This number is a property of the system and
according to the postulate equals the dimension of the state space. In general,
we postulate that for an ensemble in an arbitrary state, it is always possible to
devise a test that yields the n outcomes corresponding to an orthonormal basis
with definite probability.

Postulate 4 If the system is prepared in state |a) and a mazimal test corre-
sponding to a basis b = {|B8;)| i = 1,---,n} is performed, the probability that the
outcome will correspond to |3;) is given by p; = |{a|B3;)]2.

Since one of the outcomes must occur, > p; = 1. In the relative frequency
interpretation of probability this means that if we have an ensemble of NV systems
and perform a maximal test corresponding to {|5;)} then if the frequency of
outcome corresponding to |3;) is n;, we have p; = limy o 5.

If the system is known to be in one of the states in a basis {|5;) }, say |51), then
p1 =1 and p; =0 for ¢ # 1. That is, we can predict the outcome with certainty
for this maximal test. This is the case that corresponds to the classical theory.
However, if we choose a different maximal test corresponding to a different basis
then the outcomes become random.

We note that if H is a Hilbert space with inner product ( , ), then H is iso-
morphic to the dual space of linear functionals (i.e. complex valued functions) on

H. Thus for each |«) let {«| denote its image under this isomorphism, called the

dual. Then ((a])(|8)) = (a|B) by definition. Further(|a)(3))(|7)) < ((8]7))]a)

is a linear operator on H. Let £(H) denote the space of linear operators on H.
An operator A € L(H) is hermitian if (a|A8) = (Aa|B) for all |&) and |3). An
operator U is called unitary if (Ua|UB) = («|B) for all |a) and |5). In matrix
notation let Bt denote the transposed conjugate of a square matrix B. Then B is
hermitian if B = B' and U is unitary if U~! = UT. In particular a unitary oper-
ator is invertible. Hermitian and unitary matrices play a crucial role in quantum
theory.

Let the system be in a state |a;) where {|a;) |4 = 1,---,n} is an orthonormal
basis. Let {|5;)|i = 1---,n} be another orthonormal basis. Then if we do a
maximal test with respect to {|G;)} then the probability of obtaining result |5;)
is p;; = |(a;]3;)|?. This can also be written as Tr((Ja;){c|)(|5:)(8i|)) where
the trace Tr is the sum of the diagonal elements of a square matrix, which is
independent of the representation.

The p;; are called the transition probabilities. Let U = (u;; = (a;|0;)) be a
matrix. Then U is unitary. It is the matrix which expresses the change of basis
and p;; = |u;j|%. We thus see that the transition probability matrix is doubly



stochastic, i.e., Y. pi; = Zj pi; = 1. But an arbitrary doubly stochastic ma-
trix (for example appearing in classical Markhov processes) may not correspond
to transition probability matrix in quantum theory because it may not satisfy
pij = |uij|? for some unitary U = (u;;). Such matrices (p;;) are called orthos-
tochastic. Thus the p;; must satisfy some relations. We thus see an important
difference with classical probability theory. We can not make arbitrary prob-
ability assignments (satisfying of course the usual probability constraints) but
the probabilities must satisfy certain nonlinear inequalities. This also true of the
probabilities p; introduced earlier.

3 Syntax and Semantics

We now present the syntax and semantics of our logic of quantum probabilities.

3.1 Syntax

For each dimension n > 1 we define two languages interpreted with respect to n-
dimensional Hilbert space: £,,(P) and L, (P,T). (We write L, (X) when making
assertions that apply to both languages.) We begin by describing the language
L, (P), which is based on the probability operator P.

Maximal measurements correspond to orthonormal bases of the Hilbert space,
which are related by unitary transformations, as discussed above. Bases are rep-
resented in both languages by means of basis variables b, c,d,.... A basis com-
ponent of L, (X) is an expression of the form b; where 1 < i < n and b is a
basis variable.? Semantically, basis components correspond to the elements of
an orthonormal basis of the n-dimensional Hilbert space.

The probability operators in our language will apply to formulas expressing
properties of the outcome of a maximal measurement. We capture these proper-
ties by b-formulas, where b is a basis variable representing the measurement. A b-
formula is a Boolean combination of b-components, i.e., an expression of the form
b;, or aAd/, or ~«r, where o and o are b-formulas. We define aVa/as—(—aA—a).
Note that all the basis components in a b-formula must be constructed from the
same basis variable b; if ¢ and ¢’ are distinct basis terms then by A b) is not a
b-formula. Intuitively, this restriction ensures that b-formulas describe the out-
comes of measurements compatible with the basis b, and prevents construction
of formulas combining results of incompatible measurements.

A probability term is an expression of the form P(«) where « is a b-formula
for some basis variable b. A linear probability atom is an expression of the form
ay-P(ay)+...+ak - Plag) < ¢, where each a; is an integer, ¢ is an integer, and
each «; is a b’-formula for some basis constant b’. The formulas of the language
L, (P) are all the boolean combinations of linear probability atoms i.e., each

2 Note that we do not use subscripting to distinguish basis variables: b; and by always
denote components of the same basis b, rather than two distinct basis variables. We
use superscripting to denote distinct basis variables when use of distinct letters for
the basis variables do not suffice.



linear probability atom is a formula of £, (P), and if ¢; and ¢y are formulas of
L, (P) then so are =¢1, and ¢1 Ada. The constructions ¢1Vda, d1 = @2, 1 < Po
may be defined in this language as usual. Expressions such as X <Y, X =Y,
where X,Y are linear combinations of probability terms are also definable in
this language.

For the language L, (P,T), we add transition probability terms, which are
expressions of the form T'(«, ), where « is a b-formula for some basis variable
b and [ is a c-formula for some basis variable c. Intuitively, these are a kind of
conditional probability, expressing the probability that a measurement in basis
¢ will have outcome satisfying (3, given that the current state is a. A transition
probability atom is an expression of the form p < 0, where p is a polynomial
expression with integer coefficients over probability terms and transition proba-
bility terms. Note that linear probability atoms are a special case of transition
probability atoms. As above, comparison operators other than ‘<’ are definable.
For Fagin et al, [FHM90], the shift from linear inequalities over probability atoms
to polynomial inequalities was motivated by the fact that conditional probabili-
ties are defined as a quotient of probabilities, which leads to a polynomial when
the quotients are multiplied out. For us, there is the additional motivation that
quantum probabilities are inherently quadratic. Define a simple transition prob-
ability formula to be a boolean combination of transition probability atoms. For
the language to be expressive enough we need quantification over both real and
complex numbers and add a new type of term, denoting a complex number, to
represent the entries of unitary matrices.

The proof theory for £(P,T) presented below will make use of results con-
cerning the first order language £y . —y with equality the only predicate symbol
and function symbols representing addition and multiplication. The language
L. = leads to a recursively axiomatizable (in fact, decidable) theory both
when interpreted with respect to the real field R and the complex field C [Tarb1].
For our logic, it is convenient to first define the sorted first order language Lrc
with two sorts R and C, with R a subsort of C. The language Lrc has equality
as its only predicate symbol, a constant symbol ¢ (of sort R) for each integer, and
the (infix) binary functions + and - as its only function symbols. Both function
symbols are overloaded: if ¢1,t2 are terms of sort R (respectively, C), then so are
t1 4+t and tq - to. We write Va : R.(¢) and Va : C.(¢) for universal quantification
over the reals and complex numbers respectively. In this language, we may define
operations such as complex conjugation x + iy = x — iy, and the modulus of a
complex number |z + iy| = y/22 + y? (where x and y are real), so we use such
operations freely. The inequality < y on real terms x,y is also definable (by
J2: R.(y =z + 2?)).

The language £, (P, T) is defined to be the extension of Lrc in which we add
probability terms and transition probability terms as terms of sort R, as well as
the terms m;; (b, c), of sort C, for 1 < ¢,j < n and basis variables b, c. Intuitively,
m;;(b, c) denotes the ij-th entry of the unitary matrix that transforms the basis
denoted by b into the basis denoted by c.



3.2 Semantics

We now present the semantics for the language £,,(P,T) (and consequently for
the sublanguage £, (P)). Although there are no explicit modal operators, the
semantics has some resemblences to Kripke semantics. In particular, we interpret
formulas at a state within a collection of states, with respect to an interpretation
of the atomic symbols.

A structure for L, (P,T) is an n-dimensional Hilbert space H. A state within
this structure is a unit vector ¢ in H. An interpretation of L, (P,T) in a structure
H is function 7, such that

1. for each basis variable b, 7(b) is an orthonormal basis 1, ...,%, of H; (we
write m(b); for ;)

2. for each real variable x, w(x) is a real number;

3. for each complex variable X, 7(X) is a complex number.

If M = (m;;) is an n X n unitary matrix and B = 91, ...,1, is a sequence
of vectors of H, we write M B for the sequence of vectors ¢1,... ., where
Y, = X7 mpip;. If B is an orthonormal basis of H then so is M B.

We extend the interpretation 7 to terms t of various sorts as follows. Given
the term t, a state ¢ and an interpretation 7, we define the interpretation [t]
of X with respect to m and v as follows. Basis variables are interpreted as bases:

1. [b]x,4 = 7(b), when b is a basis variable.

When b is a basis variable, we interpret b-formulas as projection operators on
H (these may also be understood as representing the subspaces of H onto which
they project):

2. [oi]lr ) = W) ('], where ¢’ = m(b);;

3. [oa A 2]y = [oa]n,w - [a2]x,p (this is the projection operator projecting
onto intersection of the subspaces of H that are the images of the projec-
tors [a1]r .y and [ouq]x,y) which could be written as the product of these
projectors.;

4. [=a]x.y = [e]5,, is the projection operator projecting onto the orthogonal
complement of the image of H under [ y.

(We note that the reason we have taken 7(b) to be a basis rather than sequence
of projectors is in order to give semantics to the terms m;;(b, c).) Terms of sort
R, including probability terms and transition probability terms, are interpreted
as real numbers, and terms of sort C, including the unitary matrix entry terms
m; (b, c), are interpreted as complex numbers:

. [#]x» = w(x), when x is real or complex variable;
. [k]xw = k, when k is an integer;

[P = lofr o (V)

%T(Oé s Bl = Te([Flrp[a]ry)

m;; (b, ¢)]xy = ¢ij, where M = (c¢;5) is the n x n (unitary) complex array
such that Mm(b) = m(c);

© 00 N O L



10. [X - Y]rw = [X]rw - [X]rw
1. [X 4 Y]ew = [X]nw + [Y]rw

To give semantics to formulas of £,,(P,T), we define a relation of satisfaction of
a formula ¢ at a state 1 in a structure H, with respect to an interpretation m,
denoted by H, 7,1 = ¢. The definition is by the following induction:

1. Hm = X =Y if [X]ry = [Y]ry (in case of £,(P), this clause is
replaced by H, 7,9 = X < cif [X]ry < ¢);
. H,m, v = —¢ if not H,mw, ¢ = ¢;
CHymop =g Ao if Hymotp = @1 and H, 7,9 | do;
. H 7% =3z : R.(¢) if there is a real number r such that H,x[r/x|, ¥ E ¢;
. H,m,2 =3z : C.(¢) if there is a complex number ¢ such that H, w[c/x], ¢ =
b;
A formula ¢ of L,(P,T) is satisfiable (in the n-dimensional Hilbert space
H) if there exists an interpretation 7 and a state ¢ such that H, 7w, ¢ = ¢. A
formula ¢ is valid (in H) if H,m, v |= ¢ for all interpretations 7 and a states 1.

U W N

4 Examples

We give some examples of formulas in our language which express important
concepts of quantum mechanics.

Superposition: A vector |a) is a superposition of two vectors |51) and |fB2)
if it is a linear combination of the two, i.e., |a) = ¢1|01) + ¢2|B2) for some
complex numbers ¢y, ca. Consider the formula T'(by,b] V bh) = 1. If w(by) =
o), (b) = |81) and (b)) = |Bs) then H,m k= T(by,b v by) = 1 i
Tr(|a) (e (|81){B1]+162)(B2])) = L. This is equivalent to [(31]a)[*+[{Bz|a)|* = 1,
which is true iff the state |«) is a superposition of the states |5;) and |52). That
is, the formula expresses that “b; is a superposition of b} and bj”.

Phase Relations: Let b°,...,b" be k + 1 bases. Then the following formula
states a relation between b® and the b7, for j =1...k.
MP;,  Vzi...z,:R.(A, P(®Y) =22 =
21 .ozt C(Niey 2] = 1 A
E j n j
/\j:1 /\?:1 P(b]) = | X7 ymin (0%, 07 )2, 2, )
Proposition 1. The formula MPy, is valid for all k > 1.

Proof. Let 7 be any interpretation and [¢) any vector in H,. If [P(bY)] 4y =
m(z;)?, then we may write |¢0) = >0 | ¢;m(2;)m(b%);, where the ¢; are complex
numbers with |¢;| = 1. Define 7(z;) = ¢;. We can then calculate the probabilities
with respect to other bases as follows:

[P(6)) ]y = [(m(®7)i | ) ‘
(3 rmy [mir (00, )] gy - w(0%), | )2
=|320o1 [mar (0, 07)] ) - () - 7w (0%), 2

from which it can be seen that MP;, holds.



Quantum State Tomography: Suppose we are given a collection of identically
prepared systems (an ensemble), which corresponds to an unknown quantum
state. Quantum state tomography (QST) addresses the problem of determin-
ing this unknown state. By measuring the ensemble in a single basis, we may
determine a probability distribution over the outcomes associated to the basis
elements. To determine the phases we divide the original collection of systems
into subcollections and subject each to maximal measurements corresponding to
an appropriately chosen bases. We get sets of probability distributions related
by unitary transforms of bases. For an appropriate choice of measurements,bases
this set of relations suffices to compute the state. The following formula expresses
this fact. Let u be the sequence of variables ufj where 1 < 4,75,k <n.

Ju: C[ /\1<’Lj k<n ml](b Ck) uk =

Vai...2n ¢ (/\1<2 k<n P(c; )— |Z uz]ZJ\/ |2
N P(di") = [ 32, mij(b,0")zj/P(b;)|* )

This formula is valid. It expresses the fact that there is a “pattern of inter-
relation” between a set of bases b and c',c?,...c", captured by the values u,
such that for any vector 1, the probabilities of measurements associated to a
set of bases related in this pattern provide sufficient information to calculate
the probabilities of measurements with respect to any other basis. Note that by

the discussion of the formula MP;, above, it is always possible to find values for

21, ... 2k such that
A Pl AZ%m/ P (1)

1<i,k<n

is satisfied. Thus the universally quantified formula in the conclusion is never true
vacuously. The formula therefore expresses that given an appropriately related
set of bases b and c',c?,...c", it is possible, given any basis b, to calculate
the values P(b/) from the values uf;, P(b;), P(cf) and m;(b,b’). We do this by
first solving the equation (1) for the phase values z1, ..., z,, and then computing

WMMmeb%M .
Uncertainty Relations: We say that bases b and b’ are complementary if
nT(b;,b;’) =1 holds for all 4,5 = 1...n. Let n = 2. Then the formula

A;2T(b;,b;') =1 A P(by) =23 A P(bs) =23 =
(w1 —22)? < 2P(b;)" < (21 + 22)?

expresses an uncertainty relation. For example if 1 = 1 then there is no uncer-
tainity in the result for a maximal test with respect to the b-basis. But then we
get the probability for both results in the b’-basis equal to one half. Thus, there
is maximum uncertainty.

Quantum Gates: The formula T'(by, c3) = lof Lo(P,T) represents the quan-
tum not gate. The standard representation of quantum not gate is by a unitary



matrix that “flips” the qubits taking |@) = (1 0) to |8) = (0 1). Our repre-
sentation essentially expresses the same thing. If a state vector represented in
the b-basis is measured later in the c-basis then it has exactly the same effect:
|a) = 1-7(b1)+0-7(be) yields P(ce) = 1. Thus it is easily seen that the following
is a valid formula of Lo(P,T):

T(thQ) =1= (P(bl) :1:>P(C1) :O)A(P(bz) =1 :>P(C2) =O>

5 Axiomatization

We now present axiomatizations and state the completeness results for the lan-
guages L, (P) and L, (P, T).

5.1 Axiomatizing L, (P)

The axiomatization of L, (P) consists of a number of parts, each dealing with
one of the syntactic constructs of the language.

The first fragment of our axiomatization deals with the boolean logic of the
b-formulas. As this is slightly richer than propositional logic, we identify for each
basis variable b a fragment of the proof theory that deals only with b-formulas.
The axioms of this fragment can be taken to be any complete axiomatization of
propositional logic over the atomic formulas by, ..., b,, with, e.g., Modus Ponens
as the proof rule, plus the following axioms that capture the fact that we are
dealing with an n-dimensional Hilbert space:

Bl b;V...Vb,

B2 ﬁ(bi AN bj) for 4 #]

We say that a b-formula ¢ is a b-tautology, and write F, ¢ if it can be
derived from these axioms alone. Note that these definitions isolate reasoning
about b-formulas from reasoning about c-formulas when b and ¢ are distinct.

Next, we have some axioms capturing the properties of the probability op-
erator. The following axioms correspond very closely to the axioms W1-W4 of
Fagin et al [FHMO90], but with the difference that we need to be careful to respect
the syntactic constraints on probability terms. In the following, we require that
there exists a basis term b such that ¢, ¢; and ¢o are b-formulas:

Pl 0<P(¢) <1

P2 P(¢)=1 if ¢ is a b-tautology

P3  P(¢1 A ¢2) + P A =d2) = P(¢r)

P4  P(¢1) = P(p2) if ¢1 & @9 is a b-tautology

Note that in P2 and P4, we deal with b-tautologies where Fagin et al have
tautologies of propositional logic. The countable additivity axiom is not needed
since the number of atomic events is finite (=n).

In addition to the above axioms, we also need a set of axioms that capture
reasoning about linear inequalities. That is, we need to be able to derive formulas
such as (2P(¢1) < 3A4P(¢p2) < 1) = P(¢1)+2P(d2) < 2, the validity of which
follows just from the meaning of these operations on real numbers, rather than



the meaning of the probability terms. We refer the reader to Fagin et al [FHM90]
for such an axiomatization AXygq of such reasoning, and leave it as an exercise to
construct an axiomatization AXmyeq’ suited to £, (P) (the difference is to replace
all variable occurences by probability terms.)

Let AX,(P) be the abovementioned axioms and rules of inference. Then we
have the following;:

Theorem 1. AX,(P) is a sound and complete aziomatization of L, (P).

The axiomatization AX,(P) is almost identical to Fagin et al’s axiomatization
of for linear inequalities over classical probabilities — the main difference is the
syntactic restrictions relating to b-formulas. Thus, from the point of view of the
language L£,,(P), quantum probabilities behave similarly to classical probabili-
ties. The similarity is also reflected in the complexity of the logic:

Theorem 2. Satisfiability of a formula of L,,(P) in n-dimensional Hilbert space
(with n > 2) is NP-complete.

Precisely the same complexity was obtained by FHM for their logic of classical
probabilities.

Interestingly, the proof of Theorem 1 shows that probabilities with respect
to different bases act independently. More precisely, the completeness proof can
be used to establish the following:

Proposition 2. Let ¢1,..., ¢, be formulas and bl, ..., b™ be distinct basis
variables such that for each j = 1,...,n, the only probability terms occuring
in ¢; are bl probability terms. Then ¢1 A ... A ¢ is satisfiable iff each ¢; is
satisfiable.

Thus, unlike quantum logic, £,,(P) is unable to express constraints on the
ways that incompatible propositions are “pasted together”. To capture such con-
straints, we need to turn to our richer logic, dealing with transition probabilities.

5.2 Axiomatizing L, (P, T)

We now present the axiomatization of £, (P,T).

To capture the properties of the probability operator P, the axiomatization
contains the axiomatization of b-formulas used above, and the probability axioms
P1-P4. We need a similar set of axioms for the transition probabilities. In the
following, &, ¢1, ¢2 are b-formulas for some basis variable b, and ¢', ¢}, ¢} are
b’-formulas for some basis variable b’. For a fixed b-formula ¢, the probabilities
of a transition to a b’-formula satisfy four properties directly analogous to P1-P4
above:

T1 T(¢,¢') 20

T2 T(¢,¢')=1 when ¢ is a b'-tautology

T3 T(¢, 01 A ¢h) + T(h, ¢h A=) =T (0, 1)

T4 T(6.6)) =T(6,¢) if ¢} < ¢} is a b-tautology



These properties allow us to decompose a transition probability term into
an equivalent expression in transition probability terms in which the second
argument contains only atomic basis formulas. A similar decomposition with
respect to the first argument can be obtained using the following property:

T5 T(¢.¢')=T(¢' ¢)

Additionally, we have the following properties concerning a number of special
cases of transitions. The first concerns transitions within a given basis:

T6a T(bi,bj) =0 when i #]

T6b T(b;,b;) =1

Next, note that the formula P(b;) = 1 can be understood as saying that the
state ¢ at which the formula is being evaluated is equal to the i-th vector in
the basis b. The following property can be understood as stating that transition
probabilities for transitions from the current state reduce to simple probabilities:

T7 P(b;) =1= T(b;,¢) = P()

For £,,(P) our axiomatization used a set of axioms for reasoning about linear
inequalities. In the case of £,,(P,T), we need to reason about non-linear polyno-
mials. Moreover, to capture the quantum nature of the probabilities, we need to
reason about complex numbers. This leads us to include in the axiomatization
a set of axioms for reasoning about real and complex numbers. The following
proposition follows from the fact that the complex numbers may be represented
as pairs of real numbers, that the operations of complex addition and multiplica-
tion may be defined as operations on these pairs, and that the language Ly . —y
has an axiomatizable theory with respect to the standard model R [Tar51].

Proposition 3. The set of valid formulas of Lrc has a recursive aziomatization
AXpe.

The rules of inference of AXye are the usual rules for first order logic with
equality. For reasons of space we do not list the axioms of AXgc here. We include
these axioms and rules of inference in our axiomatization.

The language £, (P, T) contains the terms m;;(b, c), of complex number sort,
to represent the unitary operators associated with basis transformations. The
following properties are direct from the definition of these terms:

M1 mij (b, C) = mji(c, b)

The fact that transformation from a basis to itself corresponds to the iden-
tity matrix, and that consecutive basis transformations correspond to matrix
multiplication, are captured by the next two properties:

M2a mij(b,b) =1ifq :j

M3 myi(b,d) = X} muk(b, c)my;(c,d)

We note that the following property, expressing unitarity of the transforma-
tion, follows from M1-Ma3:

M4 X7 mi(b,c)mjg(b,c) =1

These matrices are connected to probabilities by the following axiom:

MT  T(b;, c;) = |my;(b, c)|?



We note that M1-M3 and MT imply some of the properties of transition
probabilities noted above. In particular, T1, T2 and T6 become derivable, as
does the case T'(b;,b;) = T'(b;,b;) of T5.

Let the axiomatization AX, (P, T) consist of the propositional component with
B1-B2 for the b-formulas, the axioms P1-P4, T1-T7, the axioms and rules of
AXpe (including the usual rules of inference for first order logic), M1-M3, MT
and the axiom MP}, (see Section 4) for all £ < n? —n + 1. Then we have the
following:

Theorem 3. AX,(P,T) is a sound and complete axiomatization for the language
Ln(P,T).

Note that although we have shown that MPy, is sound for all £ > 1, we have
only included its instances for k < n? —n + 1 in the set of axioms. Indeed, as
part of the completeness proof we show that it is not necessary to include MPy,
for larger k since it already follows:

Theorem 4. For every number k > 1, the formula MPy, is a theorem of AX, (P, T).

We have stated this result as a theorem because we feel that it is of signifi-
cance for physics as well as the logic of quantum probabilities. It shows that to
determine whether a set of numbers can have arisen as the probabilities associ-
ated to a set of k£ bases in n-dimensional Hilbert space, it suffices to check the
probabilities associated to every subset of size n? —n + 1.

As for the language £,,(P), we also can also obtain from the completeness
proof some complexity bounds for £,,(P,T). These bounds are once again iden-
tical to those obtained by FHM for their corresponding classical language.

Theorem 5. Satisfiability of a formula in L, (P,T) can be decided in exponen-
tial space. If the formula is quantifier free, then its satisfiability can be decided
i polynomial space.

The proof of this result makes use of results of Ben-Or, Kozen and Reif [BKR]
for the full language, and of Canny [Canny88] for the quantifier free case.

6 Conclusion

A topic that has been of some interest in the quantum mechanics literature is
the extent to which it is possible to eliminate the use of complex numbers, and
to reason about quantum probabilities purely as real numbers. This requires
the characterization of the relationships between the quantum probabilities that
follow from their Hilbert space definition. These relationships have been char-
acterized in some low dimensions [Per95], but their charaterization in general
remains an open problem. Our work may provide an avenue to address this
problem, by applying quantifier elimination to our axiomatization.

We have shown our logic to be to be decidable. An interesting topic for fur-
ther research is to determine the extent to which it is possible to further enrich



the logic while retaining decidability /axiomatizability. Extensions that suggest
themselves are temporal logic, dynamic logic and the logic of knowledge. Even
before embarking on a study of such modal extensions, a variety of constructs
dealing only with a single state are worthy of study. Constructs such as quantifi-
cation over bases and unitary transformations, can also be added while keeping
the language decidable. One construct that is of critical significance for quantum
computing is the tensor product. (We can already handle this to some extent
simply by applying our language to the case where the dimension n is a product
ni - ng, but it is desirable to have the tensor product as a more integral part of
the language.) We plan to study such extensions in future work.
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Optional Appendices: Full Proofs of Results

A Deductions.

In the following we make several simple deductions in Ax,(P) and Ax,(P,T).
These results are useful for later purposes. The deductions are informal but
could be easily formalised.

D1. Let ¢ be the formula b;; Vb;, V...V Db;, . Then
Fo = & bj, Vbj, V... Vb _, (2)
where {j1,j2, - jn—k} is the complement of {i1,ds, - it} in {1,2,...n}.
For the proof, note that by B1,

“p dA(b1V...VDby,)
<:>(_‘bi1/\---/\_‘bik)/\(bl\/---\/bn)

n
& \/ ((=bi, AL A=b;,) ADy)
j=1

Now by B2, we have that - b; = —b; for ¢ # j. It follows that each term
(—bi; A...Ab;, ) Abj is provably equivalent to bj if j € {41,...,ix} and provably
false otherwise. This yields the result.

D2. For two disjoint subsets I and J of {1,2,---,n} we have by, = ((\/iel bi) A (Ves bj))

This is an easy consequence of B2 and the distributive laws.
D3. If by —¢ then F P(¢) = 0.

This is obtained by taking ¢; to be any b-tautology and ¢s equal to ¢ in P3.
Noting that by P4 we have - P(¢1 Ay) = P(¢) for any b-formula 1, we obtain
F P(¢) + P(—¢) = P(¢1). By P2, we have - P(¢1) = 1 Similarly, by P2, if
—¢ is a b-tautology also, we have - P(—¢) = 1. It follows that - P(¢) = 0 by
reasoning about linear inequalities.

D4. Iqu) = bil \/bi2 \/\/blk and w = bjl \/bj2 \/...\/bjm then F (f)/\?/) 4
brl \/brg\/~~~\/br5 where {T17r2a"'7rs} = {ilvi%"'7ik}m{j17j27“‘7jm}'

The proof uses the distributive laws and B2.

D5. For every b-formula ¢ there exists a b-formula v of the form b;, Vb;, V... Vb;,
such that Fy ¢ < .



The proof is by induction on the construction of ¢. We assume that ¢ is expressed
using conjunction and negation only. The base case, of a formula of the form b;,
is trivial. The inductive case for negations is handled using D1 and the inductive
case for conjunctions is handled using D4.

For the proof, consider the instance of P3 obtained by choosing ¢1 = ¢ V¢ and
¢2 = ¢
P((oV)Ad)+ P((¢VY) A=) = P(o V)

Using P4, the first term in this equation is equal to P(¢). Similarly, if by, = (dAY),
then the second term is equal to P(¢). This shows P(¢) + P(¢) = P(¢ V )
when by, =(¢ A ¢). We apply this fact, together with B2, to obtain the result.

D7. If o & \/k b;, and 9 & \/m bj.. then F T(gb, (b/) = Zk,m T(bik>bj,,,L)-

The proof is by a similar argument to the above, using T-axioms.

B Completeness

Our arguments for completeness have some similarity to those of [FHM90] for the
logic of classical probabilities, but there are also some fundamental differences
between the classical and the quantum case. To explain the differences, we first
give a brief account of the classical case. We loosely follow [FHM90], and assume
some familiarity with the basic definitions of measure theory. (We confine this
discussion to the case when the basic propositions are measurable.)

Let @ be the set of primitive propositions. For simplicity assume & to be the
finite set {p1, pa, ..., Dm - A probability structure is a pair consisting of a measure
space (S, =, i) and a function M : & — 25 where S is a set, = is a Boolean ring
of subsets of S closed under complimentation and countable unions, and p is a
measure on =. We also assume that each M(p;) is measurable. The set M(p;)
is to be understood as the subset of S on which event p; occurs (or p; is true).
The probability assigned to the basic proposition p; in a probability structure is
written W (p;), and defined to be the value p(M(p;)).

A formula ¢ (expressing a boolean combination of linear inequalities over
probability terms) is defined to be satisfiable in the classical theory if there exists
a probability structure with respect to which ¢ is true. The completeness proof
proceeds by constructing a probability structure satisfying a given consistent
formula ¢. In particular, in this construction, one has a large degree of freedom
in the choice of the measure space (S, =, 1), as well as the interpretation function
M. This freedom is used to advantage in the completeness proof. Its is first shown
that the formula ¢ is equivalent to a formula ¢’ in which the basic probability
terms are of the form W (I3 A...Al,;,) where each [; is either p; or —p;. A set of 2™
real variables x1, ..., xom are introduced to correspond to these terms. Replacing
these terms in ¢’ by their corresonding variables, and conjoining the constraints



z; > 0 and Y ;- x; = 1, we obtain a consistent formula ¢” concerning just
the real variables x1,...,zom. Any values of the x; satisfying ¢” can be used to
construct a probability structure satisfying ¢’ and the correspondence formulas
Wy A...Nly) = x;, and hence ¢. We refer to FHM for the details.

Our arguments for the quantum case (for both £,,(P) and £,,(P,T)) follow
a similar structure, in that we also first reduce the construction of a model for
a given consistent formula to the problem of finding a set of real values z; that
correspond to a set of probabilities. However, once we obtain the values z; we are
somewhat more constrained in the way we construct a model. Our probabilities
arise not from a completely undetermined measure space, but from vectors and
bases in the (essentially unique) Hilbert space H, of dimension n. Instead of
constructing a measure space, we need to construct a vector and a set of bases
that give rise to the values x; through the inner product.

B.1 The Case of L, (P)
We first deal with completeness for the language £, (P).

Lemma 1. For every basic formula a of L,(P), with basis symbols amongst
bl,...,b™, it is possible to construct in time O(|a|-n) a basic formula o* of the
Jorm Y370 ST e P(0F) ~ d, where ‘~ stands for either ‘<’ or ‘<’, and the
cjr and d are integers, such that - o & o.

Proof. If o is an atomic formula, it has the form Z?:l a; P(¢;) ~ d, where the
a; and d are integers. Let b be the basis symbol such that ¢; is a b-formula.
By D5, there exists a set {i1,...,%,} such that Fy ¢; < b;, Vb, V... VDb, .
Using D1 and D4, the computation of this set can be done in time O(|¢;]| - n),
following the inductive construction of ¢;. By D6 and the axiom P4, we have
P(¢;) =>_""_, P(b;,). Using reasoning about linear inequalities, we can now (in
time O(|a| - n) substitute the right hand side of these equations equations in «,
collect terms of the form aP(bg? ) with the same basis term b;‘? into a single term
of this form, and add coefficients c;, = 0 for those j such that the corresponding
b? does not appear. This turns « into a basic formula of the required form.

Theorem 1: AX,(P) is a sound and complete axiomatization for L, (P).

Proof. Soundness is straightforward and left to the reader. It will suffice to show
that if ¢ is a consistent formula of £,,(P) then it is satisfiable. Let b',...b* be
the basis symbols in ¢. By Lemma 1, ¢ is provably equivalent to a formula ¢*
in which all probability terms are of the form P(b!). If ¢ is consistent, then so
is ¢*, and by soundness, any model of ¢* is a model of ¢. It therefore suffices
to show that ¢* is satisfiable. For each term P(b]) let y] be a new variable of
real type. Write y’ for the sequence of variables y{7 ooyl Let @' (v, ..., y)
denote the formula obtained from ¢* by replacing each occurrence of P(b?) in
¢* by y!. Write Prob(y?) formula

n ) n )
Nvl=0n > yl=1
i=1 1=1



and Prob(y!,...,y") for /\;?:1 Prob(y’). The formula ¢/(y*, ..., y*)AProb(y?, ...

is a consistent formula of the theory of linear contraints. To see this, note first
that ¢* is provably equivalent in AX,(P) to its conjunction with the formulas
P(b]) > 0 and the formulas ) ;" , P(b]) = 1, since these formulas are derivable,
the former by P1, and the latter by B1 and D6. Since all substitution instances
of axioms and rules of inferences of the theory of linear constraints are in AX,(P),
if ¢'(y',...,y*) AProb(y!',...,y*) were inconsistent, then ¢* would be incon-
sistent. Since the theory of linear constraints is sound and complete, it follows
that there exists an assignment 7’ of real numbers to the variables y',...,y*
satisfying ¢'(y!,...,y*¥) A Prob(y!,...,y*). We now use this satisfying assign-
ment to construct a unit vector |¢) in H,, and an assignment 7 of orthonormal
bases in H,, to the basis symbols b!,...b*, such that H,,,[¢) = ¢*. Clearly,
it suffices to show that for each variable y!, we have [P(b])]r4 = 7'(y]). We
proceed as follows.

We start by choosing W(bl) to be equal to an arbitrary orthonormal basis
A=ler),|€e),...,|en). Write r] for 7’(y]). Since we have r] > 0, we may define

the vectors N
) =3 rle. (3)
i=1

Note that because Y7, 7/ = 1, each [1b;) is a unit vector. Take [1) to be equal
to [¢1). For i = 1...n we have [P(b})]x 4 = I(es]) | = 7L, as required.
For b2,...,b", we proceed as follows. First, for each j = 1...k, take B; =
187),...,133) to be any orthonormal basis such that |3]) = [¢;). For each j =
1...k, let U’ be the unitary transformation such that U’B; = B;. Now define
7(b?) to be the basis (U7)~1A. Then we have
[P 10y = [m(6): | )]
= [{(9) e | po)l”
(
(

= l(ei | U3}
= [{ei | ¥l

= 7‘1‘2

='(y])

as required.

Proposition 2: Let ¢1,...,¢,, be formulas and b',...,b™ be distinct basis
variables such that for each j = 1,...,n, the only probability terms occuring
in ¢; are b probability terms. Then ¢1 A ... A ¢m is satisfiable iff each ¢; is
satisfiable.

Proof. 1t is trivial that if ¢ A ... A ¢, is satisfiable then each ¢; is satisfiable.
Suppose each ¢; is satisfiable. Then each ¢; is consistent, and we may apply
the construction of the proof of Theorem 1. Note that the construction can start
with any given vector [¢), so we may choose the same vector 1 for each ¢;. This
yields a pair 7, [1)) with respect to which ¢1 A ... A ¢y, is satisfied.

¥



Theorem 2: Satisfiability of a formula of L,(P) in n-dimensional Hilbert
space (with n > 2) is NP-complete.

Proof. We first show NP-hardness, by means of a reduction from SAT. Let «
be a formula of propositional logic. We asssume without loss of generality that
negation and conjunction are the only propositional operators used. We define
a formula a* of £, (P) such that oo € SAT iff o* is satisfiable in n-dimensional
Hilbert space. Let the propositional constants of a be p1, ..., p,,. Corresponding
to each, let b!,... b™ be a collection of distinct basis symbols. We define a* by
induction on the construction of «, as follows:

p; = P(bi) =1,
(man)* = —aj,
(a1 Aa)* = af ANasd.

We now show that « € SAT iff o* is satisfiable. Its is easily seen that if o* is sat-
isfiable then so is a.. For, suppose that H,, 7, ¢ = a*. Then it is immediate that
the assignment V' : {p1,...,pm} — {0,1} defined by V(p;) = 1 ifft H,,, 7, ¢ |= p}
is a satisfying assignment for ce. Conversely, suppose that « is satisfiable, and let
V be a satisfying assignment. We construct a vector ¥ in H,, and an interpre-
tation 7 of the basis symbols b!,...,b™ such that H,,n,v = o*. For this, let
By =11,...,%, be any orthonormal basis of H,,. Let By be the sequence of vec-
tors obtained by swapping ¥, and s in By. Clearly, Bs is also an orthonormal
basis. By definition, (¢1]¢2) = 0. We now take t) = 11, and define 7 as follows:
for each i = 1...m, we let m(b") = By if V(p;) = 1 and 7(b’) = By otherwise.
It is now straightforward to check that H,,m, ¢ = p} iff V(p;) = 1, from which
it follows that H,,,m, ¥ = o*.

To see that satisfiability of ¢ can be determined in NP, we use the construc-
tion of Theorem 1. By Lemma 1, the formulas ¢* and hence ¢/(y*, ..., y*) may
be constructed in time O(|¢| - n), as may the formula Prob(y?,...,y"). Hence
we also obtain the formula ¢'(y',...,y"*) A Prob(y!,...,y") in time O(|¢| - n).
The arguments of Theorem 1 are cast in terms of consistency, but we may see
by similar arguments that ¢ is satisfiable iff ¢'(y!,...,y*) AProb(y!,...,y*) is
satisfiable. The latter is a boolean combination of linear constraints. It follows
from the fact that linear programming is in PTIME [?] that satisfiability of such
formulas is in NP. Thus, satisfiability of ¢ in £,,(P) is also in NP.

B.2 Dealing with £,(P,T)

We now deal with the general case. Here the nonlinearity of quantum probabili-
ties come into picture. Let @ be formula of £, (P, T), with b% b', ..., b* the basis
symbols that occur in .

Lemma 2. Let ¢ be a formula of L,,(P, T) containing the basis constants b, ... b™.
Then it is possible to construct in polynomial time a formula ¢* such that

F ¢ < ¢ such that all atomic subformulas of ¢* are of the form p = 0 where

p is a polynomial with integer coefficients over terms of the form P(bl), or
m;j(bY,0"), with 1 <r <k and 1 <i,j <n.



Proof. 1t suffices to show that each atomic subformula « of ¢ is equivalent to
a formula a* of the required form. First, we note that by the arguments of
Lemma 1, all probability terms P(y), with v a b, formula, are provably equal
to a sum of terms of the form P(b]). It therefore suffices to consider terms of
the form T'(,d), where 7 is a b"-formula and ¢ is a b*-formula. Using T1-T4,
B1-B2 and arguments very similar to those of Lemma 1, we may show that
T(+,d) is provably equal to a sum of terms of the form T'(,bf). By T5, each
such term is provably equal to T'(b7, ). Now, using T1-T4, B1-B2 again, each
term of the latter form can be shown to be provably equal to a sum of terms
of the form T'(bf,b’). It follows that the original term T'(vy,d) is provably equal

)
to a sum of terms z)f the form 7'(b7,b?). By MT, each term of the latter form
equals [m;;(b%,b")|2. Using M3, we may express the terms m;;(b*,b") as a sum
of terms of the form my;z(b*,b) - my; (b',b"). By M1, the terms m;;(b*, b!) are
equal to my;(bl,b%).

The result of these transformations is to show that « is equivalent to an
atomic formula of the form p = 0, where p is composed from real and complex
variables and terms of the form P(bl) and m;;(b',b") using addition, multipli-
cation and conjugation. We now use the fact that ¢(y) is an abbreviation for
Jr: C(d(x) AJa,b : RIz: C(22+1=0 AN y=a+bz A 2 =a—0b2))to
eliminate the use of conjugation. This leaves a formula in the required form.

We can now prove the completeness result for £, (P,T) using a similar ar-
gument to that above. We assume that ¢ is a consistent formula of £, (P,T)
containing the basis symbols b!, ..., b*, and construct a vector and basis inter-
pretation in H,, with respect to which ¢ is satisfied. Using Lemma 2, it suffices
to show that ¢* is satisfiable. For 1 < j < k and 1 < i < n, let ] be a variable
of real type. Foreach 1 < j < kand 1 <i,r <n,let yf,, be a variable of complex
type. Write x for the sequence of variables xz and write y for the sequence of
variables y/ . Let 6 be the substitution that substitutes P(b?) for each 27, and
substitutes m;,(b',b7) for each y! . At this point of the proof we make use of
the following lemma, whose proof we defer to later.

Lemma 3. There exists a formula ¥ of Lrc with free variables amongst X,y
such that

1. ¥ is constructible in time polynomial in |X,y|,

2. Fwo,

3. if ®' is an interpretation of the real and complex variables x and y that
satisfies W, then there exists a vector |v) of H,, and an interpretation w for
the basis symbols bl,... b* in H,, such that
(a) [P gy =7"(x]) for 1< j <k and1<i<n, and
() [mir (0, 07)] gy = 7' (y),) for 1 < j <k and 1 <i,r <n.

To construct an interpretation satisfying ¢*, we proceed as follows. Since ¢*
is consistent, and - W0, the formula ¢* A W0 is consistent. Let ¢'(x,y) be the
formula of Lrc such that ¢* = ¢/(x,y)0. Since AX,,(P,T) contains all substi-
tution instances of a sound and complete proof theory for Lrc, it follows that



¢'(x,y) AW is a consistent formula with respect to the latter proof theory. By
completeness, there exists an interpretation 7’ of the variables x and y as real and
complex numbers, with respect to which this formula is satisfied. In particular,
U is satisfied with respect to 7’. It follows by Lemma 3 that there exists a vector
|) of H, and an interpretation 7 for the basis symbols b!, ... ,b*¥ in H,,, such
that the conditions of the lemma are satisfied. It follows from these conditions,
and the fact that ¢'(x,y) is satisfied with respect to 7/, that H,,x, [¢) | ¢*,
hence H,,, 7, |1)) = ¢. This completes the proof. An inspection of the argument
shows that it also yields a complexity result:

Theorem 5: Satisfiability of a formula in L, (P,T) can be decided in exponen-
tial space. If the formula is quantifier free, then its satisfiability can be decided
in polynomial space.

Proof. We note that similar reasoning to that above shows that ¢'(x,y) A ¥ is
satisfiable iff ¢ is satisfiable. This formula may be constructed in time polynomial
in |¢|. Thus, the satisfiability problem reduces to that for Lrc. We now show
that there exists a further reduction of this decision problem to that for Lg, i.e.,
the language of the theory of real closed fields.

Define the operator 7 : Lrc — Ly by induction, as follows. To each complex
variable z, associate two variables x,., x. of real type. For convenience, we extend
this notation to real variables and integers, by treating x, as a notation for x .
as a notation for 0, when =z is either a real variable or an integer. Without loss
of generality, we assume that all atomic formulas of ¢ € Lrc are of the form
z=x+1yor z=ux-y, where z is a variable and x and y are either variables
or integers. We define 7(¢) (which we also write as ¢”) by induction on the
construction of ¢:

( ) iszr:xr+yr/\zc:xc+ycv

( 2= y) 182, =Tp Yr — Te Yo N 2¢ = Te Yo + Ty * Yoy
- (P1 A @2) is O N 9]

- (= )T is =¢7,

- (Fz: R.g)™ is 3 (e7),

. (3z: C. (;5) is 3z, Iz (P7).
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Using the well-known interpretation of complex numbers as pairs of reals, it is
readily seen that ¢ is satisfiable iff ¢” is satisfiable. The result now follows from
the result of Ben-Or, Kozen and Reif [BKR] that the theory of real closed fields
(which is equal to the theory of the reals) is decidable in exponential space.

In the quantifier free case, we note that ¢’(x,y) may contain quantifiers aris-
ing from the elimination of conjugation. However, by avoiding the conjugation
elimination step we may assume that ¢’(x,y) expresses conjugation by means of
basic formulas of the form z = Z. The translation 7 may be extended to formulas
containing such atoms by defining (z = Z)" as z, = &, A z. = —z.. This makes
¢ a quantifier free formula, satisfiable iff ¢ is satisfiable. By a result of Canny
[Canny88], satisfiability of ¢” can be decided in polynomial space.



To complete the proof, we now turn to the omitted proof of Lemma 3. A key
part of the proof of this lemma turns on the following result, which we state as
a theorem given its non-trivial nature and independent interest.

Theorem 4: For every number k > 1, the formula MPy is a theorem of
AX,(P,T).

Proof. First, if k < n? —n + 1 then the formula MP}, is an axiom. We show
that for larger k, the formula also follows from instances of P. It does so in a
way that depends only upon algebraic reasoning. It therefore suffices to present
a purely semantic argument, and rely upon the fact that AX, (P,T) contains all
instances of valid formulas of Lrc.

We introduce some notation. We write ¢ for v/—1. Let yf = P(bg) — as we
have already noted in the proof of Proposition 1, the sign of the z; is irrelevant
to the truth of MPy, so we may assume that in the case j = 0 we have y) = x;.
Let m;;(b!,b7) = pgj - etPii | with pgj > 0 be the polar form of the entries of the
unitary matrix. To show that the desired formula is valid, we need to show that
a set of equations in the z; has a solution. One set of these equations states the
z; have norm 1, so without loss of generality, we may write z; = e‘%:.

Then each remaining equation in the conjunction we need to prove can be
represented as follows

I phe Gty 02 = (i) (4)

where 1 < 4,7 <mn and 1 < j < k. This equation can be written as

ZT<3 pgrpgsygy(s) Cos(ﬂir - ﬂis + 0, — 05)
= 5((W)? =202 (v))?)

Writing the rhs of the above equation as qg we rewrite it as

ZT‘<S erpzsygyg (COS(/Bir - ﬂzs) COS(@T‘7 09) (5)
—sin(Bir — Bis) sin(0, — 65)) = q;-

If we treat cos(f, — 0s) and sin(6, — 6,), for 1 < r < s < n, as independent
variables then (5) represents a set of linear equations. However, these variables
are quadratically constrained by the relations cos? (6, —6,)+sin? (0,—05) =1 and
the (quadratic) relations among cos(8, —60s) and sin(6,.—05)) and cos(6,.), cos(6s)
sin(6,.), and sin(#,). Thus despite the appearance of transcendental functions
cos(6, —05), the equations (5) is a set of algebraic (in fact quadratic) equations.
There are n(n — 1)/2 variables each of type cos(6, — 65) and sin(6, — 65), thus
a total of n(n — 1) variables. We call the n linear equations arising for a fixed
value of j (corresponding to transition from b® to b’) a block. Notice that for
each block, we also have a set of quadratic equations, but these are identical
from block to block.

Now suppose that the entire set of equations does not have a solution. We
prove a contradiction. Since there are n(n — 1) variables in the blocks, the max-
imum dimension of the set of solutions of some subset of the linear equations is



n(n —1). Adding a block to a set of linear equations either decreases the dimen-
sion, or leaves the solutions space invariant. Thus, we can find a set of at most
n(n—1)+1 blocks that does not have a solution. But this contradicts the axiom
MP.

We are now in a position to provide the proof omitted above.

Proof. (Of Lemma 3) Write y? for the sequence of variables y{7 oyl We
reuse the formula Prob(x’) defined in the proof of Theorem 1. Additionally, for
each j = 1...,k, define Unitary(y”) to be the result of eliminating conjugation
from the formula /\ZL:I /\:L:1 ZZZI ka : yik: = 5” Define Phase(zlﬂ sy By X, Y)7
where the z; are variables of complex type, to be the formula

n

/\ (lzil = 1) /\/\\IZszT\fH? ] 1.

i=1 j=2i=1 r=1

We now take ¥(x,y) to be the conjunction of the formulas Prob(x’)AUnitary(y”’),
for j = 1...k, with the formula 3z1,..., z, : C.(Phase(zy,..., 2,,%,y)). Clearly
VU (x,y) can be constructed in time polynomial in |x,y|, so the first condition of
the lemma is satisfied.

We now show that the third condition is satisfied. Let 7’ be an assignment of
real and complex numbers to the variables x and y such that ¢(x,y) is satisfied.
Morever, suppose that 7’ assigns complex numbers to the variables z1,..., 2,
such that the formula Phase(z1,. .., z,,X,y) is satisfied.

Construct the interpretation 7 for b',...,b* in H, and the vector |1/) in H,
as follows. For 7(b!) take any othonormal basis |e1), ..., |e,). For the remaining
bases b/, with 2 < j < k, we define

n

n(®) =Y 7(yl,) - ler)-

r=1
We take
n .
=" (er) ' (ad) - fen),
r=1
This is a unit vector because, by assumption, we have that |7'(z.)| = 1 and

S (xd) =1,
We show that the two parts of condition (3) of Lemma 3 are satisfied. The
second part is immediate from the definition of the m(b’);. For the first part,

note that )
[P(6])]x. 1)

= [(r(D)I)*
=10 X 7 (i) - ler) |

2= 17T(Zr)'\/77’ J) |6r> )N

= 7 ) 7 () (@) P

='(x])



where the last step follows from the fact that 7’ satisfies Phase(z1, ..., 2n, X, ¥)-

It remains to show that ¥ is derivable. By D6 and P1, P2, we have that
Prob(x7)0 for each j = 1...k. It follows from M1 and M4 that - Unitary(y’)6
for each j = 1...k. By Theorem 4 we have - 3z; ... z,(Phase(z1,. .., zn, X,y)0.
Thus, each of the conjuncts of ¥ is derivable, so this formula itself is derivable.



