
Model Checking Knowledge and Linear Time:
PSPACE Cases

Kai Engelhardt?, Peter Gammie, and Ron van der Meyden?

School of Computer Science and Engineering, The University of New South Wales,
and National ICT Australia??, Sydney, NSW 2052, Australia,

{kaie|peteg|meyden}@cse.unsw.edu.au

Abstract. We present a general algorithm scheme for model checking
logics of knowledge, common knowledge and linear time, based on simu-
lations to a class of structures that capture the way that agents update
their knowledge. We show that the scheme leads to PSPACE implemen-
tations of model checking the logic of knowledge and linear time in sev-
eral special cases: perfect recall systems with a single agent or in which
all communication is by synchronous broadcast, and systems in which
knowledge is interpreted using either the agents’ current observation only
or its current observation and clock value. In all these results, common
knowledge operators may be included in the language. Matching lower
bounds are provided, and it is shown that although the complexity bound
matches the PSPACE complexity of the linear time temporal logic LTL,
as a function of the model size the problems considered have a higher
complexity than LTL.

1 Introduction

The logic of knowledge [5] has been proposed as a formalism to express informa-
tion theoretic properties in distributed and multi-agent systems, and has been
shown to be useful for the analysis of distributed systems protocols [9], informa-
tion flow security properties [10, 21, 24], as well as for problems such as diagnosis
and recoverability [3, 4].

The semantics for knowledge operators can be defined in a variety of ways,
depending on what information agents use when computing what they know. At
one extreme (the “observational semantics”) agents rely only on their current
observation, at the other (the “synchronous perfect recall semantics”) agents
rely on the log of all their past observations. In between lies a “clock seman-
tics” in which agents rely on their current observation plus a clock value. These

? Work was partially supported by ARC Discovery Grant RM02036.
?? National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council. The
third author thanks the Computer Science Department, Courant Institute, New York
University for their hospitality in hosting a sabbatical visit during which this work
was conducted.

2 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

semantics have different motivations: the perfect recall semantics is most appro-
priate for security analyses and derivation of protocols that make optimal use of
information; the other semantics are closer to system implementations.

A number of model checkers for the logic of knowledge have been recently
been developed, which embody different choices of semantics for the knowl-
edge operators and different types of expressiveness for the temporal dynamics.
MCMAS [13] deals with the observational interpretation of knowledge and the
branching time logic CTL. DEMO [27] deals with the dynamic logic based “up-
date logic” [1], which handles what is in effect the perfect recall semantics for
knowledge. The system MCK [7] covers a broad spectrum of definitions of knowl-
edge (observational, clock, perfect recall), as well as dealing with both linear time
and branching time temporal logic.

Where they deal with the perfect recall semantics for knowledge, these sys-
tems place severe constraints on the interaction between knowledge and temporal
operators, for reasons of inherent complexity. The complexity of model checking
the combination of the linear time temporal logic LTL with knowledge opera-
tors interpreted according to the perfect recall semantics has been studied by
van der Meyden and Shilov [23], who show that this problem is decidable but
with a non-elementary lower bound, and undecidable when operators for com-
mon knowledge (a type of fixpoint over knowledge operators) are added to the
language. (Shilov et al [17, 18, 8] have also studied branching time versions of
these results.)

However, as we show in this paper, this general result does not preclude
the existence of special cases in which this model checking problem has lower
complexity, even when common knowledge operators are included in the lan-
guage. We identify a number of cases where the problem (including common
knowledge) is solvable in PSPACE. These include systems with a single agent
(discussed in Section 5.1) and systems in which all communication is by syn-
chronous broadcast (treated in Section 5.2) The result concerning a single agent
improves the nonelementary upper bound for the single agent case obtained from
the algorithm of van der Meyden and Shilov.

Our approach to the proof of these results is by means of a general algorithm
scheme (presented in Section 4) that relies upon the existence of a simulation
from the (in effect, infinite) systems being checked to a finite structure that rep-
resents the way that agents update their knowledge in the system. In addition
to the results about the perfect recall semantics, we show that this scheme can
be used to obtain PSPACE complexity results for model checking the logic of
knowledge and linear time for other interpretations for knowledge: in particu-
lar, we show that this complexity bound applies in the case of both the clock
semantics and the observational semantics (see Section 6).

As the complexity of model checking the linear time temporal logic LTL alone
is already PSPACE-complete, it may seem from these results that the extra
expressiveness of the logic of knowledge in these cases comes at no extra cost.
In fact, we show that there is a sense in which these model checking problems
are harder than model checking LTL alone, by focussing on the complexity of

Model Checking Knowledge and Linear Time: PSPACE Cases 3

model checking a fixed formula as a function of the size of the model. For LTL,
this “model complexity” is linear-time for each formula [11]. We show that the
model complexity can be as high as PSPACE-complete once the formula includes
knowledge operators.

2 Basic Definitions

In this section we define the semantic framework with respect to which we study
the model checking problem. The definitions closely follow [23], which dealt
with model checking knowledge and linear time in multi-agent systems for a
“perfect recall” interpretation of knowledge. We also define an alternate “clock”
interpretation of knowledge, in which agents reason on the basis of their current
observation and knowledge of the time.

Let Prop be a set of atomic propositional constants, n > 0 be a natural
number, and let A = {1, . . . , n} be a set of agents. We will be concerned with
model checking a propositional multi-modal language for knowledge and linear
time based on the set Prop of atomic propositional constants, with formulae
generated by the modalities 2 (next), U (until), a knowledge operator Ki for
each agent i ∈ A, and a common knowledge operator CG for each group of
agents G ⊆ A. Formulae of the language are defined as follows: each atomic
propositional constant p ∈ Prop is a formula, and if ϕ and ψ are formulae,
then so are ¬ϕ, ϕ ∧ ψ, 2ϕ, ϕ U ψ, Kiϕ and CGϕ for each i ∈ A and group
G ⊆ A. We write L{2,U,K1,...,Kn,C} for the set of formulae. We will refer to
sublanguages of this language by a similar expression that lists the operators
generating the language. For example, L{2,U,K} refers to the sublanguage with
just a single agent (in which case we may drop the subscript on the knowledge
operator). As usual in temporal logic, we use the abbreviations1ϕ for trueUϕ,
and 0ϕ for ¬1¬ϕ. The knowledge depth of a formula ϕ, denoted depth(ϕ), is
defined to be the maximal depth of nesting of K operators in ϕ. For example,
depth(K(p ∧ ¬Kq)) = 2.

The semantics of this language is defined with respect to the following class
of structures. Define an interpreted environment (for A) to be a tuple E of the
form (S, I,→, (Oi)i∈A, π, α) where the components are as follows:

1. S is a set of states of the environment,
2. I is a subset of S, representing the possible initial states,
3. → ⊆ S2 is a transition relation,
4. for each i ∈ A the component Oi : S −→ O, where O is a set of uninterpreted

observations, is called the observation function of agent i,
5. π : S −→ P(Prop) is an interpretation,
6. α ⊆ S is an acceptance condition.

Intuitively, an environment is a transition system where states encode values of
local variables, messages in transit, failure of components, etc. For states s, s′

the relation s→ s′ means that if the system is in state s, then at the next tick of
the clock it could be in state s′. We call E finite whenever S is. If s is a state and

4 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

i an agent then Oi(s) represents the observation agent i makes when the system
is in state s, i.e., the information about the state that is accessible to the agent.
The interpretation π maps a state s to the set of propositional constants in Prop
that hold at s. The acceptance conditions are essentially Büchi conditions which
model fairness requirements on evolutions of the environment.

A path p of E from a state s in S is a finite or infinite sequence of states
s0s1 . . . such that s0 = s and sj → sj+1 for all j. We write p(m) for sm when
m is an index of p. A path p is said to be initialized if p(0) ∈ I. We call an
initialized finite path a trace. A path p is fair if it is infinite and p(i) ∈ α for
infinitely many i.1 We say that the acceptance condition of E is trivial if α = S.
We assume that environments satisfy the following well-formedness condition:
for every state s, there exists a fair path with initial state s. A run of E is a fair,
initialized path, and we write r[0..m] for the trace that is the prefix of run r up
to time m. Let runs(E) be the set of all runs of E. A point of E is a pair (r,m),
where r is a run of E and m a natural number. Intuitively, a point identifies a
particular instant of time along the history described by the run.

Individual runs of an environment provide sufficient structure for the inter-
pretation of formulae of linear temporal logic. To interpret formulae involving
knowledge, we use the agents’ observations to determine the points they consider
possible. There are many ways one could do this. The particular approaches used
in this paper model a synchronous perfect-recall, an observational, and a clock
semantics of knowledge, each defined using a notion of local state. We define
the synchronous perfect recall local state of agent i at a point (r,m) to be the
sequence2 {(r,m)}pri = Oi(r[0..m]). That is, the synchronous perfect recall local
state of an agent at a point in a run consists of a complete record of the ob-
servations the agent has made up to that point. The clock local state of agent
i at a point (r,m) is defined by {(r,m)}clki = (m,Oi(r(m))). That is, in this
definition, the agent’s local state is taken to be the current time, together with
the agent’s current observation. Finally, the observational local state of agent i
at a point (r,m) is {(r,m)}obsi = Oi(r(m)). Effectively, an agent with this view
of the world considers any reachable state giving the same observation to be
possible. To distinguish these local state assignments, we define a view v to be
one of the three possibilities clk, obs, and pr.

Given a view v, the corresponding local state assignment may be used to de-
fine for each agent i a relation v∼i of indistinguishability on points (r,m), (r′,m′)
of E, by (r,m) v∼i (r′,m′) if {(r,m)}vi = {(r′,m′)}vi . Intuitively, when (r,m) v∼i
(r′,m′), agent i’s local state according to the view v does not contain enough
information for the agent to determine whether it is at one point or the other.
Clearly, each v∼i is an equivalence relation. Both the synchronous perfect recall
view and the clock view are “synchronous” in the sense that if (r,m) v∼i (r′,m′),

1 Note that we do not assume that S is finite, but when so, this formulation is equiv-
alent to the usual formulation of acceptance for Büchi automata: some s ∈ α occurs
infinitely often.

2 We adopt the convention that functions lift to sequences and sets in a pointwise
fashion.

Model Checking Knowledge and Linear Time: PSPACE Cases 5

then we must have m = m′. Intuitively, this means that the agent “knows the
time”. The relations v∼i will be used to define the semantics of knowledge for
individual agents. By P vi (E, r,m) we denote the set

{ r′(m′) | r′ ∈ runs(E), m′ ∈ N, {(r′,m′)}vi = {(r′,m)}vi }

of possible states for agent i at point (r,m).
To interpret the common knowledge operators, we use another relation. If

G ⊆ A is a group of agents (i.e., two or more) then we define the relation v∼G on
points to be the reflexive transitive closure of the union of all indistinguishability
relations v∼i for i ∈ G, i.e., v∼G = (

⋃
i∈G

v∼i)∗.
The semantics of this language is defined as follows. Suppose we are given

an environment E with interpretation π. We define satisfaction of a formula ϕ
at a point (r,m) of a run of E with respect to a view v, denoted E, (r,m) |=v ϕ,
inductively on the structure of ϕ. The cases for the temporal fragment of the
language are standard, and independent of v:

E, (r,m) |=v p if p ∈ π(r(m)), where p ∈ Prop,
E, (r,m) |=v ϕ1 ∧ ϕ2 if E, (r,m) |=v ϕ1 and E, (r,m) |=v ϕ2,
E, (r,m) |=v ¬ϕ if not E, (r,m) |=v ϕ,
E, (r,m) |=v 2ϕ if E, (r,m+ 1) |=v ϕ,
E, (r,m) |=v ϕ1 U ϕ2 if there exists m′′ ≥ m such that E, (r,m′′) |=v ϕ2

and E, (r,m′) |=v ϕ1 for all m′ with m ≤ m′ < m′′.
The semantics of the knowledge and common knowledge operators is defined by:

E, (r,m) |=v Kiϕ if E, (r′,m′) |=v ϕ for all points (r′,m′) of E
satisfying (r′,m′) v∼i (r,m)

E, (r,m) |=v CGϕ if E, (r′,m′) |=v ϕ for all points (r′,m′) of E
satisfying (r′,m′) v∼G (r,m)

These definitions can be viewed as an instance of the “interpreted systems”
framework for the semantics of the logic of knowledge proposed in [9]. Intuitively,
an agent knows a formula to be true if this formula holds at all points that the
agent is unable to distinguish from the actual point. Common knowledge may
be understood as follows. For G a group of agents, define the operator EG,
read “everyone in G knows” by EGϕ ≡

∧
i∈GKiϕ. Then CGϕ is equivalent to

the infinite conjunction of the formulae EkGϕ for k ≥ 1. That is, ϕ is common
knowledge if everyone knows ϕ, everyone knows that everyone knows ϕ, etc. We
refer the reader to [5] for further motivation and background.

3 Main Results

We may now define the model checking problem we consider in this paper and
state our main results.

Say that formula ϕ is realized in the environment E with respect to a view v,
denoted E |=v ϕ, if, for all runs r of E, we have E, (r, 0) |=v ϕ. We are interested
in the following problem, which we call the realization problem with respect to a

6 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

view v: given an an environment E and a formula ϕ of a language L, determine
if ϕ is realized in E with respect to v.

The realization problem for the logic of knowledge and linear time has been
studied by van der Meyden and Shilov [23], who show that for the perfect recall
view, the problem is undecidable for the language L{2,U,K1,...,Kn,C} when n ≥ 2,
and decidable for the language L{2,U,K1,...,Kn}, but with nonelementary com-
plexity. More specifically, for L{2,U,K1,...,Kn} their approach runs in space poly-
nomial in f(depth(ϕ), O(|E|)), where the function f is defined by f(0,m) = m
and f(k + 1,m) = 2f(k,m). It is also shown by van der Meyden and Shilov that
there is a similar lower bound on the complexity when there is more than one
agent.

Our main contribution in this paper is to develop a general algorithm scheme
for model checking the logic of knowledge and time based on a notion of simula-
tion of environments , and to show that this scheme yields improved complexity
bounds in a number of special cases. The scheme itself is presented in Section 4,
and parameterizes a procedure for model checking with respect to the obser-
vational view. In particular, this procedure yields the following result for the
observational view.3

Theorem 1. The problem of determining whether a given formula in the lan-
guage L{2,U,K1,...,Kn,C} is realized in a given environment E with respect to the
observational view is decidable in PSPACE.

By showing the existence of simulation from an enviroment representing the
perfect recall semantics for a single agent to a suitable finite environment, we
obtain the following result:

Theorem 2. The problem of determining whether a given formula in L{2,U,K}
is realized in a given environment E with respect to the perfect recall view is in
PSPACE.

This shows that the complexity of the realization problem for formulae with
a single agent with perfect recall is strictly lower than the general case, and
significantly improves upon the complexity bound of van der Meyden and Shilov
in this case.

By finding other suitable structures we may derive complexity bounds on
several other cases of the realization problem, as stated in the following results.
First, although with respect to the perfect recall view, the realization problem
is non-elementary for L{2,U,K1,...,Kn}, there exist classes of environments with
respect to which the problem has lower complexity, even if we add the common
knowledge operators. In particular, this holds for broadcast environments [22].

3 This result does not appear to have been previously stated in the literature, but we
note that results of Vardi [28] on the problem of verifying that a concrete protocol
implements a knowledge-based program are very closely related. Lomuscio and Rai-
mondi have studied the complexity of model checking the combination of the logic
of knowledge with the braching time logic CTL with respect to the observational
semantics [12].

Model Checking Knowledge and Linear Time: PSPACE Cases 7

Intuitively, these are environments in which the only communication mechanism
available to agents is to broadcast to all agents in the system. The formal def-
inition will be given in section 5.2. For broadcast environments we show the
following.

Theorem 3. The problem of determining whether a given formula in the lan-
guage L{2,U,K1,...,Kn,C} is realized in a given broadcast environment E with re-
spect to the perfect recall view is decidable in PSPACE.

Realization for the clock view may also handled using the simulation technique
and again the common knowledge operator may be included in the language.

Theorem 4. The problem of determining whether a given formula in the lan-
guage L{2,U,K1,...,Kn,C} is realized in a given environment E with respect to the
clock view is decidable in PSPACE.

Note that the complexity of model checking linear time temporal logic (i.e. re-
alization for the language L{2,U}) is PSPACE-complete [19]. Since L{2,U} is a
sublanguage of the languages in the above results, these results show that the
above bounds are tight, in the sense that the problems are in fact PSPACE-
complete.

That some of our complexity bounds are no more than the PSPACE com-
plexity of the linear time temporal logic LTL may at first suggest that model
checking these cases of the logic and knowledge and time could be as effective in
practice as model checking LTL. However, a closer inspection indicates that it
is not obvious that this will be case. The time complexity of LTL model check-
ing a fixed formula is linear in the size of the model. The time complexity is
exponential in the size of the formula. This exponential bound is not an imped-
iment in practice since the formulas of interest tend to be small. The models,
on the other hand, may be very large. We show that as a function of model
size, the complexity of model checking fixed formulas of the logic of knowledge
and time falling within our PSPACE cases can be be as high as PSPACE-hard
(for L{2,U,K} with respect to perfect recall) and at any level of the polynomial
hierarchy for the clock view.4

Theorem 5. There exists a formula ϕ of L{2,U,K} such that the problem of
deciding if ϕ is realized in a given environment E with respect to the perfect
recall view is PSPACE-hard.

In the case of the clock semantics, we may obtain the following lower bound.

Theorem 6. For each level Πp
k of the polynomial hierarchy, there exists a for-

mula ϕ of L{2,U,K1,...,Kn} such that the problem of deciding, given an environ-
ment E, whether E |=clk ϕ, is Πp

k -hard.

The proof involves a reduction from Πk formulas of quantified boolean logic.
Note that this implies PSPACE-hardness of the version of the problem in which
the formula is given.
4 For reasons of space most proofs have been relegated to the appendix.

8 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

4 An Algorithm Scheme

We approach the model checking problem in three stages. Firstly, given a finite
environment E and a view v, we construct an infinite environment Ev that
reduces the model checking problem with respect to v in E to one of model
checking Ev with respect to obs. Secondly, we introduce simulations between
environments, which, together with the previous step, may enable the problem
of model checking E with respect to v to be reduced to model checking with
respect to obs in finite state environment E′ (which is of exponential size in
our applications). Finally, we combine alternating Turing machine techniques
with standard Büchi automata techniques to obtain the general model checking
procedure (which runs in PSPACE in our applications).

Let E = (S, I,→, (Oi)i∈A, π, α) be a finite environment and let v be a view.
Define Ev, the v-environment for E, to be (Sv, Iv,→v, (Ovi)i∈A, π

v, αv) where:

– Sv = runs(E)× N,
– Iv = runs(E)× {0},
– (r,m) →v (r′,m′) if r′ = r and m′ = m+ 1,
– Ovi (r,m) = {(r,m)}vi ,
– πv(r,m) = π(r(m)), and
– (r,m) ∈ αv iff r(m) ∈ α.

The following lemma states that the observational view on this (infinite)
environment coincides with the view v on the original (finite) environment. Given
a run r of E, write rv for the run of Ev defined by rv(n) = (r, n) for all n ∈ N.

Lemma 7. Let ϕ ∈ L{2,U,K1,...,Kn,C} and let (r,m) be a point of E. Then
E, (r,m) |=v ϕ iff Ev, (rv,m) |=obs ϕ.

Since every run of Ev has the form rv for some run of E, it follows that
E, |=v ϕ iff Ev |=obs ϕ.

Let fpaths(E) be the set of all fair paths of E. For ρ ∈ fpaths(E) and m ∈ N
let ρ|m be the fair path with ρ|m(j) = ρ(m+ j), for j ∈ N.

Observe that the semantics of E, (r, n) |=v ϕ refers only to the future of
the points considered in unfolding the definition. To formalise this, consider
the following alternate definition of a relation E, ρ |=∗ ϕ, defined for all ρ ∈
fpaths(E), not just the initialized ones:

E, ρ |=∗ p if p ∈ π(ρ(0)), where p ∈ Prop,
E, ρ |=∗ ϕ1 ∧ ϕ2 if E, ρ |=∗ ϕ1 and E, ρ |=∗ ϕ2,
E, ρ |=∗ ¬ϕ if not E, ρ |=∗ ϕ,
E, ρ |=∗ 2ϕ if E, ρ|1 |=∗ ϕ,
E, ρ |=∗ ϕ1 U ϕ2 if there exists m′′ ≥ 0 such that E, ρ|m′′ |=∗ ϕ2

and E, ρ|m′ |=∗ ϕ1 for all m′ with 0 ≤ m′ < m′′.
E, ρ |=∗ Kiϕ if E, ρ′ |=∗ ϕ for all ρ′ ∈ fpaths(E) with Oi(ρ′(0)) = Oi(ρ(0))
E, ρ |=∗ CGϕ if for all sequences of states s0, s1, . . . , sk such that

(i) s0 = ρ(0), (ii) for all j < k there exists an i ∈ G
such that Oi(sj) = Oi(sj+1), and (iii) for all
ρ′ ∈ fpaths(E) with ρ′(0) = sk, we have E, ρ′ |=∗ ϕ.

Model Checking Knowledge and Linear Time: PSPACE Cases 9

We write E |=∗ ϕ if E, r |=∗ ϕ for all runs r of E.
For an environment E, define a state to be reachable if it occurs in some run

of E. Say that observations in E preserve reachability if for all states s, t of E
and all agents i, if s is reachable and Oi(s) = Oi(t) then t is reachable.5

Lemma 8. If observations in E preserve reachability then E, (r,m) |=obs ϕ iff
E, r|m |=∗ ϕ.

Next, we introduce a notion of simulation on environments (cf. [15]) in order
to reduce the infinite state space of Ev to a finite one while preserving validity
of formulae with respect to obs. For environments E = (S, I,→, (Oi)i∈A, π, α)
and E′ = (S′, I ′,→′, (O′

i)i∈A, π
′, α′), a function σ : S −→ S′ is said to be a

simulation from E to E′ if the following hold:

1. I ′ = σ(I),
2. if s→ s′ then σ(s) →′ σ(s′),
3. if σ(s) →′ u then there exists s′ ∈ S such that σ(s′) = u and s→ s′,
4. if Oi(s) = Oi(t) then O′

i(σ(s)) = O′
i(σ(t)),

5. if O′
i(σ(s)) = O′

i(u) then there exists a state t ∈ S such that Oi(s) = Oi(t)
and σ(t) = u.

6. π′ ◦ σ = π, and
7. σ(s) ∈ α′ iff s ∈ α.

Lemma 9. Suppose that σ is a simulation from E to E′. Then

1. for all (initialised) ρ ∈ fpaths(E), σ(ρ) is a (initialised) fair path of E′;
2. for all ρ′ ∈ fpaths(E′) and (initial) states s of E, if σ(s) = ρ′(0), then there

exists a (initialised) ρ ∈ fpaths(E) with ρ(0) = s such that σ(ρ) = ρ′;
3. for all ρ ∈ fpaths(E) we have E, ρ |=∗ ϕ iff E′, σ(ρ) |=∗ ϕ.

Noting that all states of Ev are reachable, we obtain the following:

Corollary 10. For all environments E and E′, if there exists a simulation from
Ev to E′, then E |=v ϕ iff E′ |=∗ ϕ.

This result provides the basic reduction that we use to obtain our complexity
results. We now show that the relation E′ |=∗ ϕ is decidable for finite environ-
ments E′. However, we will need to deal with the fact that the structure E′

will be of size exponential in the size of E in our applications. For this reason,
we express our decision procedure for |=∗ as an alternating computation [2], in
which we guess and verify the components of E′.

We begin with a reduction to well-known techniques for LTL. Say that a
formula is a pure knowledge formula if it is of the one of the forms Kiψ or CGψ,
or their negation. Note that for formulas ϕ that are either atomic propositions
5 We remark that it is always possible to ensure this by deleting the unreachable states

from E, an operation that preserves satisfaction of formulas. However, this operation
is undesirable in our applications since we will deal with exponential size structures,
in which observations already preserve reachability.

10 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

or their negation, or pure knowledge formulas, we have that if ρ(0) = ρ′(0), then
E, ρ |=∗ ϕ iff E, ρ′ |=∗ ϕ. Thus, for such formulas ϕ, we may define E, s |=∗ ϕ,
where s is a state of E, to hold if E, ρ |=∗ ϕ for some (equivalently, every) path
ρ with ρ(0) = s.

We may use this state-depence property to transform the L{2,U,K1,...,Kn,C}
model checking problem with respect to |=∗ into a problem of model checking
L{2,U}, by replacing the pure knowledge subformulas by atomic propositions.
Introduce a new atomic proposition qKiψ for each formulaKiψ and qCGψ for each
formula CGψ. Let L∗{2,U} be the language of temporal logic over the set of atomic
propositions Prop together with these new atomic propositions. Given a formula
ϕ of L{2,U,K1,...,Kn,C} and an occurrence of a pure knowledge formula as a
subformula of ϕ, say this occurrence is maximal if it does not lie within the scope
of a knowledge or common knowledge operator. For example, in (K22K1p) ∨
K1p, the maximal occurrences of knowledge subformulas are the occurrence of
K22K1p and the second (but not the first) occurrence of K1p. Define ϕ∗ to
be the formula of L∗{2,U} obtained by replacing each maximal occurrence of a
knowledge formula Kiψ by the proposition qKiψ and similarly for the maximal
occurrences of CGψ. Thus, ((K22K1p)∨K1p)∗ = qK22K1p∨qK1p. Write Propϕ∗

for the set of atomic propositions occuring in ϕ∗ and KPropϕ∗ for the set of
atomic propositions of the form qKiψ and qCGψ that occur that occur in ϕ∗.

Suppose we enrich the structure E by extending the valuation π so that
qKiψ ∈ π(s) iff E, s |=∗ Kiψ and qCGψ ∈ π(s) iff E, s |= CGψ. Call the resulting
structure E∗. Then we have E, ρ |=∗ ϕ iff E∗, ρ |= ϕ∗. This turns the problem
of model checking L{2,U,K1,...,Kn,C} in E into the problem of model checking
L∗{2,U} in E∗. Of course, to apply this technique, we need to have the appropriate
extension E∗ of E. We may deal with this in an NPSPACE computation by
guessing the extension E∗, iteratively verifying its correctness over larger and
larger pure knowledge subformulas of ϕ (using LTL model checking techniques),
and then model checking the formula ϕ∗. Since NPSPACE = PSPACE, this
already yields a proof of Theorem 1.6

However, in our applications, we will not be interested in a given structure
E, but in a structure E′ of size exponential in the size of E. This means that
the cost of guessing (E′)∗ is exponential. We will handle this by guessing the
extension not upfront, but on the fly, for each state of E′ as it arises during
the verification, and using and APTIME computation that incorporates a Büchi
automaton emptiness check for the LTL parts of the verification.

Let Mϕ∗ be the nondeterministic Büchi automaton for the L∗{2,U} formula
ϕ∗ over propositions Propϕ∗ , with states Sϕ∗ , initial states Iϕ∗ , transitions ⇒a

(where a ∈ P(Propϕ∗)) and acceptance condition αϕ∗ . We make use of the
following properties of this automaton [29]: (1) The automaton is of size O(2|ϕ

∗|),
where each state is of size O(|ϕ|). (2) Deciding Sϕ∗ , Iϕ∗ , ⇒a, and αϕ∗ can be
done in ATIME(log2 |ϕ|).

6 The guess and verify technique discussed here is essentially that used in Vardi’s
results on verifying implementations of knowledge-based programs [28].

Model Checking Knowledge and Linear Time: PSPACE Cases 11

For a finite environment E = (S, I,→, (Oi)i∈A, π, α), we define the product
E ×Mϕ∗ (a transition system with Büchi acceptance condition) as follows.

– The transition system has states 〈b, s, v〉, where b ∈ P({0, 1}), s ∈ S and
v ∈ Sϕ∗ . Intuitively, 0 ∈ b (1 ∈ b) represents that E (resp., Mϕ∗), has
passed through an accepting state since the most recent accepting state of
the product.

– The set of initial states consists of all 〈∅, s, v〉 where s ∈ I and v ∈ Iϕ∗ .
– There is a transition 〈b, s, v〉 ⇒k 〈b′, s′, v′〉 for a set k ⊆ KPropϕ∗ when:

• s→ s′,
• v ⇒π(s)∪k v

′, and
• b′ = b0 ∪ b1 ∪ b2, where if b = {0, 1} then b0 = ∅, else b0 = b; if s ∈ α

then b1 = {0}, else b1 = ∅; and if v ∈ αϕ∗ then b2 = {1}, else b2 = ∅;
– the automaton has as accepting states the states 〈b, s, v〉 with b = {0, 1}.

Intuitively, this transition system represents running Mϕ∗ as a monitor on runs
of E, with the values of the propositions KPropϕ∗ chosen arbitrarily. Thus,
there exists a fair path ρ = s0s1 . . . of E such that E, ρ |=∗ ϕ iff there exists an
accepting run 〈b0, s0, v0〉 ⇒k0 〈b1, s1, v1〉 ⇒k1 〈b2, s2, v2〉 ⇒k2 . . . of E ×M¬ϕ∗

such that for all j ≥ 0, we have E, sj |=∗ kj . Applying the usual emptiness check
for Büchi automata, such a path exists iff we can find a finite such sequence with
〈bl, sl, vl〉 an accepting state and final element 〈bl′ , sl′ , vl′〉 = 〈bl, sl, vl〉 for some
l′ > l, where both l and l′ − l are at most |E ×Mϕ∗ |. Our decision procedure
searches for such paths using a Savitch-style reachability procedure [16] in order
to deal with the exponential size of the search-space.

For the verification that E, s |=∗ k, it suffices to check, for each maximal
knowledge subformula Kiψ of ϕ, that qKiψ ∈ k iff Oi(s) = Oi(t) implies that for
all fair paths ρ = t0t1 . . . with t0 = t, we have E, ρ |= ϕ∗. For this, we recursively
apply the above ideas on E ×M¬ψ∗ . Since ψ is a strict subformula of ϕ, the
recursion is well founded. A similar check is applied for the common knowledge
subformulas.

We are now ready to present our general algorithm scheme as an alternat-
ing computation [2]. Suppose that we are given a finite environment E, for
which it is known that there exists a simulation from Ev to a finite environment
E′ = (S′, I ′,→′, (O′

i)i∈A, π
′, α′). We assume that there is a representation of E′

such that the states and other components of E′ can be represented and verified
within known space and alternating time complexity bounds. (That is, given E,
the states of E′ are representable as strings of length some known function of
|E|, in such a way that we can decide whether such a string represents a state
of E′, whether s→′ s′ etc.with some known complexity bounds.) We define the
following alternating procedure that searches for such runs by operating over the
states 〈b, s, v〉 of the automata E′×Mψ∗ for subformulas ψ of ϕ and their nega-
tions. For clarity, we write expressions referring to the components of E′ (such as
“choose s ∈ I ′ and do X”) which need to be expanded to expressions (“choose s
and universally (1) verify s ∈ I ′ and (2) do X”) that use the verification routines
assumed to exist.

12 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

VERIFY(E,ϕ): Universally choose s ∈ I ′ and call ¬FALSIFY(E, s, ϕ)
FALSIFY(E, s, ψ): Existentially choose k ⊆ KPropψ∗ , an initial state v of M¬ψ∗ ,

an accepting state 〈b0, s0, v0〉 and a state 〈b1, s1, v1〉 of E′×M¬ψ∗ such that
(b0, s0, v0) ⇒k (b1, s1, v1).
Let N = dlog2 |states(E′ ×M¬ψ∗)|e
Universally call:
1. REACH(E, (∅, s, v), (b0, s0, v0), N,¬ψ)
2. CHECK(E, s0, k, ψ), and
3. REACH(E, (b1, s1, v1), (b0, s0, v0), N,¬ψ)

CHECK(E, s, k, ψ): Universally,
– for each pKiψ′ in KPropψ∗ , if pKiψ′ ∈ k then call KCHECK(E, s,Kiψ

′) else
call ¬KCHECK(E, s,Kiψ

′)
– for each pCGψ′ in KPropψ∗ , if pCGψ′ ∈ k then call CKCHECK(E, s, CGψ′)

else call ¬CKCHECK(E, s, CGψ′)
KCHECK(E, s,Kiψ): Universally, for each s′ ∈ S′ where O′

i(s) = O′
i(s

′), call
¬FALSIFY(E, s′, ψ)

CKCHECK(E, s, CGψ): Universally, for each s′ ∈ S′: (1) verify7 there is a sequence
s = s0, . . . , sk = s′ with k ≤ |S′| and for each j < k there is an i ∈ G such
that O′

i(sj) = O′
i(sj+1). (2) call ¬FALSIFY(E, s′, ψ)

REACH(E, (b0, s0, v0), (b1, s1, v1), N, ψ): Accept if (b0, s0, v0) = (b1, s1, v1).
Otherwise if N = 0, existentially guess k ⊆ KPropψ∗ then

universally verify that (b0, s0, v0) ⇒k (b1, s1, v1) and CHECK(E, s0, k, ψ).
If N > 0, existentially guess a state (b2, s2, v2) of E×Mψ∗ , then universally
call:

REACH(E, (b0, s0, v0), (b2, s2, v2), N − 1, ψ) and
REACH(E, (b2, s2, v2), (b1, s1, v1), N − 1, ψ)

An analysis of the complexity of the algorithm scheme yields the following.

Theorem 11. Let v be a view. Suppose that C is a class of environments such
that for each environment E ∈ C there exists an environment E′ with states
that can be represented in space f(|E|) and components that can be verified
in ATIME(g(|E|)), such that there is a simulation σ from Ev to E′. Then{

(E,ϕ) ∈ C × L{2,U,K1,...,Kn,C} | E |=v ϕ
}

is in ATIME(p(f(|E|), g(|E|), |ϕ|))
for some polynomial p.

We remark that since the procedure REACH() has an alternation before the
recursive call, the number of alternations is also polynomial in |E|. Theorem 5
can be understood as asserting that this is inherently so.

In the following sections, we apply Theorem 11 to obtain complexity bounds
for model checking the logic of knowledge and linear time in a number of cases.
In each case, we identify an appropriate environment E′ where the states can be
represented and verified in polynomial space and time, respectively, hence the
complexity of the alternating procedure is APTIME. By [2], this is equivalent

7 In general, this may require another Savitch-style search. In fact, in our applications,
k ≤ |S|, i.e. the number of states of E, will suffice, so this is not necessary.

Model Checking Knowledge and Linear Time: PSPACE Cases 13

to PSPACE. The environments E′ and the simulations we use are extensions
(by the addition of transition relations →′) of similar structures that have been
used elsewhere in the literature [22] for another problem (existence of finite-state
implementations of knowledge-based programs.)

5 Model Checking with Respect to Perfect Recall

In this section we consider several special cases of model checking with respect to
perfect recall. The first restricts formulas to refer only to the knowledge of a single
agent, and the latter concerns model checking the full language L{2,U,K1,...,Kn,C}
in restricted environments.

5.1 Formulas of L{2, U,K}

We first treat the case of model checking formulas of a single agent (agent 1)
using the perfect recall view. (This case may also be applied to model checking
formulas that refer only to a single agent’s knowledge, simply by dropping the
other agents’ observation functions from the environment.)

In this setting it suffices to track the set of states the agent considers possible
at each point in time. We define the environment E′ = (S′, I ′,→′, O′

1, π
′, α′) by:

– S′ = { (s, P) | s ∈ S, P ⊆ S, s ∈ P }
– I ′ = { (s, P0(s)) | s ∈ I } where P0(s) = { s′ ∈ I | O1(s) = O1(s′) }
– (s, P) →′ (s′, P ′) iff s → s′ and P ′ = { t′ | t ∈ P, t→ t′, O1(t′) = O1(s′) },

and
– O′

1(s, P) = P .

with simulation from Epr given by σ(r,m) = (r(m), P pr
1 (E, r,m)). Observe that

a state of E′ can be represented in space O(log2 |S|+|S|). States of E′ can be seen
to be a special case (1-trees) of data structures previously used in [14] for model
checking L{K1,...,Kn}. That σ is a simulation can be seen by arguments in that
work. It is easy to check that observations preserve reachability. By Theorem 11
we conclude that this model checking problem can be decided in PSPACE, which
completes the proof of Theorem 2.

5.2 Multi-agent Broadcast and L{2, U,K1,...,Kn,C} with Perfect
Recall Semantics

Broadcast environments [22, 25] model situations in which agents may maintain
private information, but where the only means by which this information can be
communicated is by synchronous simultaneous broadcast to all agents.

We give a definition of broadcast environments here that is slightly more
abstract than previous formulations, which dealt with a notion of environment
in which agents are equipped with actions that they may perform.

Formally, we define a broadcast environment to be an environment E =
(S, I,→, (Oi)i∈A, π, α) in which the states and observation functions and transi-
tion relation have a particular structure.

14 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

– The set S of states of E is a subset of S0 × S1 × . . . × Sn, where S0 is
a finite set S0 of shared states, and for each agent i a set Si of private
states. If s = 〈s0, . . . , sn〉 denotes a state, we write pi(s) to denote agent
i’s private state si. For each agent i, define the binary function ./i on S
by 〈s0, s1, . . . sn〉 ./i 〈t0, . . . tn〉 = 〈s0, s1 . . . si−1, ti, si+1, . . . sn〉. We require
that S is closed under the functions ./i.

– The observation functions are given by Oi(s) = (Oc(s0),pi(s)) , where Oc :
S0 −→ O is a common observation function.

– The transition relation has the property that for each agent i = 1 . . . n, if
Oi(s) = Oi(t) and s→ s′ and t→ t′ and Oc(s′) = Oc(t′), then s→ s′ ./i t

′.
– The Büchi acceptance condition, used to model fairness constraints on the

environment, is some arbitrary subset of S.

There is no constraint on the set of initial states. Intuitively, the common obser-
vation function models the information that is being broadcast, and the private
states model private information that is being maintained by the agents. An
agent’s observation consists of the broadcast information and its private infor-
mation. The condition on the transition function can be understood as saying
that an agent’s choice of update on its private state (1) may depend only on
the current observation and the incoming common observation and (2) does not
affect the update on the common state or any of the other agent’s updates.

Paradigmatic examples of broadcast systems are card games such as bridge
(where both bidding and playing of cards can be viewed as a broadcast) and
systems composed of processes attached to bus, with all processes receiving every
communication (as in “snoopy cache coherence protocols” [20]).

Note that every single agent system E is isomorphic to a broadcast system
E′. For, if we represent a state s of E by a state 〈s,O1(s)〉 of E′, and view
the first component as being the shared state and the second component as the
private state of the single agent, and take Oc(s) = O1(s), then the constraint
on the transition relation is trivially satisfied, because if O1(s) = O1(t) then
(s,O1(s)) ./ (t, O1(t)) = (s,O1(s)).

For the broadcast, perfect recall case, we use the following environment E′:

– S′ is the set of elements (s, f, t) ∈ I × (I −→ P(S))× S such that t ∈ f(s),
– (s, f, t) ∈ I ′ iff s ∈ I, for s′ ∈ I we have f(s′) = { t ∈ I | Oc(t) = Oc(s′) },

and t ∈ f(s),
– (s, f, t) →′ (s, f ′, t′) if f ′(s′) = { u′ | u ∈ f(s′), u→ u′, Oc(u′) = Oc(t′) }

and t→ t′,
– O′

i(s, f, t) = (Oi(s), f, Oi(t)),

and the simulation σ given by σ(r,m) = (r(0), f, r(m)), where f(s) is the set
of states t such that there exists a trace r′[0 . . .m] of E with Oc(r′[0..m]) =
Oc(r[0..m]) and t = r′(m). Observations preserve reachability in this environ-
ment. The states of E′ can be represented in size O(log2 |S|+ |I| · |S|+log2 |S|) =
O(|S|2), and applying Theorem 11 shows once again that this model checking
problem is in PSPACE, completing the proof of Theorem 3. Note also that in
this structure, if (s, f, t) ∼OG (s′, f ′, t′), then it does so by means of a sequence of

Model Checking Knowledge and Linear Time: PSPACE Cases 15

states all of which have second component f , and also f ′ = f . Thus a maximal
path length of |S|2 suffices in CKCHECK().

6 Formulas of L{2, U,K1,...,Kn,C} for the Clock and
Observational Views

In order to model check formulas with respect to the clock view, the image of a
point (r,m) in the simulating environment E′ needs to keep track of the set of
states that are reachable in exactly m steps. We define E′ by

– S′ = { (s, P) | s ∈ S, P ⊆ S, s ∈ P }
– I ′ = I × {I},
– (s, P) →′ (s′, P ′) if s→ s′ and P ′ = {t′ | t ∈ P, t→ t′}.
– O′

i(s, P) = (Oi(s), P)

The simulation is given by σ(r,m) = (r(m), {r′(m) | r′ ∈ runs(E)}). Observa-
tions can be seen to preserve reachability. The states in the constructed envi-
ronment can be represented in space O(log |S| + |S|). This problem is again in
PSPACE by Theorem 11. This yields a proof of Theorem 4. In this structure, if
(s, P) ∼OG (s′, P ′), then it does so by means of a sequence of states all of which
have second component P , and also P ′ = P . Thus a maximal path length of |S|
suffices in CKCHECK().

We can already decide realizability in a finite environment E with respect to
the observational semantics by furnishing a standard LTL model checker with
the equivalence classes induced by the observation function. To remain within
our framework, it suffices to use an environment identical to E with simulation
σ(r,m) = r(m) from Eobs to E. Its states can be represented in size O(log |S|).
However, in order for observations to preserve reachability in this case, we need
to first remove unreachable states from the environment. Here also a maximal
path length of |S| suffices in CKCHECK().

7 Conclusion

We have shown that our general simulation-based scheme for model checking
the logic of knowledge and linear time yields PSPACE complexity bounds in
a number of interesting cases of the general problem (which has much higher
complexity).

Our notion of simulation allows reductions on the temporal structure of envi-
ronments, but we have not exploited this in our applications. It could be worth
exploring this observation in practice. Experiments conducted by Fisler and
Vardi [6] suggest that bisimulation reduction is of limited utility for temporal
logic model checking, but arguments of van der Meyden and Zhang [26] suggest
such reductions might be effective for the much larger search spaces produced
when dealing with information flow properties.

The techniques are also applicable to show decidability for certain other
classes of environments (with higher complexity bounds). We leave the details for

16 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

elsewhere. We believe that the techniques we have developed can also be adapted
to deal with the combination of branching time and the logic of knowledge: we
leave this for future work.

Wozna et al have studied model checking a logic of knowledge and branching
time in a real time systems modelled using timed automata [30]. Their semantics
is close to our clock semantics, but we note that their until operator is bounded
to a specific interval, so the closest appropriate comparison is to our language
L{©,K1,...,Kn,C}. They give decidability but not complexity results, but study
bounded model checking techniques for their logic.

References

[1] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In TARK ’98: Proceedings of the 7th conference
on Theoretical aspects of rationality and knowledge, pages 43–56, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[2] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[3] A. Cimatti, C. Pecheur, and R. Cavada. Formal verification of diagnosability via
symbolic model checking. In G. Gottlob and T. Walsh, editors, IJCAI, pages
363–369. Morgan Kaufmann, 2003.

[4] A. Cimatti, C. Pecheur, and A. Lomuscio. Applications of model checking for
multi-agent systems: Verification of diagnosability and recoverability. In L. Czaja,
editor, Proceedings of the International Workshop on Concurrency, Specification,
and Programming (CS&P 2005). Ruciane-Nida, 2005.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT-Press, 1995.

[6] K. Fisler and M. Y. Vardi. Bisimulation and model checking. In Conference on
Correct Hardware Design and Verification Methods (CHARME’99), pages 338–
341, 1999.

[7] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In R. Alur and D. Peled, editors, CAV, volume 3114 of LNCS, pages 479–483.
Springer-Verlag, 2004. http://www.cse.unsw.edu.au/˜mck/.

[8] N. O. Garanina and N. V. Shilov. Well-structured model checking of multiagent
systems. In Sixth International Andrei Ershov Memorial Conference Perspectives
of System Informatics, LNCS. Springer-Verlag, 2006. to appear.

[9] J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed
Environment. J. ACM, 37(3), 1990.

[10] J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in multiagent
systems. In CSFW, pages 75–88. IEEE Computer Society, 2003.

[11] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In POPL ’85: Proceedings of the 12th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages
97–107, New York, NY, USA, 1985. ACM Press.

[12] A. Lomuscio and F. Raimondi. The complexity of model checking concurrent pro-
grams against CTLK specifications. In H. Nakashima, M. P. Wellman, G. Weiss,
and P. Stone, editors, AAMAS, pages 548–550. ACM, 2006.

Model Checking Knowledge and Linear Time: PSPACE Cases 17

[13] A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems.
In H. Hermanns and J. Palsberg, editors, TACAS, volume 3920 of LNCS, pages
450–454. Springer-Verlag, 2006.

[14] R. v. d. Meyden. Common knowledge and update in finite environments. Infor-
mation and Computation, 140(2):115–157, Feb. 1998.

[15] D. M. R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, volume 104
of LNCS, pages 167–183. Springer-Verlag, Mar. 1981.

[16] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4:177–192, 1970.

[17] N. V. Shilov and N. O. Garanina. Model checking knowledge and fixpoints. In
Z. Ésik and A. Ingólfsdóttir, editors, FICS, volume NS-02-2 of BRICS Notes
Series, pages 25–39. University of Aarhus, 2002.

[18] N. V. Shilov, N. O. Garanina, and K.-M. Choe. Update and abstraction in
model checking of knowledge and branching time. Fundamenta Informaticae,
72(1–3):347–361, 2006.

[19] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

[20] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols
and their support by the IEEE futurebus. In ISCA ’86: Proceedings of the 13th
annual international symposium on Computer architecture, pages 414–423, Los
Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[21] P. F. Syverson. Knowledge, belief, and semantics in the analysis of cryptographic
protocols. Journal of Computer Security, 1(3–4):317–334, 1992.

[22] R. van der Meyden. Finite state implementations of knowledge-based programs.
In V. Chandru and V. Vinay, editors, FSTTCS, volume 1180 of LNCS, pages
262–273. Springer-Verlag, 1996.

[23] R. van der Meyden and N. Shilov. Model checking knowledge and time in sys-
tems with perfect recall (extended abstract). In C. Pandu Rangan, V. Raman, and
R. Ramanujam, editors, Proceedings Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’99), volume 1738 of LNCS,
pages 432–445. Springer-Verlag, Dec. 1999.

[24] R. van der Meyden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In CSFW, pages 280–. IEEE Computer Society, 2004.

[25] R. van der Meyden and T. Wilke. Synthesis of distributed systems from
knowledge-based specifications. In M. Abadi and L. de Alfaro, editors, CON-
CUR, volume 3653 of LNCS, pages 562–576. Springer-Verlag, 2005.

[26] R. van der Meyden and C. Zhang. Algorithmic verification of noninterference
properties. In Proceedings Workshop on Views on Designing Complex Systems,
ENTCS, Bertinoro, Italy, Sept. 2006. to appear.

[27] J. van Eijck and S. Orzan. Modelling the epistemics of communication with
functional programming. In M. van Eekelen, editor, 6th Symposium on Trends in
Functional Programming, TFP 2005, pages 44–59, 2005.

[28] M. Y. Vardi. Implementing knowledge-based programs. In Y. Shoham, editor,
TARK, pages 15–30. Morgan Kaufmann, 1996.

[29] M. Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of
programs (extended abstract). In STOC, pages 446–456. ACM, 1984.

[30] B. Wozna, A. Lomuscio, and W. Penczek. Bounded model checking for knowledge
and real time. In 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 165–172, Utrecht, July 25-29 2005.
ACM.

18 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

A Proofs

We provide here proofs omitted in the body of the paper.

Proof (of Theorem 5). By reduction from the problem of deciding if, for a given
nondeterministic finite state automaton A over an alphabet Σ, the language
L(A) is equal to the universal language Σ∗.

Let A = (Q, q0, δ, F) be an NFA with states Q, initial state q0, transition
function δ : Q × Σ → P(Q) and final states F . We define an environment EA
that has two different types of runs: one corresponds to the generation of a
sequence of inputs to A, the other corresponds to runs of A. We employ the
special letter ε /∈ Σ to handle the empty word in both types of runs. To ensure
that EA has a fair path starting at every state, we add the sink state ⊥ /∈ Σ.
Formally, the environment EA = (S, I,→, O1, π, α) consists of:

– states S = Σ ∪ {ε, (ε, q0),⊥} ∪Σ ×Q,
– initial states I = {ε, (ε, q0)},
– transitions

• ε→ l and l→ l′ for each l, l′ ∈ Σ,
• (l, q) → (l′, q′) for each l ∈ Σ ∪ {ε}, q ∈ Q, l′ ∈ Σ and q′ ∈ δ(q, l′),
• (l, q) → ⊥ if δ(q, l) = ∅,
• ⊥ → ⊥,

– observation function O1(l) = l = O1(l, q), for all l ∈ Σ ∪ {ε} and q ∈ Q, and
O1(⊥) = ⊥,

– interpretation π given by
• π(⊥) = ∅,
• π(l) = {in} for l ∈ Σ ∪ {ε},
• π(l, q) = {final} if l ∈ Σ ∪ {ε} and q ∈ F else π(l, q) = ∅, and

– trivial acceptance condition α.

Note that for a word w ∈ Σ∗ of lengthm, if r[0 . . .m] = ε.w then P pr
1 (EA, r,m) =

{l} ∪ { (l, q) | q0 →w q }, where l = r(m). Since there is such a run r for every
word w ∈ Σ∗, it follows that EA |=pr 0(in⇒ ¬K¬final) iff L(A) = Σ∗. ut

Proof (of Theorem 6). Fix k, and consider Πp
k quantified boolean formulas Φ of

the form
∀qk1 . . . qkn∃qk−1

1 . . . qk−1
n . . . (∀/∃)q11 . . . q1n (α) ,

where α is a 3-CNF formula of propositional logic in the variables qji . (Formulas
with differing numbers of propositional variables in the quantifications can al-
ways be put into this form at polynomial cost O(nk) symbols by padding with
unused variables.)

We construct environments E corresponding to such formulas in which the
transition relation is the disjoint union of cycles of the form s0 → . . .→ sN−1 →
s0. We call such a component of the transition relation a cycle of length N .

Such cycles are used to represent assignments to the truth values of the
propositional variables qji as follows. Let p1

1, . . . , p
1
n, . . . p

k
1 . . . p

k
n be the sequence

of the first nk primes greater than 2. Then the largest number pkn in this sequence

Model Checking Knowledge and Linear Time: PSPACE Cases 19

is known to be O(nk(log nk + log log nk)) = O(n2). Let N j
i = Π1≤j′≤jp

j′

i . Thus
the largest of these numbers is Nk

n = O(n2k).
We associate with each variable qji several cycles, each of length N j

i , with one
such cycle for each positive or negative occurrence of qji in α. Let α =

∧
c∈C c,

where each c = {lc1, lc2, lc3} is a set representing a disjuction of 3 literals. If qji
or ¬qji occurs in c, we include in E a cycle xc,i,j0 → . . . xc,i,jN → xc,i,j0 where
N = N j

i − 1. Note that occurrences of a variable in distinct clauses give rise
to distinct cycles, i.e., if c 6= c′ then xc,i,jl 6= xc

′,i,j
m , but these cycles have the

same length. Of these states, the states xc,i,j0 are made initial. Thus, we have
one initial state per cycle in the transition relation. The total number of states
is O(|Φ| ·Nk

n) = O(|Φ|2k+1).
We make all the states arising from the clause c mutually indistinguishable

to agent 1, i.e., we define O1(x
c,i,j
l) = c. The observation function for agent 2 is

defined so as to make all states indistinguishable, i.e., O2(x) = ⊥ for all states
x.

Let Xj be the set of states xc,i,jl , and call these the level l states. It follows
that if Pm = P (E, r,m) is the set of states possible at time m, then

Pm ∩Xj = {xc,i,jl | c ∈ C, 1 ≤ i ≤ n, {qji ,¬q
j
i } ∩ c 6= ∅, l = m mod N j

i }.

Noting that the numbers N j
i for fixed j are co-prime, we have that the sets Pm∩

Xj cycle with period Πn
i=1N

j
i . More precisely, we have the following properties:

P1. For each function f : A −→ N such that 0 ≤ f(i) < N j
i for each i ∈ A,

there exists m such that Pm ∩Xj = {xc,i,jf(i) | c ∈ C, {p
j
i ,¬p

j
i} ∩ c 6= ∅}.

P2. If c and c′ are clauses with {qji ,¬q
j
i } ∩ c 6= ∅ and {qji ,¬q

j
i } ∩ c′ 6= ∅, then

for all m ∈ N and 0 ≤ l < N j
i , we have xc,i,jl ∈ Pm iff xc

′,i,j
l ∈ Pm.

We now label the states with propositions as follows:

1. For each j = 1 . . . k, there is a proposition levelj , which holds just at states
of the form xc,i,jl for some c, i, l.

2. For each level of quantification j = 1 . . . k, there is a proposition passgtj ,
which we assign to be true at all states xc,i,jl if j = 1 and at states xc,i,jl with
j > 1 iff l is divisible by N j

i /p
j
i = N j−1

i . Thus, there are pji such states on the
cycle. Intuitively, passgtj holds at states that represent possible contribu-
tions to truth assignments to the level j variables: we treat proposition qji as
being possibly assigned a value of true at a state xc,i,jl satisfying passgtj if l
is even. Note that if we consider different clauses c, c′, then, for states labelled
passgtj , property P2 implies that at a given time m, all the assignments of
truth value to qji according to this rule are consistent.
However, in the formula we construct, we will be interested not directly in
the truth value assigned to a variable, but in whether this assignment causes
a clause in which the variable occurs to be true. For this, we further label the
states xc,i,jl where passgtj holds with the proposition satj , provided either

20 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

l is even (so qji is considered true) and qji occurs positively in the clause c,
or l is odd (so qji is considered false) and qji occurs negatively in the clause
c. These are the only states in the cycle where sat holds. Intuitively, this
represents that the clause c is satisfied because of the choice of truth value
for pji .

We have said that truth of passgtj at a state indicates that the state represents a
possible contribution to an assignment of truth values to a proposition at level j.
In fact, not all such occurrences will be treated as yielding assignments, but only
those at times such that all states in Pm∩Xj satisfy passgtj . It can be seen that
this is the case just when m is divisible by N j−1

i for all i = 1 . . . n, or equivalently
(since the N j−1

i are co-prime), when m is divisible by Πi=1...nN
j−1
i . Intuitively,

this condition represents that m is a time instant from which an assignment of
truth value for all the level j propositions qji can be read off. We may capture
the satisfaction of this condition by the formula

Assgtj = K2(levelj ⇒ passgtj)

which expresses that all level j states at the given time instant satisfy passgt.
Suppose we are given an assignment π : A −→ {0, 1}. Let f : A −→ N be

any function with f(i) < N j
i such that f(i) is divisible by N j−1

i and f(i) is even
iff π(i) = 1. Then by property P1, there exists m such that Pm ∩Xj = {xc,i,jf(i) |
c ∈ C, {pji ,¬p

j
i} ∩ c 6= ∅}. Thus, the assignment to the level j variables at this

instant of time is exactly π.
Moreover, all these possible asssignments occur within every interval of length

N j
1 · . . . N j

n. In particular, between any two times m(N j−1
1 · . . . N j−1

n) and (m+
1)N j−1

1 ·. . . N j−1
n , the combinations of level j−1 states cycle through all possibil-

ities, so we have all possible assignments to the level j − 1 variables represented
between these successive level j assignments.

Instead of reading the value of a level j variable from the assignment at the
current time, we read it from the next time that all the level j variables are
assigned a value. This can be captured by the following formulas. First, define
the expression allj(ϕ) as 2[(Assgtj ⇒ ϕ) U (Assgtj+1)], which says that ϕ
holds at all points corresponding to a j level assignment that precede the next
level j + 1 assignment. The dual of this is the expression somej(ϕ), defined as
¬allj(¬ϕ), which says that ϕ holds at some point before the next level j + 1
assignment.

Next, define Holds as ¬K1¬β, where

β =
∨

j=1...n

next(Assgtj , satj)

where next(ϕ,ψ) is the formula 2((¬ϕ) U (ϕ ∧ ψ)), which says that ψ holds
at the next point (after the current) where ϕ holds. Note that, when Holds
is evaluated at point where the state is xc,i,jl , the definition of observability
for agent 1 implies that we check β only at points where the state is of the

Model Checking Knowledge and Linear Time: PSPACE Cases 21

form xc
′,i′,j′

l′ with c′ = c. Thus, this formula corresponds to checking that some
literal in c causes c to be satisfied, according to the “current assignment” to the
variables, which is determined at each level by looking at the first time in the
future that corresponds to a level j assignment.

We may then translate the given formula as

Φ∗ = 0(Assgtk ⇒ somek−1allk−2 . . . (K2Holds))

Note that during the evaluation of this formula, because of the nesting structure
for the occurrence of assignments down the levels, the successor assignment for
each level j is preserved whenever an operator allj′ or somej′ with j′ < j moves
the point of evaluation. Thus the successor assignments used in the evaluation
of Holds are the same as those determined by the points of evaluation for these
operators. The knowledge operator K2 may move the point of evaluation from
any point (r, n) to another point (r′, n) at the same time. In particular, this
operator captures quantification over all the clauses c in the given QBF formula.
It follows that E |=clk Φ∗ iff Φ is true. ut

Proof (of Lemma 8). By induction on the construction of ϕ. The only non-
trivial cases are those for the knowledge operators. We describe the argument
for Kiϕ, that for CGϕ is similar. Suppose E, (r,m) |=obs Kiϕ. Then for all
points (r′,m′) of E with Oi(r(m)) = Oi(r′(m′)) we have E, (r′,m′) |=obs ϕ. We
show that E, r|m) |=∗ Kiϕ. For, let Oi(r(m)) = Oi(ρ(0)), where ρ ∈ fpaths(E).
Since observations preserve reachability, the state ρ(0) is reachable, so there
exists a sequence s0 → s1 → . . . sm′ = ρ(0) with s0 ∈ I. Let r′ be the sequence
s0 . . . sm′−1 ·ρ. Then r′ is a run of E and (r,m)obs∼ i(r′,m′). Hence E, (r′,m′) |=obs

ϕ. By the inductive hypothesis, E, r′|m′ |=∗ ϕ, i.e., E, ρ |=∗ ϕ. Hence E, r|m |=∗

Kiϕ.
Conversely, suppose E, r|m |=∗ Kiϕ. Let (r′,m′) be a point with Oi(r′(m′)) =

Oi(r(m)). Then r′|m′ is a fair path with Oi(r′|m′(0)) = Oi(r(m)), so E, r′|m′ |=∗

ϕ, hence E, (r′,m′) |=obs ϕ. This shows that E, (r,m) |=obs Kiϕ. ut

Proof (of Lemma 9). Let σ be a simulation from E to E′. Part (1) follows from
points 1, 2, and 7. Part (2) follows from points 3, and 7.

For part (3), let ρ ∈ fpaths(E). We proceed by induction on the construc-
tion of ϕ. The propositional case is immediate from 6. The temporal cases are
straightforward.

For the knowledge case, assume E, ρ |=∗ Kiψ and thatO′
i(σ(ρ(0))) = O′

i(ρ
′′(0))

for some ρ′′ ∈ fpaths(E′). By 3, there exists a state t of E such that Oi(ρ(0)) =
Oi(t) and σ(t) = ρ′′(0). By part (2), there exists a ρ′ ∈ fpaths(E) such that
ρ′(0) = t and σ(ρ′) = ρ′′. Thus E, ρ′ |=∗ ψ. By the induction hypothesis,
E′, ρ′′ |=∗ ψ. This shows that E′, σ(ρ) |=∗ Kiψ.

Conversely, suppose E′, σ(ρ) |=∗ Kiψ. Suppose Oi(ρ(0)) = Oi(ρ′(0)) where
ρ′ ∈ fpaths(E). By part (1), σ(ρ′) is a fair path of E′. By 4, O′

i(σ(ρ(0))) =
O′
i(σ(ρ′)(0)). Thus E′, σ(ρ′) |=∗ ψ. By the induction hypothesis, E′, ρ′ |=∗ ψ.

This shows that E, ρ |=∗ Kiψ.
The case for common knowledge follows by similar arguments. ut

22 Kai Engelhardt, Peter Gammie, and Ron van der Meyden

Proof. (of Theorem 11) Correctness of the alternating procedure is a straightfor-
ward combination of the correctness arguments for Büchi automaton emptiness
checking, Savitch-style search and the definition of |=∗

For the complexity analysis, note that the numberN used in FALSIFY(E, s, ψ)
is O(f(|E|) + |ψ|). The routine FALSIFY(E, s, ψ) generates a computation tree
in which the longest branch is O(f(|E|) + |ψ|) (for the existential choice) plus
the maximum of O(g(|E|)) (for the verification of the guessed components) and
the longest branch for REACH(E,w,w′, N, ψ).

Note that REACH(E,w,w′, n, ψ) calls CHECK() only when n = 0, and each
recursion before then adds time O(f(|E|) + |ψ|) to construct the guess for the
recursive call. Hence REACH(E,w,w′, N, ψ) runs in alternating time O((f(|E|) +
|ψ|)2) plus the time required for the call to CHECK(E, s, k, ψ) once n = 0. The
largest cost in the latter is the calls to CKCHECK(E, s, CGψ′), which add another
O((f(|E|) + |ψ|)2) alternating time steps before calling FALSIFY(E, s, ψ′), with
ψ′ of lower knowledge depth than ψ. Thus, if T (E, h) is the alternating time
required by FALSIFY(E, s, ψ) for formulas ψ with |ψ| ≤ h, we have the recurrence
T (E, h) = O((f(|E|)+h)2+g(|E|))+T (E, h−1), hence T (E, h) = O(h·((f(|E|)+
h)2 + g(|E|))). This yields the result. ut

