
Optimality of Simultaneous Byzantine Agreement
with Limited Information Exchange (Preliminary
Report)
Kaya Alpturer #�

Princeton University, USA

Ron van der Meyden #�

UNSW, Australia

Sushmita Ruj #�

UNSW, Australia

Godfrey Wong #�

UNSW, Australia

Abstract
Work on the development of optimal Byzantine Agreement protocols using the logic of knowledge has

concentrated on the “full information” approach to information exchange, which is costly with respect to

message size. Alpturer, Halpern, and van der Meyden (PODC 2023) introduced the notion of optimality with

respect to a limited information exchange, and studied the Eventual Byzantine Agreement problem in the

sending omissions failure model. The present paper studies the Simultaneous Byzantine Agreement problem

for the crash failures model, and a number of limited information exchanges from the literature. In particular,

the paper considers information exchanges from a FloodSet protocol (Lynch, Distributed Algorithms 1996), a

variant of this in which agents also count the number of failures (Castañeda et al, NETYS 2017), and a variant

in which agents associate each agent with a value (Raynal, PRDC 2002). By determining implementations

of a knowledge based program, protocols are derived that are optimal amongst protocols for each of these

information exchanges.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of compu-

tation → Logic and verification; Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, Epistemic logic, Reasoning about knowledge, Byzantine

Agreement, Consensus, Fault tolerance

Digital Object Identifier 10.4230/LIPIcs...

Funding Kaya Alpturer : Research supported by AFOSR grant FA23862114029.

Ron van der Meyden: The Commonwealth of Australia (represented by the Defence Science and Technology

Group) supported this research through a Defence Science Partnerships agreement.

Godfrey Wong: This research is supported by an Australian Government Research Training Program (RTP)

Scholarship.

1 Introduction

Epistemic logic has been shown to play a useful role in the analysis of distributed algorithms [5]. By

characterizing the knowledge that an agent needs to have in order to take an action, it is possible

to obtain distributed algorithms that are optimal in the sense of terminating as soon as any other

algorithm that solves the same problem.

In particular, variants of the Byzantine Agreement problem have been fruitfully studied using

this methodology. In Byzantine Agreement, a group of agents is required to make common decision,

in a setting where there could be faulty agents in the system that might be unreliable or even

malicious. In the Simultaneous Byzantine Agreement (SBA) version of this problem, nonfaulty

agents are required to make the decision at the same time (in the same round of computation).

© Kaya Alpturer and Ron van der Meyden and Sushmita Ruj and Godfrey Wong;

licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kalpturer@princeton.edu
mailto:r.vandermeyden@unsw.edu.au
mailto:sushmita.ruj@unsw.edu.au
mailto:godfrey.wong@student.unsw.edu.au
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

Reaching simultaneous agreement was shown to be related to common knowledge [3], and this

characterization has been used to derive optimal protocols for a variety of failure models, including

crash [3] and omission failures [8].

In the present paper, we reconsider this type of optimality result in the particular case of crash

failures and a synchronous message passing communications model. We assume synchronized

clocks and a known upper bound onmessage delivery time, so that the computation can be structured

into rounds. In a distributed system prone to crash failures, a faulty agent can crash during a round

and send a subset of messages it was supposed to send. In the rounds following the crash, the

crashed agent no longer send any messages.

In the quest for optimality, most existing literature on using epistemic logic to study distributed

algorithms has worked with full information protocols, in which each agent broadcasts its com-

plete local state in each round, and stores all messages received. This results in states that grow

exponentially with time. Even when the state size can be optimized, there are still cases where the

computation required to be performed in each round is intractable. For example, in the general

omissions model, optimal implementations require PNP
computations [7]. This means that practical

protocols will often exchange less information than does the full information protocol. This raises

the following question: having made a compromise on the information that is exchanged by the

agents, is the protocol making full use of that information. That is, is the protocol optimal amongst

protocols that use the same pattern of information exchange, terminating no later than does any

other such protocol?

There has only been one existing paper on optimality of Byzantine agreement protocols with

respect to limited information exchange [1]. In that paper [1], the authors studied the eventual

Byzantine agreement problem in synchronous message passing systems that are prone to sending

omission failures. In the present paper, we will study the Simultaneous Byzantine Agreement (SBA)

problem in synchronous message passing systems that are prone to crash failures.

The main contribution of this paper is to obtain the earliest possible early stopping conditions

for four Simultaneous Byzantine Agreement protocols that use a limited information exchange. For

FloodSet [6], we are able to terminate as soon as m ≥ min{t + 1, n − 1}, where m is time, t is

maximum possible number of failures in a run, and n is the total number of agents. For Counting

FloodSet [2], which is an extension of FloodSet that counts the number of messages an agent has

received, the early stopping condition is the same as FloodSet, except for the case when an agent

does not receive any message from other agents.

We have shown that even by extending Counting FloodSet to store a history of number of

missing messages in each round, we are unable to obtain an early stopping condition that terminates

earlier. In another variant of FloodSet [9] in which agents keep not just a record of initial values, but

also know which agents have those initial values, and in which a nonfaulty agent sends a message

only when it learns a new agent-value pair, we have obtained a nontrivial early stopping condition.

We begin by introducing our model of the problem in Section 2. Then, in Section 3 we will

discuss what it means for a Simultaneous Byzantine Agreement protocol to be optimal relative to

an information exchange protocol. We give an analysis of the FloodSet protocol in Section 4 and its

variants in Section 5. Section 6 is an analysis of the protocol from [9]. Finally, we conclude this

paper in Section 8.

2 Framework

We will mostly follow the framework from [1] and [10]. In the Byzantine agreement problem,

agents from a set Agt = {1, . . . , n} communicate using a synchronous, round-based, message-

passing network in order to decide on a value. Each agent starts with an initial value from the set

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:3

Values = {0, 1}. We assume that t < n is the maximum number of failures that can occur in a run.

We focus on crash failures, in which a faulty agent j acts correctly until a crash occurs in some

roundm in which an arbitrary subset of its messages in roundm are delivered. Moreover, agent j

never sends a message again in roundsm′ > m.

The specification of Eventual Byzantine Agreement can be stated as follows:

Termination: every agent eventually decides or fails,

Decision: every agent decides at most once,

Agreement: every nonfailed agent decides on the same value,

Validity: if every agent has the same initial value, then every nonfailed agent decides on that

value.

The specification of the Simultaneous Byzantine Agreement (SBA) problem involves all the rules of

Eventual Byzantine Agreement problem together with simultaneity:

Simultaneity: if a nonfailed agent decides in a round, then every nonfailed agent decides in

the same round.

We decompose SBA protocols into two components (P, E), comprised of a decision protocol P

and an information exchange protocol E . We represent the states of the environment in which agents

operate by a set Le, defined more precisely below. An information exchange protocol describes

what information the agents record in their local states, and what messages an agent sends in a

given local state. Formally, an information exchange protocol is a tuple ⟨E1, . . . , En⟩ containing a
local information exchange protocol Ei for each agent i. A local information exchange protocol Ei

of agent i is a tuple ⟨Li, Ii, Ai,Mi, µi, δi⟩ that consists of:
a set of local states Li,

a set of initial states Ii ⊆ Li,

a set of allowed actions Ai for agent i

a setMi of messages that are allowed to be sent by agent i,

a message selection function µi : Li ×Ai →
∏

j∈Agt(Mi ∪ {⊥}),
a transition function δi : Li × Le ×Ai ×

∏
j∈Agt(Mj ∪ {⊥})→ Li.

For SBA protocols, we assume that there exist, for each agent i, a function initi : Ii → Values that

identifies an agent’s initial value, and a function timei : Li → N that identifies the time on the

agent’s clock. The message selection function µi takes a local state and an action performed by an

agent in a round to a tuple of messages that the agent sends in that round. The transition function

δi updates the local state depending on the state of the environment, the action an agent performs

in the round and the set of messages it receives in that round.

In the full information exchange, the local initial states are the initial values of the agent. In

every round, each agent sends their local state to every other agent, and records every message it

receives in its local state.

A decision protocol describes what actions the agents perform at a given situation. For the

SBA problem, the action set for each agent i is Ai = {decidei(v) | v ∈ Values} ∪ {noop}. A
local decision protocol Pi : Li → Ai for agent i maps a local state of agent i to an action that i can

perform. A decision protocol P is a tuple ⟨P1, . . . , Pn⟩ of local decision protocols for all agents.

It will help when comparing two information exchanges below to assume that agent’s decisions

do not affect the information that they transmit. We say that an information exchange E does not
record information about actions if, for all agents i, the values of both the functions µi and δi do

not depend on the value of the action in their inputs. That is, changing the value of the input from

Ai while holding the other inputs constant does not change the output of these functions. All the

concrete information exchanges we consider in this paper have this property. Since this does mean

that the protocol Pi cannot, in general, itself enforce that an agent decides as most one, we assume

that an external process monitors the output of Pi in order to enforce this property. In the SBA

XX:4 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

specification, we interpret “i decides value v at the point (r,m)” to mean thatm is the least time

m′
such that Pi(ri(m′)) ̸= ⊥, and Pi(ri(m′)) = decidei(v).
A failure model describes the failures that could occur in a run of a protocol. We use the hard

crash failure model Crasht, depending on a parameter t that is a number less than the number of

agents. In this failure model, there may be up to t faulty agents, who can crash at any time. During

the round in which an agent crashes, it sends a subset of the messages it is supposed to send. After

an agent has crashed it does not send any message and no longer runs the protocol.

We representCrasht as a set of adversaries, where an adversary is a functionF : N×Agt×Agt →
{⊤,⊥}. If agent i crashes in round m, then we require that F (m, i, i) = ⊥. If the message that

agent i was supposed to send to agent j is not sent in roundm, we have F(m, i, j) = ⊥, otherwise
F(m, i, j) = ⊤. If F(m, i, i) = ⊥ then F(m′, i, k) = ⊥ for all timesm′ > m and every k ∈ Agt .
There may be at most t agents i such that F(m, i, j) = ⊥ for some m and j. We take the set of

states of the environment Le to be the set of all such adversaries. Furthermore, for this model, we

assume that the set of local states of agent i contains a special state crashed , representing that the

agent has crashed. The state update function operates so that in a roundm in which the adversary

se = F and F(m, i, i) = ⊥, we have δ(si, se, a, v) = crashed for all local states si of agent i,

actions a and vectors v of messages.

A global state is an element of Le ×
∏

i∈Agt Li consisting of a tuple comprised of the state of

the environment and a local state of each agent. A run is a mapping r : N→ Le ×
∏

j∈Agt Lj from

times to a global states. If r(m) = ⟨se, s1, . . . , sn⟩, we write re(m) for se and, for each agent i,

ri(m) for si. The time between (r,m) and (r,m+ 1) is round m+ 1. A pair (r,m) comprised of a

run r and a timem is a point.

A system is a setR of runs. An interpreted system is a pair I = (R, π), whereR is a system and

π is an intepretation mapping each point (r,m) of I to a function π(r,m) : Prop → {true, false}
that determines whether or not each atomic proposition from a set Prop is true at the point.

Given an information exchange E and decision protocol P for the crash failure model Crasht, we

construct an interpreted system IP,E,Crasht
= (R, π) as follows. (Generally, Crasht will be implicit,

and we write IP,E for brevity.) The runs in R are generated by selecting an initial global state

r(0) = ⟨se, s1, . . . , sn⟩, where se ∈ Le = Crasht is an environment state encoding an adversary

from the crash failure model and si ∈ Ii for all i ∈ Agt are initial local states of agents. The

remainder of the run is uniquely determined from the initial global state by the following induction.

The state of the environment re(m) will be the same for all timesm. For each round k+ 1, the local
state ri(k + 1) of agent i is determined as follows. First, each agent i uses the decision protocol Pi

to select its action ai = Pi(ri(k)), and attempts to send the messages µi(ri(m), ai). The adversary
re(k) determines which of these messages are delivered, so that each agent i receives an agent

indexed vector vi of messages (or⊥ in case of a message that was not sent or is not delivered because

the agent sending it crashed). Agent i’s local state ri(k + 1) is then equal to δi(ri(k), re(k), ai, vi).
We consider only synchronous protocols, for which timei(ri(m)) = m for all points (r,m) of runs
of the protocol.

Note that if E does not record information about actions, then the set of runs of IP,E does not

depend on P . We may therefore write simply IE .

The atomic propositions Prop in the interpretation π consist of:

∃v, which is true if an agent in the current run has v as its initial value,

i ∈ N , which is true if agent i has not failed up to the current time, and

clean, which is true if a clean round has occurred (defined below).

We work with a modal logic that uses the atomic propositions along with the standard boolean

operators ¬,∨,∧. For an agent i and an indexical set N of agents (which may depend on the point

at which we evaluate the formula) we also have unary modal operatorsKi, EN , CN which we will

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:5

define later. The semantics of the logic in an interpreted system I is given by a relation |=, such that

(I, r,m) |= ϕ, for a point (r,m) of I and a formula ϕ, represents that ϕ is true at the point (r,m)
of I . The definition of this relation is given by an induction on the construction of the formula ϕ.

For an atomic proposition p, we have (I, r,m) ⊨ p, if π(r,m)(p) = True.
The semantics of the modal operators is given using an indistinguishability relation ∼i on

points for each agent i. The points (r,m) and (r′,m′) are indistinguishable to agent i, written as

(r,m) ∼i (r′,m′), if ri(m) = r′
i(m′). Note that the indistinguishability relation is an equivalence

relation. The intuition behind the definition of knowledge is that agent i knows φ if φ is true in all

the points that are indistinguishable to i.

For a formula φ and point (r,m) of an interpreted system I , we say:
agent i knows φ at (r,m), written as (I, r,m) ⊨ Kiφ, if for all points (r′,m′) satisfying

(r,m) ∼i (r′,m′), we have (I, r′,m′) ⊨ φ,
everyone in N knows φ at (r,m), written as (I, r,m) ⊨ ENφ, if for every i ∈ N (r,m), we
have (I, r,m) ⊨ Ki(φ),
φ is common knowledge among N at the point (r,m), written as (I, r,m) ⊨ CNφ, if for every

k ∈ Z+
, we have (M, s) ⊨ Ek

Nφ.

φ is distributed knowledge amongst groupN , written as (I, r,m) ⊨ DNφ, if (I, r′,m) ⊨ φ for

all (r′,m) ∈
⋂

i∈N (r,m) Si(r,m), where Si(r,m) is the set of points that are indistinguishable
to agent i from (r,m).

A formula φ is valid in I , written as I ⊨ φ, if for every point (r,m) ∈ I , we have (I, r,m) ⊨ φ.
In this paper, the indexical set N represents the set of nonfailed agents. Formally, i ∈ N (r,m)

if ri(m) ̸= crashed .
We say a point (r′,m′) is N -reachable from point (r,m) in k steps if there exist points

(r0,m0), . . . , (rk,mk) such that (r0,m0) = (r,m), (rk,mk) = (r′,m′) and for all 0 ≤ j < k,

there exists agent ij that is nonfailed at both (rj ,mj) and (rj+1,mj+1) such that (rj ,mj) ∼ij

(rj+1,mj+1). Furthermore, we say (r′,m′) is N -reachable from (r,m), and write (r′,m′) ∼N
(r,m), if (r′,m′) isN -reachable from (r,m) in k steps for some k > 0. An equivalent way to define

common knowledge is (I, r,m) ⊨ CNφ if and only if (I, r′,m′) ⊨ φ for all points (r′,m′) that are
N -reachable from (r,m).

The semantics makes the following S5n axioms valid:

Distribution axiom: ⊨ (Kiφ ∧Ki(φ⇒ ψ))⇒ Kiψ.

Knowledge generalization rule: If I ⊨ φ then I ⊨ Kiφ.

Knowledge axiom: ⊨ Kiφ⇒ φ.

Positive introspection axiom: ⊨ Kiφ⇒ KiKiφ.

Negative introspection axiom: ⊨ ¬Kiφ⇒ Ki¬Kiφ.

We also have the following induction rule, which gives us a way of proving common knowledge.

▶ Theorem 1 (Induction Rule). If I ⊨ φ⇒ EG(φ ∧ ψ) then I ⊨ φ⇒ CGψ.

As an example of the application of this rule that we will use below, define the formulaN = {i}
as

∧
j∈Agt(j ∈ N ⇔ j = i). Then we have

▶ Lemma 2. The formulaKi(N = {i} ∧ ϕ)⇒ CN (ϕ) is valid.

Proof. Using the Introspection and the Knowledge axioms, we have thatKi(N = {i} ∧ϕ) implies

N = {i} ∧ KiKi(N = {i} ∧ ϕ) and hence EN (Ki(N = {i} ∧ ϕ)). This, in turn, implies

EN (Ki(N = {i} ∧ ϕ) ∧ ϕ) using the Knowledge Axiom. Thus, ψ ⇒ EN (ψ ∧ ϕ) is valid, with
ψ = Ki(N = {i} ∧ ϕ). Using the Induction rule, we obtain that Ki(N = {i} ∧ ϕ) ⇒ CN (ϕ) is
valid. ◀

XX:6 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

3 Optimality and Knowledge-based Programs

In this section we study knowledge-based programs and what it means for a protocol to be optimal

with respect to a given information exchange.

To compare two protocols, we consider their behaviour in runs in which the environment has the

same behaviour. Two runs r ∈ I and r′ ∈ I ′
correspond if they have identical initial values and the

failure pattern is the same in both runs, that is, for all agents i, we have initi(ri(0)) = initi(r′
i(0))

and re(0) = r′
e(0).

To define optimality, we define a partial order on protocols. Let P and P ′
be two decision

protocols with identical information exchange E . We write P ≤E P
′
if for every run r of IP,E , and

corresponding run r′
of IP ′,E , and for each agent i, if i decides at (r,m), then if agent i decides

at (r′,m′) we have m′ ≥ m. Protocol P is an optimal SBA protocol with respect to information

exchange E if it is an SBA protocol and for every SBA protocol P ′
that uses E , we have P ′ ≤E P

implies P ≤E P
′
. Furthermore, protocol P is an optimum SBA protocol with respect to information

exchange E if it is an SBA protocol and for every SBA protocol P ′
that uses E , we have P ≤E P

′
.

The following lemma is taken from Moses and Tuttle [8]. Its proof does not assume a full

information protocol. The proposition decidingi(v) is defined to be true at a point (r,m) if agent i
decides v in roundm+ 1 of run r, i.e., Pi(ri(m)) = decidei(v).

▶ Lemma 3. [8] Let r be a run of an SBA protocol generating interpreted system I and let i ∈ N (r,m).
If (I, r,m) ⊨ decidingi(v) for v ∈ {0, 1}, then (I, r,m) ⊨ CN (∃v).

It is useful to know that a failure-free run requires at least min{t+ 1, n− 1} rounds to attain

common knowledge of initial values. Therefore, when timem < min{t+ 1, n− 1} and r is a run
of any SBA protocol, if (r,m) is N -reachable from a failure-free run then we do not have common

knowledge of any initial value at (r,m).

▶ Lemma 4. [3] Let r be a failure-free run of an optimal full-information SBA protocol generating

system I . Whenm < min{t+ 1, n− 1} we have (I, r,m) ⊨ ¬CN (∃0) ∧ ¬CN (∃1).

Let E1
and E2

be two information exchange protocols that do not record information about

decisions. We say E1
stores at least as much information as E2

if, for every pair of corresponding

runs r1
and r2

of IE1 and IE2 , respectively, and timesm such that no agent has decided before time

m in both r1
and r2

, and every pair of corresponding runs r3
and r4

of IE1 and IE2 , respectively,

(r1,m) ∼i (r3,m) implies (r2,m) ∼i (r4,m). This relation is reflexive and transitive.

▶ Lemma 5. Let E1
be an information exchange that stores at least as much information as information

E2
and let r1

and r2
be corresponding runs of IE1 and IE2 respectively. If r3

and r4
are corresponding

runs, of IE1 and IE2 respectively, such that (r3,m) is N -reachable from (r1,m) in k steps, then

(r4,m) is N -reachable from (r2,m) in k steps.

Proof. By induction on k. Suppose (r3,m) is N -reachable from (r1,m) in one step. Because E1

stores at least as much information as E2
, we have that (r4,m) is N -reachable from (r2,m) in

one step. For the inductive hypothesis, assume that (r3,m) is N -reachable from (r1,m) in k steps

implies (r4,m) is N -reachable from (r2,m) in k steps. If (r3,m) is N -reachable from (r1,m) in
k+1 steps, let r′

be a run of IE1 such that (r′,m) isN -reachable from (r1,m) in k steps and (r3,m)
is N -reachable from (r′,m) in one step. Then there exists an agent i i ∈ N (r′,m) ∩ N (r3,m)
such that r′

i(m) = r3
i (m). Let r′′

be a run of IE2 corresponding to r′
. Then, by the inductive

hypothesis, (r′′,m) is N -reachable from (r2,m) in k steps. Given they are corresponding runs,

we have N (r′′,m) = N (r′,m) and N (r4,m) = N (r3,m). Because E1
stores at least as much

information as E2
, we have (r′′,m) ∼i (r4,m). Therefore, (r4,m) is N -reachable from (r2,m) in

k + 1 steps. ◀

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:7

A proposition φ is about the environment if its truth value in interpreted systems for the SBA

problem, as defined above, depends only on the the adversary and the initial values of the agents.

That is, for corresponding runs r and r′
of systems I and I ′

, respectively, and all timesm, we have

(I, r,m) |= φ iff (I ′, r′,m) |= φ.

▶ Proposition 6. Suppose φ is a proposition about the environment. Suppose E1
stores at least as

much information as protocol E2
and let r1

and r2
be corresponding runs of IE1 and IE2 , respectively.

Then (IE1 , r1,m) ⊨ ¬CNφ implies (IE2 , r2,m) ⊨ ¬CNφ.

Proof. Suppose we have (IE1 , r1,m) ⊨ ¬CNφ. This implies there exists a point (r3,m) that is
N -reachable from (r1,m) in IE1 such that (IE1 , r3,m) ⊨ ¬φ. Lemma 5 says we can find a run

r4
of P 1

corresponding to r3
such that (r4,m) is N -reachable from (r2,m) in ßE2 . Because φ is

about the environment, (IE2 , r4,m) ⊨ ¬φ. It follows that (IE2 , r2,m) ⊨ ¬CNφ. ◀

We remark that Proposition 6 does not make assumptions about the failure model and hence

would work even with arbitrary failures.

Knowledge based programs [4] can be understood as specifications, in a code-like form, that

describe how each agent’s actions relate to its knowledge. Syntactically, they are like standard

programs for an agent, except that the formulas that occur in as the conditions of conditional

statements may be a formula of the logic of knowledge stating a property of the agent’s knowledge,

rather than just a predicate of the agent’s local state, as in standard programs. Program 1 gives an

example, which will be the specific knowledge based program that we study in the present paper.

This program is to be interpreted as the rule used to determine agent i’s action in each round, until

one of the actions decidei(v) is selected, after which the program terminates.

Program 1 Popt

i

if Ki(CN (∃0)) then decidei(0)
else if Ki(CN (∃1)) then decidei(1)
else noop

The semantics of knowledge based programs is given by relating concrete protocols to a knowl-

edge based program. Since we only consider one specific program in this paper, we do not give this

definition in general, and just explain this relation for the specific program Program 1. Intuitively,

a decision protocol P implements the knowledge based program with respect to an information

exchange E , if, in each round until termination, it selects for each agent i the same action as would

be obtained for agent i from the rule in the knowledge based program. “If-then-else" statements are

interpreted according to the usual semantics, but to interpret the knowledge formulas, we need an

interpreted system. For this, we use the interpreted system obtained from running P with respect

to E .
Formally, given an interpreted system I , for each agent iwe define the decision protocol (Popt

i)I

on a local state s ∈ Li by taking (Popt

i)I(s) to be the action a selected the rule Popt

i , with the truth

values of the knowledge formulas evaluated at any point (r,m) of I with ri(m) = s. Note that the

truth values of these formulas are independent of the choice of such an (r,m), since they depend

only on the local state of agent i at that point. Using this, we define a decision protocol P to be an

implementation of Program Popt
with respect to E in the crash failure context Crasht if for all points

(r,m) of IE,Crasht and all agents i ∈ N (r,m), we have (Popt

I)I(ri(m)) = Pi(ri(m)).
The following result shows that implementations of the knowledge based program Popt

with

respect to an information exchange yield SBA protocols that are optimum with respect to that

information exchange. In the following sections, we apply this result by considering a number of

information exchanges and deriving protocols that are implementations of Popt
with respect to

XX:8 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

these information exchanges. The resulting protocols will therefore be optimum SBA protocols

with respect to their information exchanges.

▶ Theorem 7. Let P be an implementation of Popt
with respect to information exchange E in the

crash failure context Crasht. Then, P is an optimum simultaneous Byzantine agreement protocol with

respect to E .

Proof. We omit the argument that an implementation P of Popt
is an SBA protocol, which is the

same as in [3]. It is shown in [10] that provided that the information exchange E “does not transmit

information about actions”, an implementation P of Popt
with respect to an information exchange

E is an optimum SBA protocol with respect to E . Since all actions up to the decision time are noop,
and in the crash failure context, an SBA protocol decides for all agents at the same time it decides

for any agent, so this result follows., ◀

4 FloodSet

Lynch introduced the FloodSet protocol [6] as an example of a simple protocol that solves Simulta-

neous Byzantine Agreement under crash failures. In this section, we present a refined analysis of

the Floodset protocol in terms of the agents’ knowledge, showing that after a minor modification,

the Floodset protocol is optimal given the amount of information the agents are exchanging.

We now define the FloodSet protocol in two parts using our framework, the information-

exchange protocol Eflood
and the decision protocol Pflood

. The local states of agent i in Eflood

will be either the special state crashedi, or a tuple ⟨Wi,m, vi⟩, whereWi is a set of distinct values

agent i has seen so far, m is the current time, and vi is the initial value of i. The information-

exchange protocol Eflood
has the set of initial local states Ii for each agent i consisting of all states

of the form ⟨{vi}, 0, vi⟩ for some vi ∈ Values. In each round, every agent i sendsWi to all other

agents. That is, µi((Wi,m, vi), ai) = (Wi, . . . ,Wi) for all (Wi,m, vi) ∈ Li and actions ai, and

µi(crashedi, ai) = (⊥, . . . ,⊥). At the end of a roundm+ 1, vi stays the same, and the local state

of each agent is updated to have a newWi which is the union of all messages received in the current

round. That is, the function δi is defined by

δi((Wi,m, vi),F , ai, (W ′
1, . . . ,W

′
n)) = (Wi ∪

⋃
j

W ′
j ,m+ 1, vi)

provided the environment does not crash agent i, i.e., F(m, i, i) ̸= ⊥, otherwise

δi((Wi,m, vi),F , ai, (W ′
1, . . . ,W

′
n)) = crashedi

and δi(crashedi,F , ai, (W ′
1, . . . ,W

′
n)) = crashedi. Throughout this section, we fix t ≤ n and

write I for IEflood ,Crasht . When agent i’s local state at point (r,m) of I is ri(m) = (W,m, v), we
defineWi(r,m) to beW , and timei(r,m) to bem.

The standard program representing the FloodSet decision protocol for an agent i such that

Pflood = (Pflood
1 , . . . , Pflood

n) is:
Program 2 P flood

i from [6]

if m = t+ 1 then decidei(minWi)
else noop

A crucial definition used in the analysis is the notion of a clean round, a round in which every

nonfailed agent receives the same messages.

▶ Definition 8 (Clean Round). A round is clean if for any nonfailed agents i and j, agent i receiving

a message from agent k implies that agent j also received a message from agent k.

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:9

We now show the importance of clean rounds.

▶ Lemma 9. [6, Lemma 6.1] If roundm of run r of FloodSet is clean, thenWi(r,m) = Wj(r,m) for
all nonfailed agents i, j in run r.

▶ Lemma 10. [6, Lemma 6.2] SupposeWi(r,m) = Wj(r,m) for any nonfailed agents i, j in run r

of FloodSet. Then,Wi(r,m′) = Wj(r,m′) for allm ≤ m′ ≤ t+ 1.

Therefore, since we can only have up to t crashes, by round t+ 1 we are guaranteed to have a

clean round. Moreover, all agents i ∈ Agt have the sameWi(r, t+ 1) in any run r in I . Note that
however, when t = n− 1, either we have a clean round by time t, or exactly one agent failed in

every round until round t such that only one active agent is remaining. In both cases, we should be

able to decide without waiting until t+ 1. This observation leads to the following refinement to the

Floodset decision protocol. Let Pflood+ = (Pflood+
1 , . . . , Pflood+

n) be the decision protocol defined

by the following standard program:

Program 3 P flood+
i

if m = min{t+ 1, n− 1} then decidei(minWi)
else noop

In the following theorem, we show that we do not have common knowledge of any initial value

whenm < min{t+ 1, n− 1}.

▶ Theorem 11. Let (r,m) be a point in I . Ifm < min{t+1, n−1}, then (I, r,m) |= ¬(CN (∃0)∨
CN (∃1)).

Proof. Suppose (r,m) is a point in I withm < min{t+ 1, n− 1} and suppose the local state of

nonfailed agent i at (r,m) is ri(m) = ⟨Wi,m, vi⟩. We now construct anN -reachable path to a point

(r0,m) where r0
is failure-free. Let run r0

be the same as run r except that we change the initial

value of every agent that does not have their initial value inWi to vi, and no agent fails in r0
. Note

that we have vi ∈ W . Then, the local state of agent i at (r0,m) is r0
i (m) = ⟨W,m, vi⟩ = ri(m).

Hence, we have (r,m) ∼i (r0,m), where r0
is failure-free. Moreover i ∈ N in both points.

Since a limited information exchange protocol cannot attain common knowledge earlier than a

full-information protocol, applying Lemma 4 gives the desired result. ◀

In the following theorem, we show that we have common knowledge of initial values when

m ≥ min{t+ 1, n− 1}.

▶ Theorem 12. Let (r,m) be a point in I . Ifm ≥ min{t+ 1, n− 1}, then for some v ∈ Values we

have that v = min{Wi} and (I, r,m) |= Ki(CN (∃v)) for all i ∈ N (r,m).

Proof. Supposem ≥ min{t+ 1, n− 1} for some point (r,m) in I . We consider two cases.

If t < n− 1, thenm ≥ t+ 1 which implies by the pigeonhole principle that we must have had

a clean round at some (r,m′) form′ ≤ m. Now, by Lemma 9 and 10, we conclude that at (r,m),
there exists a setW such that all nonfailed agents j Wj(r,m) = W , and therefore there is a

unique v = min{Wj(r,m)}. Note that Lemma 9 and 10 apply since they only depend on the

information-exchange. Moreover, as all N -reachable points from (r,m) have time m, all N -

reachable points (r′,m) will also have had a clean round and hence the same setW = Wj(r′,m)
for all nonfailed agents j ∈ N (r′,m). Hence, (I, r,m) |= Ki(CN (∃v)).
If t = n− 1, then we havem ≥ n− 1. We can then observe that either we have had a clean

round in a run r beforem in which case we can conclude the claim as in the previous case, or

we had one agent crash in each prior run such that t = n− 1 agents have crashed before and

no clean round occured. In that case, there is a unique agent i that is nonfailed and all other

agents have crashed. Then, trivially we get (I, r,m) |= Ki(CN (∃v)) for v = min{Wi(r,m)}.

XX:10 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

◀

▶ Corollary 13. Pflood+
implements Popt

with respect to information-exchange Eflood
.

Proof. We show that for all points (r,m) in I , and agents i ∈ N (r,m), we have Pflood+(ri(m)) =
(Popt

i)I(ri(m)). There are two cases.

If m < min{t + 1, n − 1}, then Pflood+(ri(m)) = noop. By Theorem 11, we must have

(I, r,m) |= ¬CN (∃v) for all v ∈ Values. Hence, (Popt

i)I(ri(m)) = noop also.

If m = min{t + 1, n − 1}, then Pflood+(ri(m)) = decidei(min{Wi}). By Theorem 12,

W = Wi(r,m) is the same for all active i and we must have (I, r,m) |= CN (∃v) where

v = min{W}. Moreover, for all v′ < v, we have v′ ̸∈W , and therefore (I, r,m) |= ¬CN (∃v′)
since all i ∈ N considers a point where no agent has initial value v′

possible (namely, the point

(r,m) itself). This shows that (Popt

i)I(ri(m)) = decidei(v).
It follows that Pflood+

implements Popt
with respect to information-exchange Eflood

. ◀

By Theorem 7, this result implies that the protocol Pflood+
is optimal with respect to the

information-exchange Eflood
.

5 Counting Extensions

The aim of this section is to explore what happens if an agent stores the number of missing messages

during a round. We aim to find out whether we can achieve a better early stopping condition by

making the above change to the FloodSet information-exchange protocol Eflood
. This modification

was studied in [2] and was shown to have early stopping condition for eventual Byzantine agree-

ment. However, there is no literature on this modification for simultaneous Byzantine agreement.

Furthermore, we will extend Counting FloodSet to store the entire history of number of missing

messages to investigate if we are able to obtain an earlier stopping condition. We consider this

variant because [2] shows that a predicate based on the difference between two successive counts

of missing messages leads to an EBA protocol that stops earlier than the protocol based just on a

single count. Again, we are interested in whether this information is helpful in the setting of SBA.

The local states of agent i in the Counting FloodSet information-exchange protocol Ecount
will

be either the state crashedi or a tuple ⟨Wi, hi,m, vi⟩, whereWi is the set of distinct values agent

i has seen so far, hi is the number of missing messages during round m, m is the current time,

and vi is the initial value of i. The initial state of an agent i which starts with initial value of vi is

⟨{vi}, 0, 0, vi⟩. As in the FloodSet protocol, in each round, each nonfailed agent i sends a message

comprised of the setWi to all other agents. The state update function adds any values in a message

Wj received from another agent to the setWi, but additionally sets hi to the number of agents from

which i did not receive a message in the current round. The timem is incremented in each round,

but the value vi is unchanged.

The local states of agent i in the Counting FloodSet with perfect recall information-exchange

protocol Ecount(pr)
will be a tuple ⟨Wi, hi,m, vi⟩, whereWi is the set of distinct values agent i has

seen so far, hi is a vector in which hi[k] is the number of missing messages during round k,m is

the current time, and vi is the initial value of i. The initial state of an agent i which starts with

initial value of vi is ⟨{vi}, [0], 0, vi⟩. Messages and state updates are as in the Counting FloodSet

protocol, except that the count of missing messages is appended to hi.

The decision rules used in the early stopping condition in both information-exchanges can be

found in the following programs:

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:11

Program 4 Counting FloodSet decision rule

if m = min{t+ 1, n− 1} then decide(minWi)
else if hi ≥ n− 1 then decide(minWi)
else noop

Program 5 Counting FloodSet (perfect recall) decision rule

if m = min{t+ 1, n− 1} then decidei(minWi)
else if ∃k ≤ m(hi[k] ≥ n− 1) then decidei(minWi)
else noop

▶ Lemma 14. The following relations hold amongst the versions of the FloodSet information exchange:

(a) Ecount(pr)
stores at least as much information as Ecount

.

(b) Ecount
stores at least as much information as Eflood

.

Proof. Suppose r7
and r8

are runs of the Counting FloodSet with perfect recall such that (r7,m) ∼i

(r8,m) for agent i that is nonfailed at both (r7,m) and (r8,m). Because the points are indistin-
guishable to agent i, r7

i (m) = ⟨W,h,m, v⟩ = r8
i (m). Let r5

and r6
be runs of Counting FloodSet

corresponding to r7
and r8

respectively. Note that the only difference between the two information

exchanges is how they store the number of messages. r7
i ∼i r

8
i implies agent i receives the same

number of messages every round in r7
and r8

. This means agent i receives the same message during

roundm. Because the runs are corresponding, N (r7,m) = N (r5,m) and N (r8,m) = N (r6,m).
We have r5

i (m) = ⟨W,h[m],m, v⟩ = r6
i (m) and i ∈ N (r5,m) ∩N (r6,m).

Suppose r3
and r4

are runs of the Counting FloodSet such that (r3,m) ∼j (r4,m) for agent
j that is nonfailed at both (r3,m) and (r4,m). Because the points are indistinguishable to agent
j, r3

j (m) = ⟨W,h,m, v⟩ = rj
j (m). Let r1

and r2
be runs of FloodSet corresponding to r3

and r4

respectively. The only difference between the two information exchanges is that FloodSet does not

store number of missing messages while Counting FloodSet stores the number of missing messages.

Because the runs are corresponding,N (r3,m) = N (r1,m) andN (r4,m) = N (r2,m). Therefore,
r1

j (m) = ⟨W,m, v⟩ = r2
j (m) and j ∈ N (r1,m) ∩N (r2,m). ◀

The following results characterize the situations in which agents obtain common knowledge

when using the counting variants of FloodSet. We first identify situations where agents do attain

common knowledge.

▶ Theorem 15. Let r be a run of the Counting FloodSet protocol, let I = IEcount ,Crasht
, and letm

be a time and v ∈ Values. When the local state of agent i at point (r,m) is ri(m) = ⟨W,h,m, vi⟩,
where v ∈W and eitherm ≥ min{t+ 1, n− 1} or h ≥ n− 1, we have (I, r,m) ⊨ CN (∃v).

Proof. By applying Lemma 14, then Proposition 6, and finally Theorem 12 we obtain (I, r,m) ⊨∨
v∈Values CN (∃v) whenm ≥ min{t+ 1, n− 1}. When h ≥ n− 1, this means agent i received

no message from other agents during the last round. This implies i knows itself to be the only

nonfailed agent, so (I, r,m) |= Ki(N = {i} ∧ ∃v). The result now follows using Lemma 2. ◀

▶ Theorem 16. Let r be a run of Counting FloodSet with perfect recall, let I = IEcount(pr),Crasht
, and

letm be a time and v ∈ Values. When the local state of agent i at point (r,m) is ri(m) = ⟨W,h,m, vi⟩,
where v ∈W and eitherm ≥ min{t+ 1, n− 1} or there exists 1 ≤ k ≤ m such that h[k] ≥ n− 1,
we have (I, r,m) ⊨ CN (∃v).

Proof. By applying Lemma 14, then Proposition 6, and finally Theorem 15 we obtain (I, r,m) ⊨∨
v∈Values CN (∃v) whenm ≥ min{t+ 1, n− 1}. When h[k] ≥ n− 1, this means agent i received

no message from other agents during round k. This implies i knows itself to be the only nonfailed

agent, so (I, r,m) |= Ki(N = {i} ∧ ∃v). The result now follows using Lemma 2. ◀

XX:12 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

We now consider the converse, and show that if the complement of the conditions in the above

results does not hold, then agents do not have common knowledge.

▶ Theorem 17. Let r be a run of Counting FloodSet with perfect recall, and let I = IEcount(pr),Crasht
.

For any timem < min{t+1, n−1}, if ri(m) = ⟨W,h,m, vi⟩ where h[ℓ] < n−1 for all 1 ≤ ℓ ≤ m,

we have (I, r,m) ⊨
∧

v∈Values (¬CN (∃v)).

Proof. Our strategy is to define a sequence of indistinguishable runs that connect r with a failure-

free run. The sequence begins with an indistinguishability relation with a run in which a nonfailed

agent at (r,m) receives messages from every agent during round 1. We will define a sequence of

runs rk
such that an agent that is nonfailed at (r,m) receives messages from every agent during

round k.

When t < n − 1, we always have h[ℓ] < n − 1 for all 1 ≤ ℓ ≤ m and vi ∈ W is valid.

Since h[ℓ] < n− 1, we can choose an arbitrary agent j ̸= i that is nonfailed at (r,m). We define

the run r1
to be run r except we change the initial value of every agent that does not have their

initial value inW to vi and during round 1 of run r1
, every agent that does not send to i during

round 1 of run r sends to agent j before crashing. Then, the local state of agent i at (r1,m) is
r1

i (m) = ⟨W,h,m, vi⟩ = ri(m). Hence, we have (r,m) ∼i (r1,m). The local state of agent j at
(r1,m) is r1

j (m) = ⟨W,hj(r1,m),m, vj⟩, where hj(r1,m)[1] = 0.
We define the run rk+1

to be the run rk
except when k is odd, every noncrashed agent that

does not send to j during round k + 1 of run rk
sends to agent i before crashing and when k is

even, every noncrashed agent that does not send to i during round k + 1 of run rk
sends to agent j

before crashing. Agent i and j are nonfailed at (rk,m) for all rk
.

For the run rk
, where k is odd, agent j receives exactly the same messages at all times in both run

rk+1
and rk

. The local state of agent j at (rk+1,m) is rk+1
j (m) = ⟨W,hj(rk,m),m, vj⟩ = rk

i (m).
Hence, we have (rk,m) ∼j (rk+1,m). The local state of agent i at (rk+1,m) is rk+1

i (m) =
⟨W,hi(rk+1,m),m, vi⟩, where hi(rk+1,m)[k + 1] = 0. Similarly, when k is even, we can prove

(rk,m) ∼i (rk+1,m) and rk+1
j (m) = ⟨W,hj(rk+1,m),m, vj⟩, where hj(rk+1,m)[k + 1] = 0.

Therefore, we have proven (rm,m) is N -reachable from (r,m). When m is even, we have

rm
i (m) = ⟨W,hi(rm,m),m, vi⟩, where hi(rm,m)[m] = 0. For the other case whenm is odd, we

have rm
j (m) = ⟨W,hj(rm,m),m, vj⟩, where hj(rm,m)[m] = 0. We define the run r0

to be rm

with no failure. We can see (rm,m) ∼i (r0,m) whenm is even and (rm,m) ∼j (r0,m) whenm
is odd.

Since a limited information exchange protocol cannot attain common knowledge earlier than a

full-information protocol, this gives us the result. ◀

▶ Theorem 18. Let r be a run of the Counting FloodSet protocol. For any timem < min{t+1, n−1},
if ri(m) = ⟨W,h,m, vi⟩ where h < n− 1, we have (I, r,m) ⊨

∧
v∈Values (¬CN (∃v)).

Proof. If ri(m) = ⟨W,h,m, vi⟩, where h < n − 1, then its corresponding run r′
in Counting

FloodSet with perfect recall would have ri(m) = ⟨W,h′,m, vi⟩, where h′[m − 1] < n − 1. By
applying Lemma 14, then Proposition 6, and finally Theorem 17 we obtain our result. ◀

▶ Corollary 19. P count
(P count(pr)

) implements Popt
with respect to information-exchange Ecount

(resp. Ecount(pr)
).

Proof. Follows from a case analysis using Theorems 15, 16, Lemma 14, and Theorem 17, analogous

to the proof of Corollary 13. ◀

We have proven that Counting FloodSet and Counting FloodSet with perfect recall are optimum

with respect to their information exchange due to Theorem 7.

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:13

6 Raynal’s Protocol

Raynal [9] describes a protocol that differs from the FloodSet protocol by recording not just the initial

values received but also which agents had these initial values. Instead of sending a message every

round, an agent only sends newly received information, immediately after the round in which the

agent receives the new information. As in the Floodset protocol, agents do not learn if any other agent

has detected a failure. Agents also do not record the round number in which a message is received.

The local states of agent i at a point (r,m) have the form ⟨Vi(r,m), Newi(r,m), timei(r,m)⟩
where Vi(r,m) is an agent-indexed array of initial values (or ⊥, representing an unknown value),

Newi(r,m) is a set of tuples of type Values×Agt recording new information that agent i received

in roundm, and timei(r,m) = m is the current time. Intuitively, a tuple (v, j) ∈ Values×Agents
represents the information that agent j has initial preference v. This information is new to agent i

in round k if at the start of the round (time k − 1), the agent has Vi[k](r, k − 1) = ⊥ and the agent

receives a message Newi′ in round k containing the tuple (v, j).
Code for Raynal’s protocol is given in the following figure. From this, the the information

exchange protocol ER
for this protocol can be easily constructed. (We leave the details for the

reader to complete.) For the remainder of this section, we write I for IER,Crasht
.

Algorithm 6 Raynal’s protocol for crash failures for agent i

Vi ← [⊥, . . . , vi, . . . ,⊥]
Newi ← {(vi, i)}
for r = 1, 2, . . . , t+ 1 do

begin round

if Newi ̸= ∅ then
for each agent j ̸= i do

send Newi to agent j

Newi ← ∅
Wj ← message received from agent j or ∅ if none
for each agent j ̸= i do

for each (v, k) ∈Wj do
if Vi[k] = ⊥ then

Vi[k]← v

Newi ← Newi ∪ {(v, k)}

Wj ← ∅
end round

if ∃0 ∈ Vi then decide 0

else decide 1

In Raynal’s presentation, the protocol waits until the end of round t+1 before making a decision.

We show that an optimal protocol using the same information exchange can make earlier decisions.

Specifically, define β(r,m) be the number of ⊥ values in the array Vi(r,m). We show that the

implementation of the knowledge based program uses the following predicate of agent i’s local state

to determine the timem at which a decision can bemade:m > min{t+1, n−1}−max{1, βi(r,m)}.
The proof considers a number of cases depending on whether m ≤ 1, Newi(r,m) = ∅,

βi(r,m) = 0 andm ≤ min{t+ 1, n− 1} − βi(r,m). We first note a property of the protocol after

a clean round.

▶ Lemma 20. If round m is a clean round during a run r of Raynal’s protocol, then Vi(r,m) =

XX:14 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

Vj(r,m) for nonfailed agents i and j at (r,m).

Proof. Suppose we have two nonfailed agents i and j at (r,m). Since we have crash failures

only, if Vi(r,m) ̸= Vj(r,m), then there exists an agent k such that, without loss of generality,

Vi[k](r,m) ̸= ⊥ and Vj(r,m)[k] = ⊥. If Vi[k](r,m) = v ̸= ⊥, then agent i must have have had

(v, k) ∈ Newi(r,m′) for somem′ ≤ m Since agent i has not failed yet, if (v, k) ∈ Newi(r,m′) for
m′ < m, it would have sent (v, k) to agent j in roundm′ + 1 and we would have Vj [k](r,m) =
Vi[k](r,m). If agent i receives (v, k) during roundm, then also Vj [k](r,m) = Vi[k](r,m) because
roundm is clean so agent i and j receive the same messages. ◀

▶ Lemma 21. Let roundm be clean during a run r of Raynal’s protocol. For any timem′ > m and

nonfailed agent i, we have Newi(r,m′) = ∅.

Proof. From Lemma 20, we know that Vi(r,m) = Vj(r,m) for any agents i and j that are nonfailed
at timem. Note that if agent i sends a tuple (v, k) in roundm+1 then Vi[k](r,m) = v = Vj [k](r,m).
Hence Newj(r,m + 1) = ∅ for all nonfailed agents j. It follows that no messages are sent after

roundm+ 1, and we have Newj(r,m′) = ∅ for allm′ > m. ◀

Moses and Tuttle [8] have proven the following lemma.

▶ Lemma 22. [8, Corollary 6] Let φ be a proposition about the global state. Let r and r′
be corre-

sponding runs of an arbitrary protocol (P, E) and a full-information protocol (P ′, E ′) respectively. If
(IP,E , r,m) ⊨ CNφ, then (IP ′,E′ , r′,m) ⊨ CNφ.

First, we deal with the case m = 1. We define βi(r,m) to be the number of ⊥ in the array

Vi(r,m) of agent i at (r,m).

▶ Theorem 23. Let r be a run of Raynal’s protocol and agent i be a nonfailed agent at (r, 1). When

t < n − 1, we have (I, r, 1) ⊨ ¬(CN (∃0) ∨ CN (∃1)) and when βi(r, 1) = t = n − 1, we have
(I, r, 1) ⊨ CN (∃0) ∨ CN (∃1).

Proof. For the case t < n− 1, we know that a full-information protocol cannot decide at time 1.

Hence, Lemma 22 and the fact that we must have CN (∃v) when deciding v gives us the result.

For the case βi(r, 1) = t = n− 1, agent i knows n− 1 agents crashed and hence it would know

it is the only nonfailed agent. ◀

The following lemma is about the case where βi(r,m) = 0 and Newi(r,m) = ∅. Note that
since n ≥ 2, we cannot have this condition true at timem ≤ 1.

▶ Lemma 24. Let r be a run in Raynal’s protocol such that a nonfailed agent i has βi(r,m) = 0 and

Newi(r,m) = ∅, andm < min{t+ 1, n− 1}. Then we have (I, r,m) ⊨ ¬(CN (∃0) ∨ CN (∃1)).

Proof. Let v1, . . . , vn be the initial values of the agents in r. Let r′
be a failure-free run with the

same initial values as r. We can see r′
i(m) = ⟨[v1, . . . , vn], ∅,m⟩ = ri(m). From Lemma 4, we

know that a failure-free run requires min{t+ 1, n− 1} rounds to reach common knowledge, and

the converse of Lemma 22 gives the result. ◀

The following lemma deals with the case where agent i has βi(r,m) > 0 and Newi(r,m) = ∅.

▶ Lemma 25. Let r be a run in Raynal’s protocol such that agent i ∈ N (r,m) has βi(r,m) > 0
and Newi(r,m) = ∅. For any time m with 1 < m ≤ min{t + 1, n − 1} − βi(r,m) we have

(I, r,m) ⊨ ¬(CN (∃0) ∨ CN (∃1)).

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:15

Proof. Let the set of agents j ̸= i with Vi[j](r,m) ̸= ⊥ be R = {i1, i2 . . .}. The number of ik is

n−βi(r,m)− 1. By the inequality, this number is at least 2. Let B = Agt \ ({i}∪R) be the agents
j ̸= i for which Vi[j](r,m) = ⊥.

We construct a run r′
in which agents have the same initial values as in r, but in which the

faulty agents areB∪{i1 . . . im−1}. Note that the number of these agents is βi(r,m)+m−1 which

is at most t, by the assumed inequality. The failure pattern of r′
is as follows. Every agent in B only

sends a message to agent i1 before crashing during round 1. At round k for 2 ≤ k ≤ m, agent ik−1
sends only to agent ik before it crashes. Agent i receives all values from agents R in round 1, but

none of the values from agents in B reach i by timem. Hence, the local state of agent i at timem

is r′
i(m) = ⟨Vi(r,m), ∅,m⟩. Hence, (r′,m) ∼i (r,m).
In the run r′

, agent im receives all values of agents in R ∪ {i} \ {im} in round 1, and the values

of all agents in B in round m. Thus Vim
(r′,m) is the vector of all initial values, βim

(r′,m) = 0
and Newim(r′,m) = {(vj , j) | j ∈ B}.

We define r′′
to be r′

except that agent im−1 is nonfaulty at (r′′,m). This run has one fewer

failure than r′
, so also has at most t failures. The local state of agent im at (r′′,m) is the same as

the local state of im at (r′,m). Hence, (r′′,m) ∼im
(r′,m). In run r′′

, agent im−1 has received

all values by time m − 1, so βim−1(r′′,m) = 0 and Newim−1(r′′,m) = ∅. By the inequality

and the fact that βi(r,m) > 0, we have m < min(t + 1, n − 1). We can now apply Lemma 24

to conclude (I, r′′,m) |= ¬(CN (∃0) ∨ CN (∃1)). Since also (r,m) ∼N (r′′,m), it follows that
(I, r,m) |= ¬(CN (∃0) ∨ CN (∃1)). ◀

The following lemma deals with the case where the local state of agent i has βi(r,m) > 0 and

Newi(r,m) ̸= ∅. We denote the number of agents that crashed between (r,m− 1) and (r,m) by
f(r,m).

▶ Lemma 26. Suppose r is a run in Raynal’s protocol and letm be a time such that 1 < m ≤ min{t+
1, n − 1} − βi(r,m), agent i is active at (r,m), and we have βi(r,m) > 0 and Newi(r,m) ̸= ∅.
Then (I, r,m) ⊨ ¬(CN (∃0) ∨ CN (∃1)).

Proof. In Raynal’s protocol, agent i would know that if (v, j) ∈ Newi(r,m) then j has crashed
during round 1 (else i would have received (v, j) in round 1 and this tuple would not be new by

time m > 1). Moreover, Vi[j](r,m) ̸= ⊥, so j is not counted in βi(r,m). From Lemma 21, if

Newi(r,m) ̸= ∅ for m > 1, then it implies every round between round 1 and round m − 1 is

dirty. Hence βi(r,m) + |Newi(r,m)| ≤ f(r, 1) and 1 ≤ f(r, k) for 1 ≤ k < m. Hence, this

would mean β(r,m) + |Newi(r,m)| + m − 2 ≤
∑m−1

k=1 f(r, k) ≤ t. Therefore, we must have

m ≤ t + 2 − β(r,m) − |Newi(r,m)| for any run r of Raynal’s protocol when Newi(r,m) ̸= ∅
and βi(r,m) > 0.

LetB be the set of agents kwith Vi[k](r,m) = ⊥, letR be the agents with (vj , ij) ∈ Newi(r,m)
for some value vj , and let i1 . . . ik be the remaining agents, excluding i. We define the run r′

be the

run in which all agents have the same initial values as in r, in which all the agents inB crash in round

1 before sending any messages, and every agent in R also crashes in round 1, and sends a message

only to agent i1. In round k, for 2 ≤ k ≤ m− 1 agent ik crashes and sends a message only to agent

ik+1. All other agents are nonfailed. There are βi(r,m)+|Newi(r,m)|+m−2 failures in r′
. By the

above reasoning, this is consistent with the failure model of at most t failures. Note that since agent

im is nonfailed , in round r′
, agent i first receives the values of agents inR from im in roundm, and

we have Newi(r′,m) = Newi(r,m) and Vi[j](r′,m) = Vi[j](r′,m) for j ∈ R. For agents jin B,

we have Vi[j](r′,m) = ⊥ = Vi[j](r′,m). Since the agents i1, . . . do not crash in round 1, we have

Vi[ij](r′,m) = Vi[ij](r,m) for each such agent ij . Thus, we have Vi(r′,m) = Vi(r,m). The local
state of agent i at (r′,m) is r′

i(m) = ⟨Vi(r′,m), Newi(r′,m),m⟩ = ⟨Vi(r,m), Newi(r,m),m⟩ =
ri(m). Hence, (r′,m) ∼i (r,m). The local state of nonfailed agent im at (r′,m) hasNewim

(r′m) =

XX:16 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

∅ and Vim(r′,m) = Vi(r,m), hence βim(r′,m) = βi(r,m) > 0. By assumption, we have 1 < m ≤
min{t + 1, n − 1} − βi(r,m) and βi(r,m) > 0, so 1 < m < min{t + 1, n − 1}. Therefore, we
may apply Lemma 25 to obtain (I, r′,m) |= ¬(CN (∃0) ∨ CN (∃1)). Since agent i is active at both
(r,m) and (r′,m), we have (I, r,m) |= ¬(CN (∃0) ∨ CN (∃1)). ◀

Now we prove the result for βi(r,m) = 0 and Newi(r,m) ̸= ∅, wherem > 1.

▶ Lemma 27. Suppose r is a run in Raynal’s protocol and letm be a time such that 1 < m ≤ min{t+
1, n − 1} − βi(r,m), agent i is active at (r,m), and we have βi(r,m) = 0 and Newi(r,m) ̸= ∅.
Then (I, r,m) ⊨ ¬(CN (∃0) ∨ CN (∃1)).

Proof. For 1 ≤ k < m, we let agent ik be the k-th agent that has non-⊥ values in Vi(r,m) such
that ik ̸= i. We set im = i. We define run r′

such that all agents in Newi(r,m) crashes during
round 1 and sends only to agent i1. There are no other crash during round 1. During round

2 ≤ k < m− 1, agent ik−1 crashes and sends only to agent ik. No failure occur during roundm

of r′
. Then, we have ri(m) = ⟨[v1, . . . , vn], Newi(r,m),m⟩ = r′

i(m). Hence, (r,m) ∼i (r′,m).
The local state of nonfailed agent im−1 in (r′,m) is r′

m−1(m) = ⟨[v1, . . . , vn], ∅,m⟩. This shows
(r′,m) is indistinguishable to a failure-free run. We can now apply Lemma 4. ◀

The following theorem concludes when do we not have common knowledge in Raynal’s protocol

at times greater than 1.

▶ Theorem 28. Let r be any run in Raynal’s protocol. For any time m with 1 < m ≤ min{t +
1, n− 1} −max{1, βi(r,m)} we have (I, r,m) ⊨ ¬(CN (∃0) ∨ CN (∃1)).

Proof. Note that when βi(r,m) = 0, the inequality is the same as the inequality from Lemma 24.

When βi(r,m) ̸= 0, the inequality is the same as the inequality in Lemma 25 to Lemma 26. Let i

be a nonfailed agent at (r,m). When Newi(r,m) ̸= ∅, we use Lemma 26. When Newi(r,m) = ∅
and βi(r,m) > 0, we use Lemma 25. When Newi(r,m) = ∅ and βi(r,m) = 0, we use Lemma 24.

When Newi(r,m) ̸= ∅ and βi(r,m) = 0, we use Lemma 27. ◀

▶ Lemma 29. Let r be a run of Raynal’s protocol and i be a nonfailed agent at (r,m). If (I, r,m) ⊨
time > min{t+ 1, n− 1}−max{1, βi}, then (I, r,m) ⊨ Ki(clean ∧ time > min{t+ 1, n− 1}−
max{1, βi}).

Proof. Let (r,m) ∼i (r′,m). Since the points are indistinguishable, we have Vi(r,m) = Vi(r′,m)
and βi(r,m) = βi(r′,m). We observe that βi(r′,m) is less than or equal to the number of failures

that happen during round 1, this implies βi(r′,m) ≤ f(r′, 1). We must have t ≥
∑m

k=1 f(r′, k) =
f(r′, 1)+

∑m
k=2 f(r′, k). This means there are at most t−βi(r′,m) ≥ t−f(r′, 1) ≥

∑m
k=2 f(r′, k)

failures between (r′, 1) and (r′,m). There are m − 1 rounds between (r′, 1) and (r′,m). In

each of the cases βi(r′,m) = 0 and βi(r′,m) > 0, by the pigeonhole principle, a clean round

must have occured if t − max{1, βi(r′,m)} < m − 1 for t < n − 1. Since t, n are common

knowledge in the system and in synchronous systems the time time is common knowledge, we

have (I, r′,m) ⊨ clean ∧ time > min{t+ 1, n− 1} −max{1, βi}. ◀

The following theorem concludes when do we have common knowledge in Raynal’s protocol.

▶ Theorem 30. Let i be a nonfailed agent of run r of Raynal’s protocol, we have (I, r,m) ⊨
CN (∃0) ∨ CN (∃1) whenm > min{t+ 1, n− 1} −max{1, βi(r,m)}.

Proof. Write Ij for the formula time > min{t + 1, n − 1} − max{1, βj}. In the crash failures

model, with N (r,m) interpreted as the set of nonfailed agents at the point (r,m), we have that

K. Alpturer and R. van der Meyden and S. Ruj and G. Wong XX:17

i ∈ N ⇒ Ki(i ∈ N) is valid. Given (I, r,m) ⊨ i ∈ N ∧ Ii, Lemma 29 implies (I, r,m) ⊨
Ki(clean ∧ i ∈ N ∧ Ii). Hence (I, r,m) ⊨ Ki(clean ∧

∨
j∈N Ij).

By the knowledge axiom, (I, r,m) ⊨ clean. This means a clean round has occurred by (r,m).
By Lemma 20 and the definition of βi, we get βi(r,m) = βj(r,m) for all nonfailed agents j at (r,m).
Therefore, by the previous paragraph, we have (I, r,m) ⊨ EN (clean ∧

∨
j∈N Ij). This shows that∨

j∈N Ij ⇒ EN (clean ∧
∨

j∈N Ij) By the induction rule, we obtain (I, r,m) ⊨ CN clean.
Let pv be the proposition

∨
j∈N

∨
k Vj [k] = v. That is, pv says that some nonfailed agent sees the

value v. After a clean round, we have Vi(r,m) = Vj(r,m) for all j ∈ N (r,m). This means we have

⊨ (pv ∧CN clean)⇒ EN (pv ∧CN clean). By induction, we obtain ⊨ (pv ∧CN clean)⇒ CN (pv).
Since we have (I, r,m) |= CN clean, it follows, taking v to be a value seen by some nonfaulty agent

at (r,m), that (I, r,m) |= CN pv . This implies (I, r,m) |= CN∃v. ◀

We have found that Raynal’s protocol is not optimal with respect to its information exchange.

An optimum early stopping condition is whenm > min{t+ 1, n− 1} −max{1, βi(r,m)}.

7 Conclusion

We have studied the FloodSet, Counting FloodSet, Counting FloodSet with perfect recall and Raynal’s

protocol for simultaneous Byzantine agreement in synchronous message-passing systems prone

to crash failures. We all of the above protocol, we have determined the earlier possible time that

common knowledge about the initial values is attained.

For FloodSet and its variants, the early stopping condition is trivial. On the other hand, Raynal’s

protocol has an interesting nontrivial early stopping condition. It would be interesting to see if we

can achieve nontrivial early stopping condition if we not only store the count of the number of

missing messages but also send the count to other agents.

Protocol Computation Message size Space

FloodSet [6] O(n) O(1) O(log t)
Counting FloodSet O(n) O(1) O(log t)
Raynal’s protocol [9] O(n2) O(n) O(n)
Dwork and Moses [3] O(nt) O(t) O(t)

Table 1 Complexity and message size for each protocol we studied

In this paper, we considered the problem only under crash failures. It would be more interesting

to study the problem under general omission failures because an optimal protocol for simultaneous

Byzantine agreement in synchronous systems prone to general omission failures require NP-hard

computations. We would like to obtain a protocol for general omissions with a nontrivial early

stopping condition requiring only polynomial time computations.

References
1 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden. Optimal eventual byzantine agreement

protocols with omission failures. In Proceedings of the 2023 ACM Symposium on Principles of Distributed

Computing, PODC ’23, page 244–252, New York, NY, USA, 2023. Association for Computing Machinery.

doi:10.1145/3583668.3594573.
2 Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early decision and stopping in

synchronous consensus: A predicate-based guided tour. In Amr El Abbadi and Benoît Garbinato, editors,

Networked Systems, pages 206–221, Cham, 2017. Springer International Publishing.

https://doi.org/10.1145/3583668.3594573

XX:18 Optimality of SimultaneousByzantineAgreementwith Limited InformationExchange

3 Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine environ-

ment: Crash failures. Information and Computation, 88(2):156–186, 1990. URL: https://www.
sciencedirect.com/science/article/pii/0890540190900149, doi:https:
//doi.org/10.1016/0890-5401(90)90014-9.

4 R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. The MIT Press, 1995.

5 Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed environment.

J. ACM, 37(3):549–587, jul 1990. doi:10.1145/79147.79161.
6 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1996.

7 Yoram Moses. Optimum simultaneous consensus for general omissions is equivalent to an NP or-

acle. In Idit Keidar, editor, Proc. Distributed Computing, 23rd International Symposium, DISC 2009,

volume 5805 of Lecture Notes in Computer Science, pages 436–448. Springer, 2009. doi:10.1007/
978-3-642-04355-0_45.

8 Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using common knowledge.

Algorithmica, 3:121–169, 1988. doi:10.1007/BF01762112.
9 M. Raynal. Consensus in synchronous systems: a concise guided tour. In 2002 Pacific Rim International

Symposium on Dependable Computing, 2002. Proceedings., pages 221–228, 2002. doi:10.1109/PRDC.
2002.1185641.

10 Ron van der Meyden. Optimal simultaneous byzantine agreement, common knowledge and limited

information exchange. 2024.

https://www.sciencedirect.com/science/article/pii/0890540190900149
https://www.sciencedirect.com/science/article/pii/0890540190900149
https://doi.org/https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1145/79147.79161
https://doi.org/10.1007/978-3-642-04355-0_45
https://doi.org/10.1007/978-3-642-04355-0_45
https://doi.org/10.1007/BF01762112
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/PRDC.2002.1185641

	1 Introduction
	2 Framework
	3 Optimality and Knowledge-based Programs
	4 FloodSet
	5 Counting Extensions
	6 Raynal's Protocol
	7 Sending the Count
	8 Conclusion

