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Abstract

This paper applies to quantum systems a modelling for the logic of knowledge, originally
developed for reasoning about distributed systems, but since then applied to game theory,
computer security and artificial intelligence. A formal model of quantum message passing
systems is developed and the question of how one might define the semantics of a modal
operator for knowledge in this model is considered. It is argued that there are at least two
plausible semantics, depending on whether the agents are permitted to make use of their
quantum state in determining what they know, and on whether one is dealing with single
instances of quantum systems, or ensembles. The framework is illustrated using a number
of examples from the quantum computing literature, including protocols for quantum key
distribution and teleportation.

1 Introduction

The prospect that quantum computing and communications systems potentially have capa-
bilities going beyond those of classical computing and communications is currently generating
considerable interest in both computer science and physics. It takes only the most cursory
inspection of one of the basic texts in the area [NC00] to find that epistemic locutions such
as “agent A knows that” are common in the literature on quantum computing. The use of
probability theory in quantum computing is highly sophisticated, but the literature has not
developed a standard way to make such informal epistemic language precise. In this paper,
we begin an investigation of the extent to which some well established tools of epistemic logic,
in particular, a semantic approach for the logic of knowledge [HM90, FHMV95], developed for
reasoning about distributed systems, can be applied to give a rigorous semantics for epistemic
talk about quantum computing and communications systems. In doing so, we hope to be lay-
ing the foundations for formal (i.e., logical) methods for the epistemic analysis of areas such
as quantum cryptographic protocols [Ben92|, quantum distributed computing [BDHT99] and
quantum games [EWL99).

Our main focus in this paper is the question of how one should define the semantics of the
logic of knowledge in a quantum system. After a very brief review of quantum mechanics in

*This is a corrected version (restating proposition 2) of a paper that appeared in Proc. Conf on Theoretical
Aspects of Rationality and Knowledge, June 2003, ACM Press.



Section 2, we define in Section 3 a formal model for multi-agent quantum systems in which the
agents may communicate both by classical message passing and by exchanging quantum bits.
We then turn, in Section 4, to the question of how to define the semantics of a modal logic of
knowledge in such systems. We argue that there are at least two distinct notions of knowledge
that make sense in quantum systems. Which one we use depends on the intuitions underlying
the scenario we are modelling. One notion is appropriate for protocols implemented using a very
fine-grained notion of quantum state (e.g. quantum bits implemented using single photons),
and captures the states of information obtained by agents from specific measurements. Another
is appropriate for reasoning about knowledge of ensembles of quantum states, and also captures
the information that agents may potentially obtain by performing measurements. In Section 5,
we illustrate the difference between these two notions of knowledge with some simple examples
from the literature, which provide some intuition for the situations in which these notions are
appropriate. Section 6 considers the relations between the two types of knowledge. Section 7
concludes with some discussion of related work and future directions.

2  Quantum Theory

We give a very brief introduction of quantum theory here, and recommend that a reader needing
further background consult Chapter 2 of [NC00], whose conventions we follow closely.

According to quantum theory, the state of a physical system S, like an electron or an atom,
is represented by a vector of length 1 in a Hilbert space, i.e, a complex vector space with an
inner product (-|-) : H?> — C. We shall restrict ourselves to finite-dimensional spaces, which
are adequate for quantum computing. It is conventional to use the Dirac notation |z) for a
vector in H. The inner product induces an isomorphism between H and H*, the dual space of
linear functions H — C, where C is the complex field. The image of a vector |a) under this
isomorphism is written (|, and is defined to be the function f such that f(|5)) is the inner
product («|f5) of |a) and |3). Two vectors |o) and |3) are said to be orthogonal if (a|F) = 0.
An orthonormal basis in H is a basis of unit vectors such that every pair of distinct vectors in
it are orthogonal. If the state of the system is |a) then the probability of finding it in a state
|8) is [{a|B)|%. That is in any given state if the system is tested for another nonorthogonal state
then there is a nonzero probability of success. The adjoint of a linear operator 1" on H is the
(unique) linear operator T on H such that (Ta|8) = (a|TT).

Given two systems S7 and Se with respective state spaces H; and Ha, the composite system
is described by the tensor product Hilbert space H; ® Hy. The simplest way to define it is
through bases. Let {a;} and {8;} be bases of H; and Ha, respectively. Then the vectors
a; ® B; form a basis of H; ® Hy. The dimension of the tensor product is mn if m and n are
the dimensions of Hy and Hy. The inner product of @ ®  and ¢ ® ¢ is defined as (a|®) - (5]v)
and extended bilinearly to general vectors in H; ® Ho making it a Hilbert space. Taking ® to
be bi-linear allows us to obtain from linear operators 17 on H; and 15 on Hs, a linear operator
Ty @ Ty on Hy ® Ho, defined by (11 @ Tr)(a ® 3) = (Tha) @ (T>3). Further, a general operator
in Hy ® Hy can be written as a sum of such product operators.

Next we discuss the dynamics of quantum states. In the general measurement formulation
we use, a quantum measurement is a finite sequence of operators M = [Mj, ..., M| on the state
space H of the system. These operators are required to satisfy the equation ), MJan =1,
where [ is the identity. Each index m = 1,...,k of this collection corresponds to one of the
possible outcomes of the measurement, occurring with probability <a]M£1Mm|a> when the state



being measured is |«). Unlike a classical system, after a measurement the state of the system
changes, being transformed from state |a) to the state p(M,,|a)), where p is the renormal-
1zation function that transforms a non-zero vector into the unit vector in the same direction.
Measurements typically correspond to projections onto a subspace of the Hilbert space, which
collapses, or loses, a lot of the state information. A special case of this is measurement in a
basis, where each M, corresponds to a projection onto the one-dimensional subspace spanned
by a basis element. Note, however, that another special case of measurement is a singleton
M = {U}. Here U is a unitary operator U with UTU = I the identity. (Thus, this approach
captures both types of state transformation, projection and unitary transformation, usually
treated seperately.)

For quantum computation, we are interested in systems composed from quantum bits, which
are represented by the two dimensional Hilbert space Q, with a preferred orthogonal basis, called
the computational basis, given by the two vectors |0),|1). An N-qubit Hilbert space is a 2V-
dimensional space OV of the form 9 ®...® Q, where there are N copies of the space Q in the
tensor product. We write |i1,...,iy) for the vector |i;) ®...®|iy) in this space, where each i;
is either 0 or 1. The set of vectors |i1,...,ix) is a basis of Q) called the computational basis.

3 Qubit Message Passing Environments

Many of the examples in quantum information theory deal with a computational setting in
which the agents communicate by sending classical messages, by transmitting qubits and by
operating on (possibly entangled) qubits. (Physically, such a system might be implemented by
photons, transmitted between agents along optical fibers.) In this section, we define a class
of formal models of such settings. We consider only the simplest possible model of communi-
cation: reliable synchronous communication.! We call a specific instance of our modelling an
environment, denoted by £. An environment specifies the number of agents n in the system,
the classical and quantum states that the system can inhabit, the possible initial states of the
system, the actions that the agents can perform, and the effect that these actions have on the
state of the system. It may also specify an interpretation for some set of basic propositions.

3.1 States

The set of states, also called global states, of an environment will be a cartesian product S =
S9 x 5¢ where S? is a set of quantum states and S€ is a set of classical states. If s is a global
state, we write s? and s¢ for the elements of S? and S¢, respectively, such that s = (s7,s¢). The
set of quantum states S? will be QN for some finite number N, modelling the assumption that
the agents are able to operate on N qubits. The classical states encode information such as
classical bits held by the agents, the location of qubits in the system, measurement outcomes
and classical message channels. We now describe each of these elements of the classical state.

To model the classical bits manipulated by the agents, we assume that for each agent i there
is a set Var; of variable names. A classical bit assignment is then a function var mapping each
agent 7 to a function var(i) : Var; — {0, 1} assigning a truth value to each variable of agent i.

In a qubit passing system, each qubit is thought of as being in the possession of some
agent, but this agent may change from time to time, as an agent can send some of its qubits to

1To keep the model simple, we do not attempt to model adversaries, as would be required for a deeper study
of quantum cryptographic protocols than we attempt here.



another. We model this by taking a part of a classical state to represent the location of each
qubit. Define a qubit location assignment in an N-qubit passing environment for n agents to be
a function loc : [0, N] — [0, n]. Intuitively, for a qubit number z, the value loc(x) is the agent
possessing qubit x.

We model reliable synchronous communication of classical messages between agents as fol-
lows. Let Msg be a set of messages. We assume that Msg contains the special value | representing
a null message (used to represent the fact that no message was sent.) We assume that between
each pair of agents 14, j, there is a single channel for communications from i to j. (For brevity
of exposition, we allow agents to transmit messages to themselves.) At each step of a computa-
tion, a single message in Msg may be transmitted along this channel. Thus, we take part of the
classical state of a qubit passing system with n agents to be a function chan: [1...n]?> — Msg.
We call such a function a channel value assignment. Intuitively, the fact that chan(i,j) = m
means that the message m has just been sent from i to j. Initially, chan(i,j) = L for all agents
i,7.

Finally, the classical state of the environment is used to record the outcome of quantum
operations performed by the agents. Suppose that loc™'(i) = {iy,...,4x} is the set of indices
of qubits located at agent ¢. Then agent ¢ is able to perform a general measurement on these k
qubits. As discussed above, we represent a quantum operation on k qubits by a finite sequence
of operators M = [My, ..., M|, with each M,, operating on QF. Suppose the agents simultane-
ously perform the quantum measurements M1, ..., M™ where each M' is an measurement on
the k; = |Loc™1()| bits located at agent i. Each operation M® produces some outcome m;, the
index of some linear transformation Mﬁnz e M i, on QFi. We represent a combined outcome of
these measurements by a function res from agents to outcomes, such that res(i) = (M* m;)
for each agent i. We call such a function a measurement result assigment. Intuitively, each
value (M*, m;) records the measurement performed and the outcome obtained.

We can now define the classical state of a qubit passing system as a s¢ = (var, loc, chan, res)
where var is a classical bit assignment, loc is qubit location assignment, chan is a channel value
assignment, and res is a measurement result assigment.

This completes our description of the structure of the global states S in a qubit message
passing environment £. The environment also specificies a nonempty set I of global states,
representing the possible initial configurations of the system. When the environment also
specifies an interpetation function 7 : S x Prop — {0, 1} for some set of propositions Prop, we
say that the environment is interpreted. As quantum states differing by a constant factor z € C
with |z| = 1 are considered to be identical, we require that 7({z - s?,s),p) = w((s%, s°), p) for
all global states (s?, s¢) and propositions p.

3.2 Actions

We now describe the actions that agents are able to perform in a qubit message passing envi-
ronment, and their effect on the global states.

For each classical bit variable v € Var;, and boolean value b € {0,1} the agent has an action
“v:=b", the effect of which is to change var(i)(v) to have value b. Additionally, the agent is
able to perform an action flip(v) on the bit v, the effect of which is to change var(i)(v) to
have value either 0 or 1, with equal probability. This models a fair coin flip.

In order to transmit qubits, agent i is able to perform the action transmit(b, j), where b is
a qubit index in loc™!(7). The effect of this action is to change the value of loc(b) to equal j.
(Note that this does not necessarily mean that j knows the value of qubit b.)



In order to transmit classical messages, agent ¢ has an action send,; j(m), where j is an agent
and m € Msg. The effect of agent ¢ performing this action is to set chan(i,j) = m in the next
state. For all j/ # j, we have chan(i,j’) = L in the next state. Moreover, if agent i performs
any other action than one of the form send; j(m), we have chan(é, j) = L in the next state for
all agents j.

Finally, agents have the ability to perform measurements on the qubits in their possession.
To capture the combined effect when each agent performs such a measurement, it is convenient
to introduce some notation for shuffling the order of qubits. Given a qubit location assignment
loc, we define a unitary transformation Uy as follows. For each agent i, let loc*(i) be the
sequence i1, ...,%, where loc~!(i) contains the values i; < ... < i, Foreachi=1...N,
define p(i) to be the i-th element of the sequence 1... N to loc*(1)-...-loc*(n). The function p
is a permutation on 1... N. We define Ui, by describing how it acts on each element |b; ...bx)
of the computational basis of QV, viz., Utec|b1 ... by) = [by) - .. byv)- Intuitively, effect of
Usoc is to shuffle the order of the components of the components of the tensor product of qubit
Hilbert spaces, to ensure that all the qubits located at agent 1 occur first, then the qubits
located at agent 2, etc.

The combined outcome my, ..., m, of measurements M?',..., M™ corresponds to a state
transformation 7" on the quantum state [¢) € QN of the system, given by T = UL (M}, ®...®

M YUroc. In state |¢), this transformation occurs with probability (1|T1T|4)), and transforms
the quantum state of the system from [i) to p(T'|1))), where p is the renormalization function.

A joint action in an environment £ is a tuple (ai,...,a,) where each a; is an action of
agent i. We say that there is a transition of £ from global state s to global state ¢ if one of the
possible combined effects of the agents performing the actions aq,...,a,, as described above,
is to transform the state s into the state ¢, with non-zero probability.

3.3 Protocols

Define a run to be a function r : N — S mapping the natural numbers to the set of global
states S of a qubit passing environment £. A point is a pair (r,m) consisting of a run r and a
time m in the natural numbers. Intuitively, a run describes a potential evolution of the system,
with r(m) representing the global state of the system at time m. We will consider systems
comprised of specific sets of runs, generated by the agents engaging in a particular pattern of
behaviour, which we call a protocol.

Intuively, at each each point of time, an agent has acquired some information, which its
uses to make a decision concerning its next action. We may model the information that an
agent acquires when the environment is in a particular global state s by means of a function
O; mapping global states to some set of observations O;. We defer discussion of some possible
definitions of O; to the next section. We may now represent the information that the agent has
acquired after a number of steps of computation by a sequence of observations, i.e. an element
of O;r . Thus, we represent a protocol for agent ¢ by a function P : O;r — Act;. A joint protocol
is a tuple P = (P, ..., P,), where each P; is a protocol for agent 4.2

2Note that our definitions make protocols deterministic, but the effect of an action (e.g. a coin flip or a
measurement) is not deterministic. We could also consider non-deterministic and probabilistic protocols, but
will not attempt this here. It would be natural to require the protocol to be a computable function, but we
do not require this in the present paper, in order to focus on the purely information theoretic aspects of our
framework. Amongst the issues to be faced in formalizing computability is the fact that we have an uncountable
set of possible quantum measurements that the agent can perform.



Define the perfect recall local state of agent i at a point (r,m), denoted r;(m), to be the
sequence of observations made by the agent to time m in r, i.e., r;(m) = O;(r(0)), ..., O0;(r(m)).
We say that a run r is a run of the joint protocol P = (P, ..., P,) in the environment & if for
each time m, there exists a transition of £ on the joint action (Pi(ri(m)),..., Py(rp(m))) from
global state r(m) to global state r(m + 1). We write R(E,P) for the set of all runs of the joint
protocol P in &.

4 A Logic for Knowledge and Time in Quantum Systems

We now define a modal logic that can be used to formally state claims about knowledge and
time in a quantum system. We define the set of formulas of the logic to be the smallest set
such that each basic proposition p in Prop is a formula, and if ¢; and ¢o are formulas, then so
are —¢1, o1 A g2, as are K{¢1 and K¢, for each agent 7, and O¢; and init(¢;). We use the
customary abbreviations of propositional logic. The formula K[ ¢ is read “agent i classically
knows ¢”, and the formula K¢ is read “agent ¢ quantumly knows ¢”. We provide intuitions
for these constructs shortly. The formula O¢ is read “at all times in the future, ¢”, and init(¢)
is read “initially ¢”. (Other temporal operators could be added, but these two suffice for the
examples we consider.)

To give a semantics to this language, we evaluate formulas with respect to triples £, P, (r, m)
where £ is an interpreted qubit passing environment, P is a joint protocol for £ and (r,m) is a
point on a run r € R(E,P). In order to interpret the two knowledge operators, we will define,
for each agent i, two equivalence relations on points: ~§ and ~7, which, intuitively, capture
different notions of two points being indistinguishable to the agent. Let m be the interpretation
function of £. The semantics is then given in the familiar pattern for the logic of knowledge
and time, by the recursion

1. £&,P,(r,m) Epif 7(r(m),p) = 1, when p € Prop;

2. E,P,(r,m) = KfopitE,P, (1, m') |= ¢ for all points (7', m’) of R(E, P) such that (r,m) ~§
(r',m’);

3. £&,P,(r,m) E Kl¢ it £,P,(r',m') = ¢ for all runs ' of R(E,P) such that (r,m) ~!
(r',m');

4. E,P,(r,m) E Qg if £, P, (r,m’) E ¢ for all m’ > m;

5. £,P,(r,m) = init(9) if £, P, (r,0) [ ¢.

plus the obvious clauses for the propositional operators.

Recall that we defined the notion of an agent’s perfect recall local state r;(m) as the sequence
of observations the agent has made in reaching the point (r,m). Using this notion, we may define
an equivalence relation ~; on points by (r,m) ~; (r',m') if 7;(m) = ri(m’).> The definitions
of the equivalence relations ~§ and ~ arise by using different definitions of the observation

function O; in this definition.

3Perfect recall corresponds to an optimal notion of knowledge that suffices for the points we wish to make.
We note, however, that other definitions (e.g. assuming that agents have no recall of their past observations)
would be equally sound, depending on the application at hand.



The first notion of observation we consider corresponds to what an agent is able to learn from
that portion of the classical state of the system that it is able to control. Given a global state
s = (s%,5°), where the classical state s = (var, loc, chan,res), we can define the observation
of agent i by Of(s) = (var(i),loc (i), chan(i),res(i)). Intuitively, the presence of var(i)
means that the agent is aware of the values of its classical bits. The presence of loc™!(i) in
the observation means that the agent is aware of which qubits it possesses. The presence of
chan(i) means that the agent is aware of what messages it has just received from other agents.
Finally, the presence of res(i) models the fact that the agent is aware of the outcome of the
measurement that it has just performed on the qubits in its possession. We write ~¢ for the
notion of indistinguishability derived from the definitions above when we use the function Of
for the observation function.

This notion of indistinguishablility assumes that while the agent makes use of the past and
present values of the classical bits in its possession, its knowledge about which qubits it possess
or has possessed, and the past outcomes of measurements it has performed on these qubits, it
does not make use of the “values” of the quantum bits in its possession. It makes intuitive sense
to impose such a restriction, since any attempt to obtain such additional information would
perturb the quantum state, leaving the system in a different state. (Morever, when some of
the agent’s qubits are entagled with the qubits of another, the perturbation is not local to the
agent!)

On the other hand, it is possible to provide intuitive justifications for allowing an agent
to make use of its local qubits to determine what it knows. One way to justify this is to
note that the classical notion of knowledge, familiar in the literature on epistemic logic, is an
information theoretic idealization, inasmuch as K;¢ does not state that agent ¢ is in a position
to perform a computation on its local state which establishes that ¢ holds. Rather, it says that
the agent could, in principle, decide ¢ based on its local state, were it to be given unlimited
computational resources, extending even beyond recursive enumerability. (Consider, e.g., the
(valid) formula stating that the agent knows the truth or falsity of Goldbach’s conjecture.)
From this perspective, it is reasonable to consider similarly idealized notions of knowledge, that
take into account what an agent could determine from its local state, including qubits, given
sufficient powers.

A further observation that lends credence to the idea that an agent should be able to make
use of its qubits in determining what it knows is that individual quantum systems, such as
single photons, are extremely difficult to isolate in the laboratory. Instead, one typically deals
in practice with ensembles, consisting of many instances of the physical system (e.g. packets
consisting of multiple photons). It is possible to prepare such ensembles in such a way that each
element is in the same quantum state (e.g. each photon in the packet is polarised in the same
direction.) Under unitary transformations on the system, this identity of state for members of
the ensemble is preserved. This makes it possible to treat the ensemble like a single copy of the
system. For measurements in general, however, this identity is not preserved. Different members
of the ensemble will yield different measurement outcomes, yielding a probability distribution
(a spectrum) on outcomes of the measurement, rather than a single outcome. Moreover, when
dealing with an ensemble, there is a sense in which one can measure the quantum state while
leaving it intact. This is to perform the measurement on a subset of the ensemble, leaving the
remainder in the original state. Indeed, given a sufficiently large ensemble, this approach allows
one to make multiple measurements.

These considerations lead us to consider a different observation function O? that takes into
account the possible measurements on the qubits possessed by an agent. Suppose we are given a



global state with quantum state component |¢) and a measurement M performable by agent ¢,
i.e., a measurement on the qubits loc™!(i) local to i in the global state. Define d; (M) to be
the distribution over the possible outcomes of M. (That is, if M, is the operator corresponding
to a possible outcome then the probability associated to that outcome is ()| Mf, My,|)).) By
performing the measurement often enough, the agent is able to estimate these probabilities.
This models what an agent is able to observe by making a single measurement. To capture
what the agent is able to obtain from all measurements it is able to perform on the state,
we treat d; |y as a function mapping the possible measurements on qubits loc™ (i) to their
outcome distributions.

We now define Of(s) as the pair (Of(s),d; ). That is, we make both the classical ob-
servation and the results of all possible quantum measurements that the agent could perform
observable to the agent. We write r{(m) and ~! for, respectively, the notion of perfect recall
local state, and indistinguishability, obtained when O; = O}. That is, the two points are ~9-
indistinguishable if both the sequence of classically observed information obtained by agent 4 in
the past, and the sequence of all possible information it could gather by quantum measurement

are the same in the two points.*

There is an aspect of our modelling for which we need to account when we interpret quantum
states as representing ensembles: we have said that the result of a measurement (as encoded in
a measurement result assignment) is a single outcome rather than a distribution, and this does
not seem to fit the ensemble intrepretation. One way to reconcile the two is to view a mea-
surement of an ensemble as randomly selecting a single copy of the system from the ensemble,
and performing the measurement on this. Indeed, this is what is done in implementations of
quantum cryptography, where photon packets are attenuated to a single photon before measure-
ment [IY94]. However, we will see from the examples in the next section that this “selection”
interpretation of our modelling is not appropriate for all protocols, and return to this point
below.

5 Examples

To illustrate our definitions, we now formalise a number of examples from the quantum com-
puting literature using our framework. We use the following technical notion. If ¢ is a formula
of our logic, and P is a joint protocol and £ is an interpreted environment, then we say that
P realizes ¢ in € if for every run r € R(E,P), we have £, P, (r,0) = ¢. That is, the protocol
ensures that ¢ holds at the initial point of every run in the system generated by the protocol.

5.1 Distinguishability of states

Our first example concerns what a single agent is able to learn about a quantum state, which
may initially have one of two possible values. Consider an environment for the agent in which
8% = QN and in which the agent has no local classical bits, and possesses all qubits, i.e.,
loc(j) = 1 for all j = 1...N. We remove the message channels from the definition of the
environment since messages sent by the agent to itself are uninformative. For the initial states

4We note that identity of d; s« and d; +« quantifies over the uncountable set of all possible measurements, but
quantum theory has some finely honed tools, (which will be the more familiar notion to the reader versed in
quantum theory than the above), viz., density operators and the partial trace, whereby this identity can be very
conveniently expressed.



I of the environment, take the two (distinct) global states s; and sg in which the quantum
portion is |¢1) € QN or |¢hg) € QV, respectively. Note that the classical portions of the state
are uniquely determined by the definitions above, and identical in s; and so. Let 7 be the
interpretation of the propositions pj, for j = 1,2, such that 7(sy,p;) = 1 iff £ = j. That is, p;
expresses that the global state is s;. We write £,y |y,) for the interpreted environment obtained
from the choice of [1)1), |1)2) in this definition. In this setting, the agent cannot transmit qubits,
and protocols describe a strategy for performing measurements on the quantum state. The
strategy may be adaptive, i.e., depend on the outcome of measurements already performed.

Proposition 1 Let P be any protocol for Ey,y y,)- Then for j =1,2,

1. P realizes pj = —'KC(P]') A Kq(pj) in glwl%\%)’ and
2. if 1), |12) are not orthogonal, then P realizes pj = O-K(init(p;)) in Ey,),jys) -

On the other hand, if |11), [t2) are orthogonal, then there exists a protocol P that realizes the
formula \;_; 5 pj = OK (init(p;)) in Ejy,), jp,)-

That is, initially, the agent does not know which state it is in based on its classical infor-
mation alone, but using our idealized notion of quantum knowledge K9, the agent is able to
distinguish whether it is in state s; or state so. If the states are non-orthogonal, then no mea-
surement protocol will give it classical knowledge of the initial state. On the other hand, when
the states are orthogonal, it is able learn the initial state (based on its classical observations)
by some measurement protocol. (In fact, a single measurement, in a basis containing [¢1), [1)2),
suffices.)

5.2 A quantum key distribution protocol

Our next example concerns the key ingredient of a quantum cryptography protocol [Ben92],
the objective of which is to establish a shared secret key (a finite sequence of classical bits)
between two parties (Alice and Bob), who can only communicate via a channel controlled by
an eavesdropper (Eve). The protocol itself is complex, using a variety of mechanisms for error
correction and for detecting interference by Eve. We consider just a fragment (which we call
B92) that shows how a single shared classical bit is established. We simplify Eve’s capabilities by
eliminating Eve’s ability to interfere with message transmissions. Because of space limitations
in this abstract, our presentation of even this simplified fragment is necessarily sketchy: the full
paper will contain a more complete description.

The protocol assumes that there is a single qubit, initially possessed by Alice. Additionally,
Alice has a classical bit @ and Bob has two classical bits a’ and b. The protocol involves two
orthonormal bases for Q: the computational basis |0),|1) and the basis consisting of |+) =
(10) +11))/v2 and | =) = (|0) - [1))/V2.

The protocol proceeds as follows. First, Alice flips her classical bit a. If the outcome is
0, she prepares the qubit in the state |0) (this can be done by performing a measurement and
applying a unitary transformation if the desired outcome |0) is not produced as a result). If
the outcome is 1, she prepares the qubit in the state |[+). Alice then transmits the qubit to
Bob. Upon receipt of the qubit, Bob flips his classical bit a’. If the outcome is 0 he measures
the qubit received in the computational basis, otherwise, he measures it in the basis |+),|—).
If the measurement result was to transform the qubit to first element of the basis measured,



Bob sets his classical bit b to 0, otherwise he sets it to 1. Bob then sends a classical message to
Alice stating the value of b.

Not all runs of the protocol are considered successful, only those in which b = 1 after the
above steps have been performed. In these runs, it can be shown that a = 1 — a’ in the final
state reached, which we may consider as Alice and Bob having reached agreement on the value
of a.

In order to model Eve’s ability to eavesdrop on this protocol, we “double up” all messages
and qubit transmissions. That is, we have Alice prepare two qubits in the same state, sending
one to Bob and one to Eve. Similarly, we have Bob send his classical message both to Alice
and to Eve. Let £ be an enviroment suitably equipped for this doubled-up version. We assume
all classical bits are initially equal to 0. We say that P is an eavesdropping version of B92
in £ if it prescribes that Alice and Bob behave as discussed above, and Eve waits to receive
the copy of the qubit transmitted to Bob and Bob’s classical message, and then runs some
protocol in which she performs measurements on her copy of the qubit. (Eve is not allowed to
engage in any communication with Alice and Bob in this stage of her protocol.) Write k¥ (a)
for KF(a =0)V K¥(a = 1), i.e., agent ¢ knows the value of the classical bit a, where z is either
¢ or q. Then we can show the following.

Proposition 2 If P is an “eavesdropping” version of B92 in € then P realizes
O = 1= (ki(a) A kp(a))

and
O(b=1= k}(a))

in E. There exists an eavesdropping version P of B92 such that some runs satisfy
Ob=1NEkR(a))

in E. However, no such a protocol realizes
Ob=1=k%(a))

mn &.

The first formula states that in successful runs, Alice and Bob come to classically know
the value of bit a. The remaining claims concern the extent to which Eve is able to obtain
information about a. The second formula says that were we to allow Eve an arbitrary number
of repeatable quantum measurements on the qubit (which corresponds to K%), she could come
to know the value of the bit a (indeed she would know it as soon as she receives her copy of the
qubit from Alice.) This relates to the known fact that the security of the protocol relies on its
being implemented using single photons. However, because of present limitations on our ability
to control individual photons, in practical implementations, what is transmitted is not a single
photon, but an ensemble (packet) of photons. This allows Eve to undetectably shave off a part
of the ensemble and perform some measurements. The protocol is not secure in such a setting!
(See [BBB192] for a discussion of how such problems are overcome in another protocol).

While the notion of an arbitrary number of repeatable quantum measurements represented
in K}, is a very strong idealization, the protocol is also insecure in a weaker sense. This is
stated in the third claim of the proposition. Even if Eve captures only a single copy of the



qubit and performs a single measurement on it, she may still sometimes come to know a, in the
classical sense of knowledge. To do so, she need only replicate Bob’s protocol with this qubit as
input. Some runs of this replicated protocol will be like the runs in which b = 1, and give Eve
knowledge of a. However, it can be shown (as stated in the fourth claim of the proposition)
that there is nothing that Eve can do that guarantees that she will obtain classical knowledge
of a in all runs where b = 1. (In the case where Eve replicates Bob’s protocol, the probability
that Eve will come to know a is 1/4.)

5.3 Teleportation

Our final example is a protocol of Bennet et al [BBCT93], that illustrates a quite astounding
difference in the dynamics of knowledge in classical communications protocols and quantum
communications protocols.

To state this difference, we need some technical notions. Define two runs 7,7’ of a joint
protocol P = (Py, ..., P,) in an environment £ to be communication indistinguishable if for all
times m and agents 4, either P;(r;(m)) = P;(ri(m)), or both P;(r;(m)) and P;(r}(m)) are not
communications actions (i.e., neither is a send or transmit). Intuitively, this means that the

agents perform exactly the same communications actions in r and 7.

Say that a joint protocol P is communication independent of the initial state in an envi-
ronment & if for all runs » € R(E,P), and all initial global states s of £, there exists a run
r’ € R(E,P) such that r/(0) = s and r and 7’ are communications indistinguishable.

We first note a property of classical communications protocols. Say £ is a classical message
passing environment if it is a qubit message passing environment with zero qubits, i.e., in which
agents can communicate only by sending classical messages. Then we have the following result.
(Recall that the truth value of atomic propositions is a function of the global state, and that
k¥(¢) means that i knows whether ¢ is true or not.)

Proposition 3 If £ is a classical message passing environment then there is no protocol P for
& that is communication independent of the initial state and realizes the formula kGp N =kGp A
OkGinit(p), where p is an atomic proposition.

A corresponding proposition is false for qubit message passing environments. There is a
protocol P for a qubit message passing environment £ that is communication independent
of the initial state and realizes the formula kip A ﬂk%p A Ok%init(p) where p is an atomic
proposition. So stated, this is not quite as surprising as it may look. For suppose that A initially
possesses qubit 1, which is in state |1)o) or in state [i)1). We may realize the formula simply by
performing the action transmit(1, B) as the first step of A’s protocol, and taking p to mean that
qubit 1 is in state |1)g). But what is truly amazing is that there exists a protocol independent of
the initial state in which the only communications actions are classical send operations! That
is, by sending only classical messages that depend in no way on the initial qubit value, A may
“inform” B of the initial state of this qubit. Indeed, by sending exactly two classical bits,
A may transmit to B a continuum of possible initial values of the qubit! The protocol that
achieves this is known as the teleportation protocol [BBCT93]. The trick it uses to achieve
the result is to exploit entanglement, which is intuitively a type of correlation of information
between qubits. The state (|00) +|11))/v/2 of a two-qubit system is an example of an entagled
state. If, in this state, one or both of the two qubits are measured in the computational basis,
we get a collapse to |00) or |11) with equal probability, even if the qubits are far apart. The



famous Einstein-Podelski-Rosen argument about the adequacy of quantum theory was based
on this correlation and the apparent faster-than-light communication that it involves, but this
behaviour has been experimentally verified, and entanglement is now understood as one of the
fundamental sources of the power of quantum computing.

The teleportation protocol uses entanglement in a system with three qubits, with A in pos-
session of qubits 1 and 2 throughout the protocol, and B in possession of qubit 3 throughout the
protocol. Qubit 1 initially has any value |¢)) = x|0) +y|1), and qubits 2 and 3 are initially in the
entangled state (|00)+|11))/4/2. That is, the initial states are of the form |¢)®(]00) +[11))/v/2.
At the end of the protocol, B’s qubit has the value |1), even though the only operations that
have been performed are local measurement and transmission of classical messages. The overall
structure of the protocol is as follows: first, A performs a joint measurement on her qubits 1
and 2, and gets one of 4 possible results. She sends her result to B classically (encoded in
two classical bits). Finally, B performs a measurement on his bit, depending on the message
received from A. The effect of this is to transform the state of B’s qubit to the original value
of A’s qubit.

The measurement A performs on bits 1 and 2 is a measurement in the Bell basis, which
consists of the vectors: (]10)+4|01))/v/2, (|10)—|01))/v/2, (]11)+]00))/+/2 and (|11)—]00))/v/2.
When the outcome corresponding to the first measurement is obtained, the state is transformed
to (|10)+]01))/v2®(2]0)+y|1)). The second outcome transforms the state to (|10)—|01))/v/2®
(z|0) — y|1)). We see that in these resulting states, B’s qubit is unentangled with A’s qubits,
but that its value is an unitary function of the original value of qubit 1. Similar forms are
obtained for the other two measurement results, and the unitary function transforming the
original value of qubit 1 to the value of B’s qubit corresponds one to one to the measurement
outcome obtained. Thus, once B receives Alice’s two bit message describing which measurement
outcome was obtained, B can reconstruct the original value of qubit 1 by applying the inverse
of the corresponding operation to recover |¢)). Taking the proposition p to mean “the state of
A’s qubit 1 is |¢hg)” for some fixed value [thg), we see that the formula k% pA—kLp A CkTinit(p)
is realized.

The fact that B’s qubit changes immediately after A’s measurement makes it appear that
there has been faster than light communication from A to B. This nonlocal behaviour is another
unusual characterstic of quantum theory. Certainly, there is not any communication from A to
B in the classical sense. Before receiving the two bit messsage, B does not classically know which
of the four possible states the system is in, since B does not observe the measurement outcome.
However, in our richer sense of knowledge, B knows the value of its qubit. This indicates
that we need to understand this notion of of knowledge as a kind of potential knowledge, or
upper bound on attainable knowledge, in order for it to be consistent with Einstein’s theory of
relativity.

While we have discussed both classical and quantum knowledge in the setting of the telepor-
tation protocol, we note that it raises some difficulties for the ensemble intrepetation of states
and the “selection” interpretation of measurement discussed above. One way to make sense of
this interpretation for teleportation is that A selects a single copy from the ensemble |¢)) for
measurement in the first step, and that A and B share a single entangled pair (rather than an
ensemble). But then B has a single copy of [¢) in the final state of the protocol, which weakens
our ensemble justification for the use of K% in this state. Other interpretations similarly lead
to difficulties. We discuss this issue at greater length in the full version of the paper.



6 Quantum Knowledge and Potential Knowledge

Can we relate the two types of knowledge? It is plain from the definitions that for every formula
¢, the formula K{¢ = K¢ is valid, hence also the contrapositive ~K/¢ = —Kf{¢. That is, if
an agent does not quantumly know ¢, then it does not know ¢ based on its classical information
alone.

In fact, in some cases we can make a stronger statement than this: if ¢ is a formula that
talks only about the current state in the system, and an agent does not quantumly know ¢,
then no amount of measurement can bring about a situation where the agent knows that ¢ was
the state of affairs that held initially. That is, quantum knowledge provides an upper bound
on the information that the agent is able to obtain by measurement alone. In order to obtain
more information than this, the agent needs to communicate with other agents.

These claims can be made precise as follows. Define a protocol P to be a measurement
protocol for agent ¢ if for all sequences o of observations for agent i, we have that P(o) is a
measurement operation on the set of qubits loc™!() indicated by the final observation in o to
be local to the agent running the protocol. Define a protocol P to be trivial, if for all if for all
sequences o of observations, we have P(o) equal to the null measurement {Ig}, where Ig is the
identity operator over the Hilbert space associated to the set of qubits S = loc™!(i) local to
agent 7, (as indicated by the final observation in ¢.) Say that a joint protocol (Py,...,P,) is a
joint measurement protocol for agent i if P; is a measurement protocol and P; is trivial for all
agents j # i. Note that in a joint measurement protocol for agent i, the set of qubits local to
any agent is invariant.

Then we can show the following;:

Proposition 4 If ¢ is a formula that depends only on the current state and P is a joint
measurement protocol for agent i in environment &£, then P realizes the following formulas in

E:
1. =K!¢ = 0-Klinit(¢), and

2. 2Kl¢ = D-Kfinit(¢).

That is, if the agent would not know ¢ even with complete information about the statistics
of all possible single measurements, then there is no measurement protocol it could run that
could ever result in its knowing that the initial state satisfied ¢, in either the classical or the
quantum sense of knowledge. This shows in a strong sense that quantum knowledge captures
everything that the agent can learn by measurement alone.

Note that the result for the second formula is immediate from that for the first, by the fact
that = K¢ = ~K{¢ is valid. The proof of the result for the first formula involves showing that
general measurements are sufficiently expressive to capture deterministic sequences of general
measurements, in the sense that if [My, ..., Mg] and [Ny, ..., N;] are two general measurements
then the composition [M1Ny,..., M;Nj, ... MiN;], with outcomes equal to pairs (i, j), is a gen-
eral measurement.This makes the result seem to depend on the use of the general measurement
formalism. However, the same result can be shown for a more restricted model in which we
allow unitary operations and projective measurements in a single measurement step only.



7 Conclusion

The question of how one should interpret the formalism of quantum mechanics has been the
subject of considerable debate. We have taken a very pragmatic approach, treating the quantum
state as a physical state predictive of measurement outcomes. We note that a recent strand of
work in the interpretation of quantum mechanics [CFS02] has begun to explore the question
of whether quantum states themselves can be understood as the states of knowledge of some
agent. We have also been cavalier in mixing classical and quantum states. The question of the
boundary between classical and quantum is a deep one that has engendered acrimonious debates.
If, ultimately, the physical world is a purely quantum system, one might wish to eliminate our
use of classical state. There have been attempts in the literature on quantum foundations to
explain the apparent stability of the classical world from the perspective of quantum mechanics,
and there is an example known as “Wigner’s friend” that deals with epistemic concerns in such
attempts [Wig62]. We will further discuss this literature in the full paper.

We have been primarily concerned with laying down and justifying some definitions in this
paper, but having done so, a vast number of interesting questions open up. We list a few here.
Can one develop a theory of automated verification of knowledge assertions in quantum proto-
cols? What do notions like common knowledge and distributed knowledge from the literature
on knowledge in distributed systems mean in a quantum setting? How should the combina-
tion of the logic of knowledge and probability be defined in quantum systems? Can quantum
knowledge be justified as a limiting Bayesian notion of classical knowledge? Elsewhere, we have
already begun to develop a logic for reasoning about quantum probabilities [MP03], but much
remains to be done to answer such questions.
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