Logics for Databases
and Information Systems

Edited by
Jan Chomicki, Gunter Saake
Monmouth University / University of Magdeburg

Kluwer Academic Publishers
Boston/Dordrecht/London

].O LOGICAL APPROACHES TO
INCOMPLETE INFORMATION: A SURVEY

Ron van der Meyden

Abstract: The observation that it is frequently impossible to obtain complete
information in the context of database applications has motivated a substantial
literature seeking to extend the relational model. The paper surveys the litera-
ture on the modelling and processing of incomplete information (also known as
indefinite information) using tools derived from classical logic and modal logic.
The focus of the paper is on models in which query processing is decidable.
Theories dealing with the quantification of indefiniteness, such as probabilistic
or fuzzy models of uncertainty, are not discussed.

10.1 INTRODUCTION

It was noted early in the development of the database field that the data that
need to be stored in a database frequently amount to an incomplete represen-
tation of the state of the application domain. For example, unknown values
for some attributes of a data object were identified as being a common issue.
This particular problem can arguably be handled by ad hoc means in most
data models. However, it would be more elegantly addressed by a data model
with a sufficiently rich semantics to allow the database system to support the
maintenance of missing values by providing explicit constructs for their repre-
sentation and manipulation. Indeed, missing values are just one of a number
of issues motivating the exploration of more expressive data models [Cod79].

309

310 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

The relational data model [Cod70] has helped to provide a firm mathematical
foundation for databases, based on the set theoretic construct of relations, and
a corresponding set, of operations called the relational algebra. It was natural to
attempt to take this model as a basis for extensions with richer semantics. Early
attempts to deal with incomplete information took the approach of extending
the notions of relation and relational algebra to accommodate such missing
values. These early proposals were soon seen to have difficulties, however, and
it took some time before a fully adequate semantic model of missing values was
developed.

This model was based on a slightly different view of the nature of a database,
which takes it as representing a state of information about the world, rather
than a direct model of the world. It is natural to express this state of informa-
tion as a logical theory. In retrospect, it is not surprising that a solution to the
problem of modelling data incompleteness should be based on a logical view of
the nature of a database. The relational model of data was, via its basis in set
theory, from its naisance seen to be closely related to first order logic [Cod72].

The modelling of missing values using tools from classical logic is now rela-
tively well understood, and a substantial literature has explored the resulting
models and their generalizations. In this paper, we survey this literature. The
logical solution to the problem of missing values readily suggests a variety of
more expressive data models, and the field can be viewed as blending naturally
with the allied areas of logic programming, deductive databases and knowledge
representation. To keep the paper to a manageable scope, we confine ourselves
to works directly motivated by the desire to extend database technology to al-
low for the representation of incomplete information. Even within this scope it
is difficult to give an exhaustive treatment, but we have endeavoured to provide
a representative sample of citations from which the remainder of the literature
can be accessed.

For the purpose of this paper we interpret “database technology” very
broadly, to include some of the highly expressive types of data that have been
studied in the literature on incomplete information. We take the distinguishing
test between the database field and its generalizations to be the complexity of
query processing — in a “database,” query processing should be decidable. This
is clearly an overly generous interpretation from the point of view of practi-
cal database systems, but it is a natural boundary from a theoretical point of
view, particularly as the querying of incomplete information turns out to be
inherently complex.

Our characterization excludes much of the areas of logic programming and
knowledge representation which, through the use of function symbols or unre-
stricted syntax, do not guarantee the decidability of even simple queries. We
also exclude from the scope of this paper types of data incompleteness that

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 311

cannot be represented by “classical” logical means. Thus, we do not consider
models based on probability theory, rough sets, fuzzy logic, possibilities and
other approaches that seek to quantify or rank the degree of uncertainty. The
application of these areas to information systems is well treated in other sur-
veys, e.g., [MS96]. We do briefly touch upon the use of modal and many-valued
logics.

We assume that the reader is familiar with first order logic [Men64]. Sec-
tion 10.2 discusses the motivation for the literature, describing a number of the
sources of incompleteness of information in applications. Section 10.3 reviews
the relational model of data and describes how it can be generalized to a se-
mantic framework for incomplete information. The next two sections describe
distinct ways in which the relational model can be generalized: Section 10.4
discusses approaches that seek to extend the relational algebra and Section 10.5
deals with logical databases, a more general approach based around the use of
declarative query languages and representations of data. Section 10.6 discusses
the complexity of query processing in both types of incomplete database. Neg-
ative information, which requires special treatment in incomplete databases, is
the topic of Section 10.7. This is followed by two sections discussing the gener-
alization of two areas of relational database theory to the context of incomplete
databases: Section 10.8 deals with integrity constraints and Section 10.9 dis-
cusses updates. Section 10.10 considers a number of other topics arising in
incomplete databases: inapplicable attributes, constraints, object orientation,
schema design, approximation, and approaches based on modal and nonstan-
dard logics. We conclude in Section 10.11 by describing the way incomplete
information is currently handled in commercial relational database systems.

10.2 SOURCES OF INDEFINITENESS

The most common form of data incompleteness is missing information. Parties
responsible for providing information frequently omit to give values for some
attributes of data objects. The reasons are diverse, but may include careless-
ness, lack of knowledge or withholding of information due to privacy concerns.
This leads to situations in which, e.g., a record relating to a Student “J. Ngu”
needs to be stored in the database, but a value of the “Age” attribute for this
record is unavailable.

A straightforward approach to such data incompleteness is to place the
record in the database, but to place in the “Age” field a null value, a place-
holder for the unknown value. This type of incompleteness was the earliest type
identified [ANST75] and has been the object of the most extensive study in the
literature. We treat this topic in Section 10.4. A closely related motivation for
placing null values in a database arises in the Universal Relation Model, which

312 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

has been proposed as a means for the support of natural language interfaces to
a database, and in the related Weak Instance Approach. This topic is briefly
discussed in Section 10.10.1.

An indirect way in which incompleteness arises in a database is through
view updates [Imi89]. Consider a database consisting of a relation Employee
with attributes including Name and Salary. Not all users of the database will
have access to the complete relation. For example, a junior staff member of
the Human Resources Unit may be authorized to interact with the database
only through a view of the relation that omits the Salary attribute of employee
records. Suppose that updates are allowed on this view, and the user inserts a
tuple for a new employee “Saliba”. This update needs to be mapped back to a
change to the underlying relation in such a way as to generate the inserted tu-
ple. That is, a tuple should be inserted in the Employee relation with attribute
Name equal to “Saliba”. The problem is that this tuple also needs a value for
the Salary attribute. We find ourselves here in a situation of incomplete infor-
mation, since all possible values for this attribute would produce the desired
view. A variety of approaches to this sort of problem have been proposed in the
literature on view updates, but one approach that suggests itself in this case is
to place a null value in this attribute. More complicated types of incomplete
database are required once one moves beyond views defined using projections
alone.

Another form of incompleteness concerns the relationship between the da-
tabase and the external world it models. In some applications, the database
could be viewed as being the world being modelled. For example, a university
might decree that no person is a student for administrative purposes unless
recorded in its database. Typically however, a database is intended to serve
as a representation of an external reality. Even if all the facts recorded in the
database are true, there may be additional facts that are not recorded. In some
ways this is similar to missing information as described above, but the missing
data here is at the level of facts rather than values. Various approaches to the
representation of the extent of this type of incompleteness have been considered
in the literature, an area we discuss in Section 10.7.

In recent years, the types of applications to which database systems are
being applied have been extended beyond, e.g., commercial account-keeping
applications to incorporate domains such as geographic information and plan-
ning and design data. Such domains have been a specific motivation of research
aiming to develop spatial, object-oriented and temporal databases. Many of
the sources of data incompleteness mentioned above apply in these extensions.
However, the new applications require the support of much richer semantics,
and accordingly generate new forms of indefinite information.

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 313

For example, in a scheduling system being used to maintain the plans for the
construction of a building, it may have been determined that event F, laying
the foundations, is to precede event W1, raising the Eastern Wall, and event
W2, raising the Western wall, but no order may have been specified on W1
and W2. If we wish to answer a query about the sequence of events as it
will actually occur, we are faced with a number of possibilities: the data is
consistent with the two orders F,W1,W2 and F,W2,W1, and perhaps W1 and
W2 may occur concurrently. In this scenario, even though all the remaining
data may be complete, indefiniteness arises from incomplete information about
the relative order of points in a linearly ordered domain. Indefinite database
models expressing information of this sort are discussed in section 10.10.2.

A related source of indefiniteness that occurs in design applications concerns
the representation of design choices [INV91a; INV91b]. Designs may be phrased
in terms of abstract objects, for which a number of standard implementations
are known to exist. For example, in a computer hardware design, a “multiplier”
may be implemented in a variety of standard ways by combining “adders”. In
a top-down design methodology, one often delays decisions about the choice of
implementation until the interactions of various choices are understood. The
representation and querying of the intermediate stages of such a design process
would be facilitated by a database system capable of representing the alter-
native implementations resulting from the available choices. An interesting
generalization arises in this context when the lower level objects themselves are
abstract, and may be implemented in a variety of ways. For example, “adders”
may be implemented in different ways by combining NAND gates. This leads
to a type of indefinite database in which the indefiniteness may be recursively
unfolded [Lib94; Mey93].

10.3 A SEMANTIC FRAMEWORK FOR INCOMPLETE DATABASES

The considerations of the previous section suggest that database semantics
should be sufficiently rich to provide the means to model incomplete information
of the types mentioned. Of the proposals to this end that are based on logic,
most can be understood as instances of a common semantic framework, which
we present in this section. We begin by briefly recalling the relational model
of data (see [Kan90] for a more comprehensive introduction), and describe how
this model may be understood from a logical perspective. This leads us to
a discussion of how this perspective may be generalized to yield a semantic
framework for incomplete databases. We also discuss several distinct notions
of query answer arising in the more general context.

314 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

| Part | Supplier | | Supplier | City |

P33 | BigCo BigCo New York
P34 | LittleCo LittleCo | Middletown
P35 | LittleCo Acme Tuczon

Figure 10.1 Tables representing a relational database

10.3.1 The Relational Model

The relational model separates the structure of a database from its contents.
Database structure is modelled using the idea of a database scheme. Suppose
that At is a finite set of attributes. A database scheme S over At consists
of a finite set {Ry,...,Rn} of relation schemes, where each relation scheme
R; is a subset of At. Informally, a database scheme provides a set of relation
names, and describes the attributes applicable to each. Additionally, a database
scheme may also contain a set of integrity constraints, but we defer discussion
of this topic to Section 10.8.

To model database contents, the relational model uses the notion of database
instance. Fix some set A, called the domain, to represent the possible data
values. First, we define a tuple over a relation scheme R to be a mapping from
R to values in A. (For simplicity we assume here that all attributes range
over the same domain, but this is not essential.) An instance of a relation
scheme R is then defined to be a finite set R of tuples over R. We will refer
to a relation instance simply as a relation. Finally, an instance of a database
scheme S = {R4,..., Ry} is defined to be a set D = {Ry,..., R,} where each
R; is an instance of the corresponding relation scheme R;. It is common to
depict a relational database instance as a set of tables, with the columns headed
by attribute names. For example, Figure 10.1 illustrates an instance over the
schema {{Part, Supplier}, {Supplier, City}}.

The relational model is associated with two types of query languages, a
procedural language called the relational algebra and a declarative language,
which is often called the relational calculus, but which amounts essentially to
first order logic. The expressions of the relational algebra are built from a
basic set of relational operators, defined as follows. Suppose that R; and R,
are relations over relation schemes R and R, respectively. Then

J. The join Ry X Ry is defined to be the relation over scheme R; U Ro
containing the tuple ¢ just when there exist tuples ¢; € R; and t2 € R»

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 315

such that for each attribute A € Ry we have t(4) = t1(A) and for each
attribute A € Ry we have t(A) = t3(A).

P. If X is a subset of R, then the projection wx (R;) is defined to be relation
over scheme X containing the tuple ¢ just when there exists a tuple t; €
R, such that for each attribute A € X we have t(A) = t1(A).

U. The union R; U R, is defined when R; = Rs, and is the relation over
scheme R, containing just those tuples that are either in R; or in R».

D. The difference Ry \ R» is defined when Ry = R, and is the relation over
scheme R, containing just those tuples that are in R; but not in R,.

S. A selection condition E over the attributes of Ry is a Boolean expression
formed using the operators A,V and — over atoms of the form A = a
or A = B, where a is a value in A and A and B are attributes of R;.
A selection condition is positive if it does not make use of the negation
symbol —. If F is a selection condition over Ry the selection og(R;) is
the relation over scheme R; consisting of the tuples ¢ € R; such that
the result of substituting ¢(A) for each occurrence of an attribute A in E
yields a boolean formula over equations of values in A that evaluates to
true under the usual semantics.

R. If A and B are attributes then the renaming pg|4(R1) is the relation over
scheme (R; \ {4}) U {B} containing for each tuple t of R; the tuple ¢’
defined by t'(B) = t(A) and t'(C) = t(C) for all other attributes C.

A relational algebra expression over a database schema S consists of an ex-
pression built up using these operators from a basis consisting of the relation
schemas in S. We will use combinations of the letters J, P, U, S, D and R from
this list to refer to fragments of the relational algebra. Thus, “SPJ-query”
refers to a relational algebra expression formed using the operations of selec-
tion, projection, and join, but not making use of union, difference or renaming.
We use ST to refer to selections with positive conditions.

A relational algebra expression @) defines a function from database instances
to relations in an obvious way. Given a database D, we simply substitute for
each occurrence of the relation scheme R; the corresponding relations R; of D,
and compute the result according to the definitions above. This completes the
definition of the relational algebra.

Next, we define the relational calculus, which amounts essentially to first
order logic. Note first that a database instance D = {Ry,...,R,} can be
interpreted in an obvious fashion as a first order structure (or model) Mp =
(U,Ry,...,R,) for a language containing an k-ary relation symbol for each

316 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

relation of D with k attributes. We write R; ambiguously to denote either the
relation or the corresponding relation symbol — the meaning will always be
clear from the context. The relations in My, are just the relations in D (with
some ordering imposed on the attributes). The one issue we need to address is
what to take as the universe U of this structure. We will take this to be the set
of values occurring in some R;. (Other choices are possible, however, and this
involves some subtleties concerning whether databases are finite, as we have
assumed, or may be infinite: see [Kan90] for a discussion of these issues.)

Let ®(x) be a formula of first order logic with free variables x. Then a
relational calculus expression is an expression @ of the form {x : ®(x)}. Such
an expression defines a function from databases instances D to k-ary relations,
where k is the number of variables in x, by

Q(D) ={a| Mp |= ®(a)}

where ‘=’ denotes the usual notion of satisfaction from first order logic. That
is, the answer of () on database D is the set of tuples of values a such that the
closed formula ®(a) is satisfied in Mp. For brevity, we will write simply ®(x)
for {x: ®(x)}, assuming that x lists all the free variables in the formula.

A fundamental result of database theory states that the relational algebra
and the safe fragment of the relational calculus (a class of queries whose answers
are independent of the choice of domain A) have equivalent expressive power
[Cod72]. That is, for each relational algebra expression @ there exists a safe
relational calculus expression @)’ such that Q(D) = Q'(D) for all databases D,
and vice versa. Moreover, various fragments of the relational algebra correspond
in expressive power to subclasses of first order logic. A conjunctive formula is a
formula of the form Jz; ... 3z, [A1A. . .AAy], where the A; are atomic formulae.
A positive existential formula is a disjunction C; V ...V C,,, where the C; are
conjunctive formulae. Conjunctive formulae correspond to the class of S’PJR-
queries (where S° refers to the set of basic selections in which conditions are of
the form A = a or A = B only), and positive existential formulae to the class
of STPJRU-queries. These equivalence results provide a way of understanding
relational databases in terms of first order logic: a database consists of a model,
and a query consists of a formula. This perspective is known as the model
theoretic view of databases.

10.3.2 Incomplete Database Semantics

If a relational database, representing complete information, semantically corre-
sponds to a first order structure, what is the semantics of incomplete informa-
tion? Many approaches in the literature can be understood as answering this
question by taking the semantic object corresponding to an incomplete data-

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 317

base to be a set M of (first order) structures. That is, an incomplete database
corresponds to a state of information. Intuitively, the information encoded by
M is that “the actual state of the world is one of the states in M, but it is not
known which.” We may call this perspective the information theoretic or the
possible worlds model.

We will take the information theoretic model as the basis for our character-
izations of incomplete databases in this paper. Most treatments of incomplete
information that are satisfactory from a logical perspective can be described
using this view. Thus, at the most general level, we can say that a theory of
incomplete databases specifies

1. a set D of admissible database instances,
2. a set Q of admissible queries,
3. a set A of admissible query answers,

4. a function Mod mapping each database instance in D to a set of first
order structures, and

5. a procedure Ans(D, Q) taking as input a database D € D and a query
Q@ € Q and returning an answer in A.

The answer Ans(D, Q) should satisfy some correctness condition with respect
to the semantics provided by Mod. The precise form of this condition will
depend on the nature of the answer set. The next section discusses a number
of the alternatives that have been considered.

The literature has focused on two main approaches to the definition of these
attributes of a theory of incomplete databases. The first, discussed in Sec-
tion 10.4, views database instances as formed from generalized types of tables.
The second, which views database instances as logical theories, is discussed in
Section 10.5.

It is worth commenting at this point on terminology. In the literature, one
finds both the expressions “incomplete database” and “indefinite database”
in use. It is useful to draw a distinction between these, in such a way as
to preserve consistency with the meaning of the term “definite” within the
logic programming literature. It is often possible to place a partial order <
on the class of structures of interest that captures a notion of “an increasing
number of facts hold” in the sense that for positive existential queries), if D <
D’ then Q(D) C Q(D'). For example, if one restricts attention to Herbrand
models the set inclusion ordering has this property. (A Herbrand model is a
first order structure with universe equal to the set of terms of the language
without variables, with each such term interpreted as itself. Such models can

318 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

be represented as sets of facts without variables. See Chapter 2 for a precise
definition.) Given such an order, we say that a database D

1. is complete if Mod(D) contains a single model (or a single model up to
isomorphism), and

2. is definite if Mod(D) contains a unique model minimal under the order
<, i.e., a model M such that M < M’ for all M' € Mod(D).

For example, if D is a database with Mod (D) equal to all (Herbrand) models
of the theory {A(a),Vz(B(xz) = A(x))} then D is incomplete but definite. If
D is a database with Mod(D) equal to all (Herbrand) models of the theory
{P(a) vV P(b)} then D is both incomplete and indefinite. The distinction is
useful because definiteness often implies that query processing is tractable,
whereas indefiniteness is very frequently the source of intractability.

10.3.3 Notions of Query Answer

In the relational model the result of applying a query to a database is a relation,
i.e., a set of tuples. A tuple is an answer of the query if it is contained in this
set. In generalizing the relational model, it is necessary to generalize the notion
of answer. A number of different approaches are to be found in the literature.

The most common approach requires answers to be correct however the
uncertainty represented by the database is resolved. If M is a set of models
and @ is a closed formula, we write M = @ if M |= ® for all M € M. Define
a certain answer to a query ®(x) on a database D to be a tuple a such that
Mod(D) = ®(a). That is, a tuple a is a certain answer if ®(a) holds in all
models. (“Yes/No” queries ®, in which there are no free variables, can be
viewed as being included in the scope of this definition by treating the empty
tuple as a certain answer when Mod(D) | ®.)

Alternately, one could consider the tuples that may hold. A possible answer
to a query ®(x) is a tuple a such that M |= ®(a) for some M € Mod(D). This
approach appears first in the work of Lipski [Lip79]. Since a relational database
D can be considered to be an incomplete database with Mod (D) equal to the
singleton set {Mp}, the certain answers and possible answers coincide in this
case. In the more general context of incomplete databases the two notions are
no longer equivalent, but possible answers are still dual to certain answers in
the following sense: a is a certain answer to ®(x) iff a is not a possible answer
to = ®(x).

Relational databases have a property, the definite answer property, that is
not preserved by most extensions to incomplete information. Note that if A/
is a structure such that M = Jx®(z) then there exists a value a such that
M |= ®(a). In other words, every certain answer to an existential query can

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 319

be justified by the provision of a witness supporting this response. To see that
this does not apply to an incomplete database, consider a database D such
that Mod(D) is the set of all first order order structures in which the formula
P(a)V P(b) is true. Then Mod(D) |= 3z P(z), but neither Mod(D) |= P(a) nor
Mod (D) E P(b) holds. The set of certain answers in this case is empty.

Arguably, this answer is uninformative. However, the set of possible answers
is no more informative in this case. For every constant ¢, the model in which
just P(a) and P(c) hold is in Mod(D). Thus, the set of possible answers to the
query {x : P(z)} is the set of all constants. This again obscures the special
status of a and b for this query.

Several authors have responded to these problems by proposing to return
disjunctive answers [Rei78a; GM86; FM91; Gal86]. A disjunctive answer to the
query ®(x) in a database D is a set of tuples {a1,...,a} such that Mod(D) |=
P(a;) V...V &(ay). Of course, if A is a disjunctive answer, then so is any
superset of A. For this reason, it suffices to return the disjunctive answers that
are minimal under set containment. The information being returned here is
certain, but disjunctive answers clearly have a greater expressive power than the
tuples returned as certain answers. Minimal disjunctive answers have a number
of interesting properties. They reveal some of the possible answers to a query,
since if a tuple a is contained in some minimal disjunctive answer then it must
be the case that M |= ®(a) for some M € Mod(D). (Some possible answers
may appear in no minimal disjunctive answer, e.g. b occurs in no minimal
possible answer of P(z) when Mod(D) = {{P(a)}, {P(a),P(b)}}. Possible
answers may also be excluded because the domain is infinite.) Moreover, the
set of minimal disjunctive answers to a query contains the certain answers as
a distinguishable component: these are precisely the elements of the minimal
disjunctive answers that are singletons. In this respect the possible answers are
somewhat weaker than (minimal) disjunctive answers, as they do not make it
possible to distinguish when a tuple is in fact a certain answer.

Related to disjunctive answers are approaches that have sought to develop
extensions of the relational algebra. In these approaches a database consists
of a set of “generalized” relations, and an answer is also of the form of such a
generalized relation. This idea has the attraction of preserving the efficiency
of the algebraic approach. However, many of the proposals in this area were
found to be unsatisfactory once clear semantics of the generalized relations
had been developed. Indeed, there are inherent limitations that prevent the
obvious extensions of the relational operators with respect to most sensible
logical semantics. We take up this issue in the next section.

320 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

| Part | Supplier | | Supplier | City |

P33 | BigCo BigCo New York
P34 | LittleCo LittleCo | @
P35 | LittleCo Acme Q@

Figure 10.2 Codd Tables

10.4 ALGEBRAIC MODELS OF NULLS

Many of the proposals in the literature on incomplete databases have focussed
on the extension of the relational model by the introduction of null values. In
this section we review some of the concerns arising in these proposals. More
detailed surveys of this area can be found in [AdA93; ZP96].

The earliest extension of the relational model to incomplete information was
that of Codd [Cod79] who suggested that missing values should be represented
in tables by placing a special null value symbol ‘@’ at any table location for
which the value is unknown. Figure 10.2 shows an example of a database
using this convention. Codd proposed an extension to the relational algebra for
tables containing such nulls, based on three valued logic and a “null substitution
principle.” The proposal was subsequently criticised by several authors [Gra77;
Lip79] as being semantically incoherent. As Codd himself viewed his proposal
as preliminary we will not reiterate the criticisms here, but will highlight some
of the problems that arise in formulating a sensible extension of the relational
algebra for Codd tables. (We remark, however, that the way nulls are treated
in the SQL standard closely follows Codd’s proposal; see Section 10.11.)

In terms of our general semantic scheme, the intended semantics of a data-
base D consisting of Codd tables can be described by defining Mod(D) to be the
set of structures Mpr, where D' ranges over the relational databases obtained
by replacing each occurrence of ‘Q’ in the database D by some domain value.
Different values may be substituted for different occurrences. (This is not the
only reasonable semantics for Codd tables: we discuss some alternatives in
Section 10.7.) For example, Figure 10.1 depicts a model of the database of Fig-
ure 10.2. We also write Mod(R) for the set of relations obtained by substituting
values for the occurrences of ‘@’ in the Codd table R.

To generalize the relational algebra to a class of tables 7', we need to describe
how each of the operators, when applied to tables in 7, returns a result in 7.
(In the special case that the tables are relations, the result should be a relation.)

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 321

A plausible constraint on the meaning of a relational operator on tables in 7
is that the result should be a table that represents the set of relations obtained
by pointwise application of the operator on the models of these tables. For
example, if R and S are tables in 7 then the result of the join R X S should
be equal to a table T in T such that

Mod(T) ={rXs|r € Mod(R), s € Mod(S)} (10.1)

In case the definitions of the operators satisfy this constraint (with respect to
the definition of the semantics Mod on T), we say, following Imielinski and
Lipski [IL84], that the generalized algebra is a strong representation system.

Let us consider what equation (10.1) requires if we take R and S to be the
Codd tables in Figure 10.2. First of all, note that in each model, if we take the
value of the null in the tuple (LittleCo,Q@) to be v, then the join will contain two
tuples (P34,LittleCo,v) and (P35,LittleCo,v), both of which include the value
v. If T is to be a Codd table, it will need to contain tuples (P34,LittleCo,Y") and
(P35,LittleCo,X) to generate each of these tuples, where X and Y are either
constants or ‘Q’. We now face a problem. First, X cannot be a constant ¢, for
whatever the choice of ¢ we can find an instance r € Mod(R) and s € Mod(S)
for which the tuple (P34,LittleCo,c) does not occur in r X s. For similar reasons
Y cannot be a constant. But neither can X and Y be ‘Q’. If they were, X
and Y would have their values in models of T' assigned independently. Thus,
there would be instances in Mod(T) containing the tuples (P34,LittleCo,v1)
and (P35,LittleCo,vs) with v; # w2, whereas in all models in the right hand
side of Equation (10.1), the only tuples of this form have v; and v, equal.

What this argument shows is that Codd tables are too weak to represent
the result of the join when interpreted using the semantics of Equation (10.1)
and a particular function Mod. Maier [Mai83] has shown that the problem is
more general than this: he shows that there exists no “adequate” extension of
the relational algebra with respect to several other natural semantic functions
Mod.

These considerations lead to the consideration of more expressive frame-
works. The example suggests that it is necessary to relax the requirement that
each null value in a table is assigned a value independently. If we allow marked
nulls, such that repeated occurrences are intended to refer to the same value in
each instance, it becomes possible to represent the result of the join by means

322 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

of the following table.

| Part | Supplier | City |

P33 | BigCo New York
P34 | LittleCo | @,
P35 | LittleCo | @,

Here the repetition of @ indicates that the same value is to be substituted for
each occurrence of the null in constructing a model of the table.

Unfortunately, this extension does not suffice to satisfy the constraint (10.1).
Consider the following example

| Part | Supplier | | Supplier | City |
| P32 | Q@ | | BigCo | New York |

In the model of these tables in which @; = BigCo, the join contains the tuple
(P32,BigCo,New York). But if @; # BigCo, then the join contains no such
tuple. It is not difficult to see that no table with marked nulls can represent
this situation. Intuitively, what is required is an entry expressing that

If @, = BigCo then (P32,BigCo,New York)e RIX S

Imielinski and Lipksi [IL84] proposed to handle this difficulty by adding a col-
umn Cond to each table to represent a condition under which the tuple is true.
The condition may be any boolean combination of atoms of the form true,
false, @; = c or @; = @;, where c is a constant. Using this idea, the join may
be represented by the table

| Part | Supplier | City | Cond |
| P32 | BigCo | New York | @; = BigCo |

These considerations lead to the definition of three types of increasingly ex-
pressive tables containing null values:

1. a Codd table contains nulls but does not allow repetition
2. a v-table allows repeated nulls, but no conditional tuples
3. a c-table allows both repeated nulls and conditional tuples.

Imielinski and Lipski [IL84] studied the fragments of the relational algebra for
which these types of tables admit a strong representation system. They show

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 323

Table Type Strong Rep. Weak Rep.

Codd Tables PR PSR
v-Tables PUR PSTUJR

Horn-Tables PSTUJR PSTUJR
c-tables PSUJRD PSUJRD

Table 10.1 Maximal Extensions of Relational Algebra

that neither Codd tables nor v-tables admit a strong representation system for
SPJUDR-queries, but c-tables do.

The conditions generated in the c-tables obtained as the result of a query
may be complex. Some of these conditions may nevertheless be tautological, so
that the associated tuple is a certain answer. Determining this, however, is a
problem as difficult as determining validity of propositional logic formulae, i.e.,
coNP-complete. For this reason, c-tables may be too expressive a formalism
for practical purposes. This concern motivated Imielinski and Lipski to study
Codd and v-tables with respect to a weaker correctness condition.

Inasmuch as the extended types of tables express indefinite information,
when we return such a table as the answer to a query, we are dealing with
something akin to a disjunctive answer. The weaker condition introduced in
[IL84] (and clarified in [Lip84; IL89]), relaxes this, requiring that the answer
be correct only insofar as it expresses information about the certain answers
to a relational query. Given a relational expression F', the certain answers are
the tuples in F'(M) for all M € Mod(D). Thus, the result of applying the
expression F' to an indefinite database D should therefore satisfy

(| Mod(F(D)) = ({F(M) | M € Mod(D)} (10.2)

An algebra on a class of tables 7 satisfying this condition is called a weak
representation system. (Note that the condition is imposed for all relational
expressions, not just for single applications of a relational operator.)

The maximal subsets of the relational operators for which weak and strong
representation systems can be defined on the three types of tables can be
constructed is described in Table 10.1. This table includes results of Grahne
[Gra91], who extended the definition of c-tables to include a global condition
restricting the substitutions applied to a c-table in constructing its models,
and also defined Horn tables to be the class of such extended tables in which
the global condition and the conditional tuples have the form of a Horn logic
program.

324 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

Besides the models already discussed, a number of other table types have
been studied. These include

1. OR-object tables, which are like v-tables except that each null has an
associated finite domain [IMV95; INV91a; INV91b].

2. Views representing a set of worlds generated by substitutions from some
table followed by the application of a query to the result [AKG91].

3. Tables with maybe tuples, which may or may not appear in models of the
database [Bis81; Bis83; Bis84].

In some cases relational operators have been proposed for these types of tables,
but not all proposals form either a weak or strong representation system. Ta-
bles containing nulls expressing that an attribute is inapplicable, or possibly
inapplicable, have also been studied. The main issue being addressed by these is
a mismatch of the schema to world, rather than incompleteness of information
per se, but we discuss this area briefly in Section 10.10.1.

10.5 LOGICAL DATABASES

We introduced the model theoretic view of databases in Section 10.3. An
alternative view considers a database as describing a set of facts, which may be
represented as a logical theory. This approach is known as the proof theoretic
view of databases. An important early precedent for this perspective was the
work of Green [Gre69], who first considered the issue of answer extraction in
theorem proving. The proof theoretic view began to draw more attention in the
late 1970’s [Cha76; Kow78; GMT78; NG78; Rei78b], given impetus by the then
emerging area of logic programming [Kow74], which was beginning to establish
that logical deduction could be done efficiently in certain special cases.

The connection between relational databases and logical theories was made
explicit in the work of Reiter [Rei78b; Rei84], who pointed out that it is possible
to construe relational query processing as being equivalent to theorem proving
in a precise sense. Starting with a relational database D, Reiter constructs a
first order theory T'(D) as follows. First, we introduce a constant symbol a for
each value in the database. We will ambiguously use a to denote both a value
and the corresponding constant symbol. The theory T'(D) then contains the
following formulae:

1. Domain Closure: The formula
Ve(r=a1V...Vz=an)

where the domain of D is the set {ai,...,an}

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 325

2. Unique Names: The formula a; # a; for each pair of distinct constants
i, Aj.

3. Equality: The usual axioms for equality, stating that equality is an
equivalence relation that satisfies the principle of substitution [Men64].

4. Data: For each relation R, and each tuple a € R, the atomic formula

R(a).
5. Completion Axioms: For each relation R = {ay,...,a,,}, the formula
VX[R(X) => x=a; V...V X = ay]
(If the relation is empty, its completion axiom is Vx—R(x).)

It may then be shown that T'(D) is canonical, in the sense that its only model
(up to isomorphism) is Mp. It follows that if Q@ = {x: ®(x)} is a relational
calculus query, we have Q(D) = {a| Mod(T (D)) |= ®(a)}. By the completeness
theorem for first order logic [Men64], we may reformulate this as Q(D) =
{a | T(D) - ®(a)}. That is, the problem of determining whether a is an
answer of () on D reduces to the problem of trying to prove ®(a) from the
theory T'(D).

Viewed narrowly, Reiter’s logical reconstruction may seem of limited value,
since it replaces the succinct tabular representation of data with a complex logi-
cal theory. Moreover, its substitute for the efficient query processing algorithms
embodied in the relational algebra is the process of deduction in a first order
theory. In general, not even termination guarantees can be provided for the
latter. There are two benefits of the reconstruction, however. The first of these
is that it makes explicit certain assumptions embodied in the relational model.
One of the important observations of Reiter was that relational database theory
makes a default assumption: the data facts are not just taken to be true, but
to give a full description of the facts holding in the world. This assumption is
made explicit by the Completion Axioms. The effect of the assumption is to
make query answering non-monotonic: adding facts to a database may decrease
the set of answers to a given query. Non-monotonicity in databases is an issue
that subsequently received considerable attention. Section 10.7 discusses this
area at greater length.

The second benefit of the reconstruction is that it illuminates a general
framework within which generalizations of relational databases to incorporate
incomplete information can be cast. Reiter proposed from this basis a specific
approach to the issue of null values in relational databases, modelling these
using exztended relational theories [Rei86]. These consist of Domain Closure,
Equality, Data and Completion axioms as before, but weaken the Unique Names

326 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

axiom to be a subset of the full set of inequalities, reflecting that the identity
of some of the constants is not known. The semantics Mod(T') of an extended
relational theory 7' is simply the set of models of T. Extended Relational
Theories are intermediate in expressive power between v-tables and v-tables
with a global condition.

More generally, the model of incomplete databases suggested by the proof
theoretic view is that a database consists of a logical theory 7" of some restricted
form. The semantics is given by taking Modow a(T') to be all the structures
satisfying T. The OWA here refers to the Open World Assumption, which
assumes that negative information is explicitly represented in the theory T'.
(There are alternate approaches which build the default behaviour expressed
by such axioms as the Completion Axioms directly into the semantics — we
discuss these in Section 10.7.) The semantics of queries can be taken to be one
of the notions of query answering discussed in Section 10.3.3. We call such an
instantiation of the general scheme for indefinite databases a logical database.

In case the theory T is first order, there exist complete proof theories, i.e.
procedures for generating the set of formulae ® such that Mod(T) = ®. In
this case, query answering can be implemented as logical deduction using this
proof theory. A disadvantage of this approach is that one cannot in general
expect guarantees of termination. We now describe some of the types of logical
databases that have been proposed, for which decidability of query processing
can be guaranteed.

One case of note is theories containing a Domain Closure formula — in this
case the remainder of the theory could be any set of sentences, and the set of
queries can similarly be any set of formulae, since query processing can always
be done by considering all models with domain of size at most the number of
constants. In general, this is an inefficient procedure. Unfortunately, as we
will see in Section 10.6, there are some inherent limitations to efficient query
processing for many of the types of incomplete information that have been
studied.

If the theory does not contain a Domain Closure formula, it becomes nec-
essary to restrict the set of allowable queries. To see this, note that if we
take T' to be the empty theory, determining if a first order sentence ® satisfies
Modow a(T') = ® amounts to determining if ® is valid, an undecidable prob-
lem. A restriction that helps to achieve decidability in many cases is to take ®
to be a positive existential formula.

Many of the table types discussed in the previous section have equivalent
logical databases. A careful treatment of domain closure and completion is re-
quired to construct an equivalent theory, but the positive information encoded
in a table can be straightforwardly described. Codd Tables could be character-
ized as expressing ezistential information: a tuple such as Part(P382,@) can be

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 327

viewed as expressing the formula
3z Part(P32,x)

To represent v-tables, it is necessary to consider data axioms which are exis-
tential formulae of the form

where the A; are atoms. A further generalization is required for c-tables, which
require taking the A; to be formulae of the form C' = A, where C is a condition
and A an atomic formula. For databases with OR-objects, we need to take some
of the A; to be disjunctions of the form £ = a; V...V £ = a,. The technique
of Skolemization [Gal86] can be used to eliminate the existential quantifiers in
these formulae. For the particular formulae under consideration, this amounts
to substituting a unique constant for each occurrence of an existentially quan-
tified variable.

All of the above, after Skolemization, are instances of Disjunctive Logic Pro-
grams [LMR92] which consist of rules of the form

Vx[(A1 A...ANAp) = (B1 V...V By

where the A; and B; are atoms. As generally understood, these may contain
function symbols — the function free case, called Disjunctive Datalog has been
considered by Eiter et al. [EGM97]. (The reason for the terminology is that
logic programs consisting of function-free rules as above with m = 1 are called
Datalog Programs [U1188].)

The class of Disjunctive Datalog Programs is not the largest class of theo-
ries for which positive existential queries are known to be decidable. Imielinski
[Imi91b] considers databases consisting of an extensional part, built from con-
junction, disjunction and existential quantification, and an intensional part,
consisting of Skolem Rules of the form

VxIy[(A1 A ... AAp) = (Bi V...V By)]

where the A; and B; are atoms. In general positive existential queries in such
databases are undecidable, but a number of decidable cases are identifiable.
There is a close connection between such rules and the theory of tuple gener-
ating dependencies [Kan90].

While most types of logical databases studied are first order theories, this
is not essential: there are also natural classes of second order theories with
decidable queries. Datalog Programs may define second order properties, such
as transitive closure, of an underlying set of relations. The recursively indefinite

328 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

databases of van der Meyden [Mey93] consist of a set of definitions in Datalog
and both basic and defined facts. Data of this form could arise from updates
to views defined by Datalog Programs. Positive existential queries containing
only extensional predicates are decidable in this context.

In addition to classes of databases falling within the scope of these cases,
there has been interest in indefinite databases making use of constraints, such as
the order constraints ‘<’ on linearly ordered domains. We treat these separately
in Section 10.10.2.

10.6 COMPLEXITY OF QUERIES

We have drawn the line between an indefinite database and a logical theory
in terms of the decidability of query processing. For practical purposes, this
is not necessarily the most useful demarcation: one wants query processing
to be efficient. There is a variety of ways in which the complexity of query
processing can be measured. In this section we introduce some of the measures
of complexity used in the literature. We assume that the reader is familiar with
the basics of computational complexity theory [Pap94].

In dealing with query complexity, it is common to restrict attention to the
problem of computing answers to “Yes-No” queries, i.e., queries which are
closed formulae ®, rather than formulae ®(x) with free variables. Thus, we
are interested in being able to determine if Mod(D) = ® for a database D
and query @, rather than in computing a set of answers x for which ®(x) fol-
lows from the data. The justification for this restriction is that there exists
a PTIME reduction of the problem of computing the set of certain answers
{a | Mod(D) = ®(a)} for the query ®(x) to the “Yes-No” query answering
problem. This reduction simply enumerates all the tuples a (of which there are
d*, where d is the number of constants in the database and k is the arity of the
answer tuples), and tests Mod(D) = ®(a) for each. For disjunctive answers
there is a similar reduction, but one has to face the problem that the set of
answers may be exponentially large in the size of the database.

The complexity of Yes-No queries in incomplete databases can be described
using a number of measures introduced for the complexity of relational database
queries by Vardi [Var82]. The approach is to measure query complexity by
proving both upper and lower bounds. A query problem is described as a set
S, and we look for a complexity class C' such that S € C. This provides an
upper bound for the complexity of the query problem. A lower bound can be
established by proving completeness of S for the class C, i.e., showing that S
is in some sense as hard as all the problems in C.

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 329

The most obvious way to represent a query problem as a set is as follows:
given a class of databases D and a class of queries Q, we define the answer set

ASp o =1{(D,®)| D € D,® € Q, Mod(D) = &}

In determining the complexity of this set, we ask “given as input a database D
and a query @ in the appropriate classes, how complex is it to determine if the
query is entailed by the data?” Vardi [Var82] calls this measure of complexity
the combined complexity of the query problem.

While combined complexity provides an overall view of the complexity of
query processing in a class of databases, it is not always the most realistic
measure. It turns out that even conjunctive queries in relational databases
have NP-hard combined complexity, and hence are unlikely to be practical
according to this measure! This is contrary to the fact that such databases and
queries are in broad use. The explanation for this is that combined complexity
uses a very poor model of the query problems that are encountered in practice.

In database applications, the size of the database can grow to be very large,
as data accumulates over time. Queries, on the other hand, are composed
on-line, and are therefore likely to be small compared with the size of the
database. Some of the hardest instances of the query problem involve queries
roughly equal in size to the data, and these instances contribute to combined
complexity. Thus, combined complexity may be high only because of problem
instances that are extremely unlikely to occur in practice.

A way to take the imbalance in query size and data size into account is data
complezity, which measures the complexity of answering a fixed query as the
data varies. Formally, the complexity of a particular query ® with respect to
a class of databases D is the complexity of the answer set ASp(®) = {D |
D € D,Mod(D) |= ®}. We may also speak of the data complexity of a class
of queries Q with respect to a class of databases D. This is the maximal data
complexity with respect to D of queries in Q.

Data complexity may be understood in a number of different ways. Most
obviously, data complexity is the appropriate measure of complexity in situ-
ations in which it is necessary to ask the same query repeatedly as the data
varies. Here, since the query does not change, the only contribution to com-
plexity comes from the size of the data. In case ad hoc queries are of interest,
these can be assumed to come from the finite set of all queries up to some fixed
size. The data complexity of the infinite set of all queries will provide an upper
bound on the complexity of queries from this finite set.

Although data complexity is generally a more satisfactory model of query
complexity than combined complexity, in the context of incomplete information
it does exhibit some peculiarities. Low data complexity does not always imply
that a class of queries is practical. One reason for this is that the constants

330 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

of proportionality involved in data complexity results may be extremely large.
More seriously, even if a query has a low data complexity, determining that
this is the case and constructing the procedure that answers the query with
this complexity may be a highly complex task.

As an example of this, take the class of databases to be the singleton set
D = {D}, where D is the empty theory, interpreted so that Mod(D) is the set
of all first order structures. Let Q be the set of all sentences of first order logic.
Since the set of databases is a singleton, the data complexity of every query is
in constant time: for each query ® the constant time algorithm for answering
® as a function of the input database is either “return(yes)” or “return(no)”,
depending on whether Mod(D) = ®. However, Mod(D) |= @ if and only if & is
a valid formula. Since validity of first order formulae is an undecidable problem,
determining which of these algorithms correctly implements the query is also
undecidable. (A more realistic example of this difficulty occurs in [Mey97].)
A number of more refined models of complexity that may go some way to
addressing this problem have recently been proposed. These take into account
the number of variables in the query [Var95], or are based on parameterized
complezity [PY97]. However, the usefulness of these models in the context of
incomplete databases has not yet been studied.

For completeness, we also consider the contribution to complexity due to the
size of the query. The answer set of a database D with respect to a class Q
of queries is the set ASg(D) = {® | ® € @, Mod(D) |= ®} of queries satisfied
by the database. The expression complexity of a database is the complexity of
the set ASg(D). This is a measure of the complexity of query answering as a
function of the size of the query.

The complexity of querying the types of incomplete databases discussed
in Section 10.4 and Section 10.5 is in most cases very similar. Table 10.2
shows results for the complexity of positive existential first order queries in
a variety of types of database. FEach entry provides a complexity class for
which the corresponding query problem is complete with respect to log-space
transformations. In the case of data complexity, this is to be interpreted as
follows:

1. For every positive existential query ®, the data complexity of ® is in the
class indicated.

2. There exists a query ® with data complexity complete for the class indi-
cated. (The query can be assumed to be conjunctive in most cases.)

That is, it is not necessarily the case that every query has data complex-
ity complete for the class indicated: some queries may have lower complex-
ity. A similar interpretation applies to expression complexity. The first row

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 331

Complexity Type

Data | Expression | Combined |
| Relational Databases | LOGSPACE | NP | NP |
| X-Databases | co-NP | NP | JNES |

Table 10.2 Complexity of positive existential queries

shows results (from [CM76; Var82]) for relational databases. We have already
mentioned in motivating data complexity that combined complexity in such
databases is NP-hard. Notice however, that data complexity in such databases
is in LOGSPACE, so (happily) according to this measure querying relational
databases is tractable. This result is an indication that data complexity is
indeed a more reasonable measure of query complexity than combined com-
plexity.

Once one moves from definite databases to databases containing even the
most limited forms of indefinite information, the tractability of data complexity
is lost (provided P#co-NP). The second row of Table 10.2 shows the complex-
ity of positive existential queries in many types of incomplete databases: the
expression “X-Databases” here includes Codd tables in which nulls range over
a bounded domain, v-tables, c-tables, OR-~object databases, logical databases
containing disjunctions and Disjunctive Datalog. We refer the reader to
[AKG91; Imi91b; IMV95; Var86b| for precise statements of these results in
the various cases. Notice that indefinite information of these forms results in
a “jump” in data complexity from LOGSPACE to co-NP, as well as a jump
in combined complexity from NP to ITI5. While these increases are not known
to be strict, it is evident that querying indefinite information is in some sense
more complex than querying definite information. Whereas we have efficient
algorithms for querying definite information, no such algorithms are known in
the case of most sorts of indefinite information, even for the restricted class
of positive existential queries. Obviously, as the expressiveness of the query
language increases, the complexity can only increase. Vardi [Var86b] considers
the complexity of first order and second order queries in extended relational
theories.

The upper bound results in this table are not hard to explain. We assume
for simplicity that Mod(D) contains only models over a fixed finite domain.
(This assumption can often be eliminated when dealing with positive existential
queries by adapting the procedure below to inspect the set of minimal models

332 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

of D.) The meaning of Mod(D) |= ® can then be directly encoded by a Co-NP
computation of the form

1. Guess a model M in Mod(D)
2. Compute M | @, return true if so, else return false

where the final result is the logical conjunction of the results of all branches
of the computation. The first step can be done by a linear number of choices
for all the types of databases considered. The second step is NP-complete by
results of Chandra and Merlin [CM76], so we obtain directly that combined
complexity is in I15. The other upper bounds are derived similarly.

The lower bounds require a little more effort to prove. It is, however,
worth noting that the lower bounds can be attained on extremely simple
queries. To illustrate this, we show how to transform graph non-3-colorability
(a well known Co-NP complete problem [GJ79]) to the data complexity of
the query ® = Jzyz[E(z,y) A C(x,z) A C(y,z)] on OR-object databases. To
do so, given a graph G = (E, V'), we introduce an OR-object ¢,, with domain
{Red, Blue, Green}, for each vertex v € V. In the database D, the relation F
is simply the edge relation of the graph, and the relation C' contains the tuple
(v, ¢y) for each vertex v € V. Intuitively, the models in Mod (D) then corre-
spond to colorings of the graph, and the query expresses “there exist vertices
x and y with the same color z.” This is true in all models of the data (i.e. all
colorings) if and only if the graph is non-3-colorable.

The fact that even such simple queries have high data complexity does not
mean that this holds for all queries. A few special cases are known where queries
have PTIME data complexity in indefinite databases. One such example is pos-
itive first order queries in extended relational theories [Var86b]. (It is crucial to
this result that the domain in interpretations may be at least as large as the set
of constants in the theory.) Imielinski et al. [IMV95] are able to give a complete
characterization of the complexity of conjunctive queries in OR-databases un-
der various assumptions concerning the occurrence of OR-objects in the data,
giving syntactic conditions that separate the queries with PTIME data com-
plexity from those with Co-NP complete data complexity. In a class of logical
databases containing nulls ranging over linearly ordered domains, subject to in-
equalities, all positive existential queries involving only monadic relations have
PTIME data complexity [Mey97]. Provided the partial order derived from the
inequalities has bounded width, all positive existential queries (involving also
n-ary predicates) have PTIME data complexity [MvdM92]. These special cases
are quite restrictive however.

The complexity of a variety of other problems relating to incomplete
databases is of interest, such as

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 333

[Membership.] Given a structure M and a database D, is M € Mod(D)?
[Containment.] Given two databases Dy, Ds, is Mod(D1) C Mod(D2)?
[Consistency.] Given D, is Mod(D) empty?

[Uniqueness.] Given D, is Mod(D) a singleton?

A careful study of the complexity of these problems for various table types can
be found in [AKGI1].

10.7 NEGATIVE INFORMATION

In Section 10.5, we assumed the most obvious approach to the semantics of a
logical database consisting of a theory T', taking Modow 4 (T') to be the set of all
models of T'. This is known as the open world assumption. While the open world
assumption is natural, Reiter’s logical reconstruction of relational databases
shows the ubiquity of default assumptions concerning the completeness of the
information in a database. Because the “negative” facts are generally far more
numerous, it is often convenient to represent only “positive” information, and
rely on the assumption that a fact is false if not stated explicitly. The meaning
of such an assumption is clear in the context of the relational model (and more
generally in the context of definite information, e.g., definite logic programs),
but making it precise in the context of indefinite information is more difficult.
Many different approaches have been proposed, some of which we discuss in
this section. There is a large overlap between this area and the treatment of
negation in logic programming (although the primary motivation there, to find
semantic justification for rules of “negation by failure”, is somewhat different.)
Relevant survey papers are [She88; Bid91; AB94; PP90].

Before we turn to discussion of this literature, it is worth noting (follow-
ing, e.g., Maier [Mai83]) that several semantics, differing in their treatment
of negative facts, are reasonable for the various types of tables introduced in
Section 10.4. The semantics we assumed there took the set of models to be
those obtained by substituting values for each of the nulls. We will denote this
semantics by Modsyp(D). In the context of tables, the Open World Assump-
tion amounts to taking Modow a(D) to contain all the models M such that
each tuple of D corresponds to a fact in M, but allowing M to support any set
of additional facts.

One further semantics is plausible for tables. Consider a Codd table that
contains two tuples of the form R(a, @) and R(Q,b), where @ is a null. If we
apply the substitution @ = b to the first tuple, then we obtain the tuple R(a,b),
which makes the second tuple “redundant”, in the sense that there exists a
substitution (@ = a) under which that tuple is supported by R(a,b). On the

334 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

other hand, the substitutional semantics of Codd tables will construct models
containing pairs of tuples R(a,b) and R(c,b) with ¢ # b. To address this, it is
reasonable to consider a semantics that avoids such redundancies by restricting
attention to the minimal models in Modow 4(D). We write Mod s for this
semantics. It is apparent that Mod v (D) C Modsyp(D) C Modow A(D).

It can be shown that if ® is a closed positive existential formula then
MOdOWA(D) ': d iff MOdSUB(D) |: ® iff MOdM]N(D) ': ®. Intuitively,
this states that the default assumption embodied in the semantics preserves
the positive information in the database. A similar relation to the open world
semantics holds for most of the semantics for negative information that have
been proposed.

Turning to approaches to negative information in logical databases, there
have been numerous proposals. Some of these have been syntactic in nature,
working by transforming the theory to another. Reiter’s original formulation
of the closure condition, called the Closed World Assumption [Rei78b] was of
this nature. Given a theory T', he proposes capturing the default assumptions
by the theory

CWA(T)=TU{-A| Ais aground atom such that T't/ A}

in which all facts not entailed by 7" have been added. This approach suffices to
give a logical reconstruction of relational databases, but it fails for indefinite
databases. A simple example of this is the theory T' = {A V B}, for which
CWA(T) ={AV B, A, -B}. The problem is that this theory is inconsistent.
Similar difficulties arise in the context of extended relational theories.

The Completion Axioms discussed in Section 10.5 avoid this problem in the
special case of extended relational theories. These axioms are closely related
to the axioms proposed by Clark [Cla78] for the semantics of negation by fail-
ure in logic programs. The approach based on completion corresponds to the
substitutional semantics Mod sy on v-tables in those cases where an extended
relational theory is equivalent to a v-table.

Other closure conditions in indefinite logical databases can be viewed as
related to the minimal model semantics discussed above. In general, these ap-
proaches restrict attention to Herbrand models, so embody the Unique Names
and Domain Closure axioms. We may extend the definition of Mod ;rn above
to logical databases T' by taking Mod prrn (T') to be the set of minimal Herbrand
Models of T, i.e., the set of Herbrand Models M € Modow 4(T') such that if
M'" € Modow a(T) and M' C M then M = M'. An attempt to formulate this
semantics syntactically in the case of disjunctive logic programs is the gener-
alized closed world assumption of Minker [Min82], which replaces a disjunctive
logic program P by

GCWA(P) = PU{-A| Ais a ground atom such that Modyn(P) = -A}

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 335

It turns out that GCW A(P) does not express Mod yrrn (P). Instead, to express
this set of models requires the Extended Generalized Closed World Assumption
of Yahya and Henschen [YH85], defined as

EGCWA(P)=PU{-C| C= (A1 A...ANA,) is a finite conjunction of
ground atoms A; such that Modyrn(P) = —C}.

It can then be shown that Modyrn(P) is equal to the set of Herbrand models
in MOdOWA(EGCWA(P)).

There are also semantics of disjunctive logic programs that are somewhat
like the substitutional semantics Modsyp, in that they define sets of models
between Modarn(P) and Modow a(P). In the context of disjunctive infor-
mation, the motivation for this is to interpret disjunction non-exclusively. For
example, one might wish the Herbrand models of the database {A V B} to
be {A}, {B} and {4, B}. Proposals to this end are the Disjunctive Database
Rule of Ross and Topor [RT88] and the equivalent Weak Generalized Closed
World Assumption [RLM89]. It has been argued that integrity constraints
are not properly treated in this semantics, leading to (equivalent) refinements
[Cha93; Sak89].

In addition to these proposals, there is a host of semantics that seek to
generalize logic programming by accommodating versions of negation as failure
[L1o87]. The literature in this area is too extensive to cover here in any detail.
Prominent in the context of non-disjunctive logic programs are stable model
semantics [GL88], the well-founded model semantics [GRS91], and a fixpoint
semantics for stratified programs [ABW89]. (See Chapter 2 for a definition of
these semantics.) There have been extensions of each proposed for disjunctive
logic programs [Prz89; Prz91; Prz95]. There are also approaches that seek
to develop frameworks combining classical negation and negation as failure
[GLI1; Prz91]. The relation of such semantics to the large variety of methods
for non-monotonic reasoning developed in the Artificial Intelligence literature
has also been a topic of considerable interest [Prz93].

The semantics discussed above share the property that they seek to formalize
the default that all facts are false unless stated otherwise. A number of au-
thors have proposed mechanisms whereby the application of this default may
be limited to selected facts or relations [MP85; MP84; GZ88]. Motro [Mot89]
argues that in the context of partially closed databases, an answer should be
accompanied by a description of its integrity, indicating whether the answer
is known to be complete, and suggests an approach to determining complete-
ness based on query rewriting. An alternate approach to determining answer
completeness is presented in [Lev96].

Complexity results for query processing and consistency checking of propo-
sitional disjunctive logic programs under the semantics discussed above, and

336 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

others, are surveyed in [EG95]. In general, determining whether a ground
atom A holds in the set of all models of a program defined by these semantics
is II5-complete. An exception of note is that this problem is in PTIME for the
Disjunctive Database Rule and its extensions [Cha93]. (However, in general,
positive existential queries still have CoNP-hard data complexity in this con-
text.) Complexity and expressiveness of disjunctive Datalog programs under
minimal, perfect and stable model semantics is treated in [EGM97].

10.8 INTEGRITY CONSTRAINTS

An important aspect of the relational model is its treatment of integrity con-
straints. For a given application, not all relations for a schema are sensible.
For example, each social security number should identify a unique person, so a
relation R with attributes Person and SSN containing tuples (Jones,111-222-
333) and (Smith,111-222-333) is unacceptable. This constraint is an example
of a functional dependency, the most common type of constraint. The study
of integrity constraints in the relational model has led to the development of a
rich body of research dealing with a variety of constraints and their inference
problem: see [Kan90; GGGM97] for recent surveys.

Integrity constraints can be presented as formulae of first order logic. (A
richer framework for the statement of integrity constraints, making use of modal
logic, has been proposed by Reiter — we discuss this in Section 10.10.6.) For
example, the functional dependency above corresponds to the formula

Vyry2x[R(y1,) A R(y2,2) = y1 = y2]

Many of the types of dependencies that have been studied have a similar syn-
tactic structure: being rules of the form

Vx3y[B = H]

where B and H are conjunctions of atoms. A relational database D is said to
satisfy a dependency ¥ expressed in first order logic if its model Mp satisfies
¥. Satisfaction of the dependencies provides a way of checking that the data
are not incoherent.

A number of ways have been proposed to generalize this definition to incom-
plete databases. In the consistency approach [Kow78] an incomplete database
D satisfies an integrity constraint ¥ if there exists a model M € Mod(D) such
that M |= U. The entailment approach to dependency satisfaction [Rei84] re-
quires that M |= ¥ for all M € Mod(D). Note that the consistency definition
of satisfaction is not additive: a database can be consistent with constraints
¥, and ¥, without being consistent with the conjunction ¥1 A ¥,. The appro-
priate way to apply this definition is therefore to the complete set of integrity
constraints.

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 337

The distinction between the two definitions blurs somewhat once one con-
siders query processing in the presence of integrity constraints. In relational
databases, integrity constraints satisfied by a database may be ignored during
query processing (although they could be used to optimize queries). However,
ignoring integrity constraints that are satisfied by an indefinite database under
the consistency definition may lead to undesirable results. Consider the v-table

| Part | Supplier | City |

P33 | Acme New York
P34 | Acme @,

with the functional dependency Supplier — City, interpreted under the substi-
tutional semantics Modsyp. Let @ be the query “Which parts are supplied
from New York?” Note that the integrity constraint is satisfied in exactly one
model of the database, that in which @; =“New York”. All other models fail to
satisfy the constraint. Thus, the most reasonable certain answer to the query
is {P33,P34}, not {P33} as we would obtain as certain answer on the basis of
MOdSUB (D)

It appears from this that the appropriate approach to answering queries in
an incomplete database D in the context of integrity constraints ¥ is to work
with respect to the set of models {M € Mod(D) | M |= ¥}. This is tantamount
to viewing the dependency as part of the data itself. Some types of incomplete
database can accommodate many types of integrity constraint directly. For
example, in (disjunctive) logic programs it is common to allow the database to
contain constraints of the form

Vx[B(x) = false]

where B is a conjunction of atoms [LT85; LMR92]. In general, however, a prob-
lem with the incorporation of integrity constraints in the database is that they
prevent the use of special query processing procedures adapted to the restricted
syntax of the database itself, because they are formulated using different syn-
tax.

This leads to the question of whether the database can be transformed into a
state that enables the integrity constraints to be ignored during query process-
ing. A number of authors have studied techniques whereby this may be done
for databases with null values [Gra91; Imi9la; Ler86; Vas80]. A problem arises
that is similar to that discussed above in the context of generalizing the rela-
tional algebra to tables: in general, the set of models {M € Mod(D) | M = ¥}
cannot always be expressed by a table. If it can, we say that the class of tables
forms a strong dependency system for the class of integrity constraints under
consideration.

338 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

A weaker notion can be considered [IL83] that is more often attainable. Say
that a set of databases D forms a weak dependency system with respect to a
class of dependencies I' and queries Q if for all D € D and ¥ € T" there exists
D' € D such that for all Q € Q we have

({Q(M) | M € Mod(D) and M |= ¥} = (|{Q(M) | M € Mod(D')}

That is, the certain answers to queries in Q cannot distinguish between the
the models of D satisfying the integrity constraints and the set of all models
of D'. See [Gra91; Imi91la] for results concerning weak and strong dependency
systems.

10.9 UPDATES OF INCOMPLETE DATABASES

There are a number of different perspectives from which the issue of updates
in incomplete databases can be addressed, and there are close connections to
problems arising already for updates of relational databases.

In the model theoretic view of relational databases, performing an update
operation can be considered as the application of a function transforming mod-
els of the schema. That is, writing Mod(S) for the class of all (finite) models
conforming to a schema S, an update operation semantically corresponds to
a function U : Mod(S) — Mod(S). For example, the meaning of an update
expression such as “insert(R(t))” is the function that adds the tuple ¢ to the
relation R, keeping the remaining relations constant. More general types of
update function could be considered on this view, such as “raise the salary of
all managers by 10%”, though it is common to view these as defined over a
basis of the primitive operations such as insert and delete. The effect of an
update operation U on a database D can then be taken to be the substitution
of the model Mp by the model U(Mp).

It is proposed in [AG85] to apply this perspective on updates to the more gen-
eral context of incomplete databases by applying the update operation point-
wise to the models of the database. That is, the semantics of an update op-
eration is still a function U as above, but it now transforms the set of models
Mod(D) to the set U(Mod (D)) = {U(M) | M € Mod(D)}. We see that the
question of expressiveness arises again: does there exist a database D’ such that
Mod(D'") = U(Mod(D))? In general, there does not, and it is necessary to con-
sider a weaker notion similar to that discussed above for algebraic operations
and integrity constraints. Results on this issue are treated in [Gra91].

An alternate, more declarative, understanding of update in relational
databases is to take the meaning of an operation such as “insert(P(t))” to
be “make the minimal change to the database required to ensure that P(t)
is true”. This perspective leads to a somewhat different approach to update

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 339

databases. It suggests generalizing the primitive update operations to take as
argument not just a tuple, but any formula, so that we may state update op-
erations such as, e.g., “insert(Vz3Iy[SSN(z,y)])” to enforce the constraint that
all persons should have a social security number.

How to make sense of this idea is a problem that arises also in the context of
the view update problem in relational databases. A view of a relational database
D is defined by a query @ (or more generally, a set of queries). Instead of
interacting with the database D directly, the user interacts with the answer
Q(D). The reasons for restricting the user in this way are varied: the user may
have interests limited to the data present in the view, may be prohibited from
accessing other parts of the database, or the view may represent the part of a
distributed database that is stored locally on the user’s machine.

A general principle that may be applied to a view is that the user should
be able to operate on it as if it were the database itself. This leads to the
desideratum that a user should be able to update a view just as she would a
database. How to implement this principle is problematic, however. Since in
each state of the database the view is supposed to correspond to the result of
applying the query @, to effect an update u on a view Q(D) we need to find a
database instance D' such that «(Q(D)) = Q(D'). In general, how to do so is
unclear, since there may be many D' satisfying this equation. One would prefer
to make some minimal change to D in producing D', but even this restriction
is not sufficiently clear to determine a unique candidate, and many approaches
have been proposed. We refer to [FC85] for a survey of the literature on view
updates.

One possible response to the existence of many candidates for the result of
updating a relational database is to represent the result of a view update as
an incomplete database, an approach that is most clearly sensible in the case of
insertions into views defined as projections (cf. the discussion in Section 10.2).
In general, however, this approach raises as many questions as it answers, since
a sequence of two updates applied to a database now requires that for the second
we describe how an update applies to an incomplete database. Should updates
in logical databases operate syntactically, being transformations of the theory,
or should they be defined semantically, as transformations of sets of models?
What is the meaning of a “minimal change” to a set of models of a theory, or of
a theory itself? If we define the semantics of an update to be a transformation
on sets of models, should such a transformation operate pointwise or on the
input set as a whole?

Many different, but apparently reasonable, answers have been given to these
questions [AT89; DvdR92; Esc90; FKUV86; FUV83; Heg87; KW84; KW85;
Osb81; Win90]. Given the difficulty of justifying the use of one approach over
another in this area, it has become common to advert to general principles that

340 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

any theory of update should satisfy, and to verify that the particular model
proposed in fact satisfies those principles. Influential in this area have been
the “AGM” principles proposed by the philosophers Alchouron, Gardenfors
and Makinson in the context of epistemology [AGMS85], which have also been
the subject of considerable attention in Artificial Intelligence. The resulting
literature is too extensive to treat in detail: we refer the reader to the recent
survey [GR95]. We note just a few works of specific relevance in the context
of incomplete databases, arising in the work of researchers motivated primarily
by database applications.

One point noted by database researchers is that the AGM principles do not
adequately capture updates resulting from a change in the state of the world,
and that an alternate set of principles should be applied in this case [KM92].
Revesz [Rev93] argues that another set of principles should be applied in con-
texts where it is necessary to arbitrate between different sources of information.

There is a close connection (noted, e.g., in [GM95]) between updates and
hypothetical queries, which are queries such as “if Charles were to become king,
would the monarchy be abolished?” A hypothetical query of the form “if ¢
were to hold, would ¢ be the case?” may be implemented by what is known
in the literature as the Ramsey test: update the database by ¢, and then
pose the query . Generalizing earlier work on hypothetical queries in definite
databases, a framework in which complex updates of incomplete databases may
be defined over a basis of more primitive update operations has been proposed
in [BK94; BK97].

The literature has also been characterized by a focus on the complexity of
approaches to updates of incomplete databases. The complexity of hypothetical
queries is studied in [EG92; EG96]. In general, approaches based on minimal
change are intractable, irrespective of whether the semantics is based on theory
or model based operations. The one exception to this rule is revisions of Horn
theories, but this restriction excludes indefinite databases. The positive side
of these negative results, however, is that the high complexity makes update a
highly expressive framework for the formulation of queries [GMRI7].

The complexity of performing the update itself is subject to an interesting
tradeoff. One could make the cost of an update of a database D by a formula ¢
be proportional to the size of ¢ simply by representing the revised database as
“D updated by ¢”. This has the disadvantage of raising the cost of subsequent
queries. On the other hand, to transform the result of the update to a database
in a more standard form (a table, say), may be a complex operation, and much
of the work may be wasted if no subsequent query relevant to ¢ is posed. A
detailed study of these tradeoffs for a particular semantics of update has been
carried out by Winslett [Win90).

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 341

10.10 OTHER ISSUES

10.10.1 Inapplicable Attributes

In some cases in which the user is unable to supply a value for the attribute of
some tuple in a relational database, the reason this is so is that the attribute
is inapplicable for the object in question. For example, while a relation may
have an attribute for the middle name of a person, not everyone has a middle
name. To place a null in the middle name attribute, indicating that the name
is unknown, would be misleading. Rather, the problem is a mismatch between
the schema and the world being modelled.

It may nevertheless be appropriate to view the situation as so exceptional
that it does not warrant complicating the schema, and place a special marker
in the inapplicable attribute. Such a marker may be called a nonezistent null.
Nulls of this form are studied in [Vas79; Vas80; LL86]. The no information null
[AM84; Zan84; Kel86] is a hybrid expressing that either the attribute is inap-
plicable or its value is unknown. Such nulls are crucial to a satisfactory char-
acterization of Weak Instances, a construct that enables normalized databases
to be queried through the schema used in design. We refer to [AdA93] for a
discussion of this topic.

The complexity of integrity constraint satisfiability for a model of incomplete
databases related to the Universal Relation Assumption has been studied by
Vardi [Var86a).

10.10.2 Constraints

Certain relations, such as temporal precedence or linear order on the integers,
are sufficiently common in applications that it is desirable that data models
provide built-in support for them. This is particularly the case in applications
such as scheduling and design. In the context of definite data, this has mo-
tivated areas of research such as temporal data models [TCG'93], constraint
logic programming [JL87] and constraint databases [KKR95]. There have been a
number of works dealing with constraints in the context of indefinite databases.

Temporal database models capable of representing indefinite temporal data
have been proposed in [DS93; GNP92]. The complexity of query processing in
(open world) databases consisting of a v-table together with a global constraint
comprised of a conjunction of statements of the form z < y or z < y is studied
in [Mey97].

Constraint databases [KKR95] represent a type of definite data such as that
expressed by the formula

Vz[z >3 = P(a,x)]

342 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

which implies that an infinite number of facts hold in the relation P. The
combination of indefinite databases and such infinite information has been in-
vestigated in [SRR94; Kou94a; Kou97]. Algebraic query languages for such
databases are investigated in [Kou94b].

10.10.3 Object Oriented Databases

A database is mon-first mormal form if the values of some attributes of a
tuple may themselves be relations. Null values and extensions of the relational
algebra in the context of such databases are discussed in [RKS89; RKS91;
L191; Lev92]. An interesting issue arises in the interpretation of embedded
empty relations in this context: it has been argued that this is akin to a null
value. Related issues in Object-Oriented databases are discussed in [Zic90],
which also identifies a new form of incompleteness that arises in this setting:
incompleteness of the specification of attributes and methods applying to a
class.

Buneman, Jung and Ohori [BJO91] proposed to study incomplete database
objects using tools from domain theory. This has lead to the consideration of a
number of powerdomain orderings and a variety of approximations appropriate
to incomplete complex objects [JLP92; JP95; LL90; Lib91; Oho90b; Oho90a]. A
careful comparison of the orderings considered by these authors is presented by
Libkin in his thesis [Lib94], where he provides a justification of each ordering by
showing it can be obtained from sequences of “information-increasing” update
operations. Libkin also identifies category-theoretically “natural” programming
constructs based on the corresponding approximations, but finds them too
complex for practical use. Libkin and Wong [LW96] have defined a nested data
model that generalizes OR-objects. The complex objects in this model can be
normalized so that they contain a single level of the OR construct [Lib95]. This
model has been been realized in an extension to the functional programming
language SML called OR-SML [LG94].

Related to object oriented models are Description logics (also known as
terminological logics), which are languages for describing classes of objects in
terms of constraints on their attributes. For example, the expression

and(COURSE, all(students, CS-magjor), at — least(7, students))

denotes the class of courses with at least 7 students enrolled, all of whom are
are Computer Science majors. Borgida [Bor95] argues that description logics
can be interpreted as representing a type of incomplete information, and that
this fact underlies the usefulness, for design applications such as configuration
management, of systems which compute subsumption relationships between
such expressions.

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 343

10.10.4 Design of indefinite databases

Whereas schema design and normalization have been the subject of considerable
attention for relational databases, very little work has been done in this area for
incomplete databases. Codd [Cod79] states the restriction that nulls should not
appear in the primary key of a relation. Maier [Mai80; Mai83] defines ezistence
constraints, a type of integrity constraint that provides a way to express such
restrictions. A number of papers [AM86; Gol81] consider inference rules for
such constraints, and show that they are related to the notion of objects in the
Universal Instance Assumption [Sci80].

Imielinski et al. [IMV95] propose an approach to schema design for OR-
object databases called Complexity Tailored Design. The approach assumes
that a fixed finite set @@ of queries can be determined at design time, for which
efficiency guarantees must be provided. Based on a comprehensive analysis
of the data complexity of these queries as a function of the setting of design
parameters relating to the distribution of OR~objects in the database, a “max-
imal” setting of these parameters can be determined that allow the queries in
Q@ to be answered with PTIME data complexity.

10.10.5 Dealing with Query Complexity

The complexity results for query processing discussed in Section 10.6 indicate
that obtaining complete sets of answers is likely to be intractable for most types
of indefinite database. There have been a number of ways proposed to deal with
this inherent intractability: approzimations to the answer set, and procedures
to reduce the degree of incompleteness in the database.

A procedure for approximate query processing in extended relational theories
T has been proposed by Reiter [Rei86], and generalized by Vardi [Var86b].
The idea of the procedure is to first convert formula to a normal form with all
negations pushed to atomic formulae, using a well-known transformation. This
leaves a query containing negated atoms and negated equations. The idea of the
procedure is to replace these by an approximation: for example, a unary atom
—P(z) is replaced by “for all constants a such that P(a) isin T, the atom ‘z # a’
isin T.” In effect, this checks that the atom —P(x) is a logical consequence
of T. The treatment of equations and n-ary negated atoms is similar: the
latter involves the identification of a computable condition on tuples a, b that
is equivalent to a # b being a logical consequence of 7. Reiter describes
this condition by reference to an equivalence relation on the constants in the
database; Vardi shows that it can be expressed as a formula. This procedure
always returns a subset of the set of all certain answers. It can be shown that
it returns the complete set of answers in a number of circumstances: if the
database is complete, or if the query is positive.

344 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

One of the motivations for the study of non-monotonic logics [Gab94] in
the Artificial Intelligence literature has been to reduce the complexity of deal-
ing with incomplete information. Paradoxically, however, in most proposals
the cost of eliminating incompleteness is greater than the benefit obtained
in reduced query complexity. Limited use of defaults may still be efficiently
implementable, however. Royer [Roy91] proposes that indefiniteness in logical
databases be reduced by the application of a preference order on ground atoms.
For example, if the atom A is preferred to B, a disjunction A V B would be
replaced by the A. Date [Dat86] argues that query processing in relational
databases with nulls should be disallowed, but that attributes in a relational
database accepting nulls should be accompanied with a default value to be
substituted in case no value is supplied by the user for a particular tuple.

10.10.6 Modal and Non-standard Logics

It was noted by Lipski [Lip79] that the distinction between certain and possible
answers can be characterized using modal logic. If ¢ is a formula, define the
meaning of the formula K¢ at a model M of a database D by

D,ME Kypif D,M' |= ¢ for all M’ € Mod(D).

Intuitively, the operator K expresses the modality “it is known that’, or “it
is necessarily the case that”. For a database D, we define D |= ¢ to mean
that D, M |= ¢ for all M € Mod(D). This definition is an example of a more
general approach to the semantics of modal logic using what are known as
Kripke structures [Che80]. The set of certain answers to a query ®(x) can then
be characterized as the set {a | D = K®(a)}, and the set of possible answers
can be characterized as the the set {a | D = ~K-®(a)}. Intuitively, "K -y
expresses that ¢ is possible or consistent with what is known.

Levesque [Lev84] observes that the semantics of K just presented captures
a notion of knowledge that corresponds to the contents of the database D
capturing “all that is known”. He shows that the operator K can be used to
express queries about the degree of completeness of the database. For example,
the query

- K (Jz[Teacher(xz) A =K Teacher(z)])

holds in D under the semantics above if the database does not know if it has a
complete information concerning the set of teachers.

Similar observations lead Reiter [Rei88] to propose that that integrity con-
straints in incomplete databases should be expressed in modal logic. He argues
that neither the consistency nor entailment definitions satisfactorily capture the
required constraints. The constraint that every employee listed in the database

LOGICAL APPROACHES TO INCOMPLETE INFORMATION: A SURVEY 345

should have a social security number would be expressed as
Vz[KEmployee(z) = JyKSS#(z,y)]

on this proposal.

One can take these considerations further and include modal assertions
themselves in the database. This leads to the topic of auto-epistemic logic
[Moo85; MT91]. Databases containing assertions about their own knowledge
can support patterns of reasoning such as “If I had a brother I would know about
it. T don’t know if I have a brother, so I must not have one.” In this argu-
ment, incompleteness of knowledge is used to make knowledge more complete.
The topic of auto-epistemic reasoning has been shown to be closely related to
the semantics of negation in logic programs, and there have been frameworks
proposed incorporating auto-epistemic operators in disjunctive logic programs
[Gel94].

Other works applying modal logic to incomplete databases are [Kwa91] and
[Lip81; Ost87]. The latter consider axioms and restrictions on Kripke structures
derived from an “increasing information” order on indefinite databases. This
order yields a class of structures that are closely related to the Kripke semantics
for intuitionistic logic. Dong and Lashmanan [DL94] formulate conditional
answers (related to c-tables) within a framework of logical databases of the
form of logic programs with embedded implications, which have an intuitionistic
interpretation.

There have also been approaches to incomplete databases based on other
types of nonstandard logics, including 3 valued logic [Cod79; JEM92; YFM92;
Yue91], 4 valued logic [Ges90; Ges91], and paraconsistent logic [Sub90].

10.11 INCOMPLETE INFORMATION IN CURRENT TECHNOLOGY

We conclude by briefly discussing the approach taken to indefinite information
in commercial relational database systems. In general, commercial systems seek
to conform to the SQL standard, which has undergone a number of revisions
and continues to be further developed. Throughout the discussion, we refer to
the SQL’92 standard, described in [DD93].

SQL provides for null values in a way that amounts essentially to Codd
tables. In SQL, a relation scheme may be defined by means of an expression
such as

CREATE SUPPLIER
(SNO = CHAR(5) NOT NULL
SNAME = CHAR(20) DEFAULT ‘*name unknown’)

The effect of a NOT NULL declaration on a column is that that null values are
never admitted into this column. Columns in the primary key of a relation

346 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

are always interpreted as being declared NOT NULL. The effect of a DEFAULT
declaration is to replace any unspecified value in a tuple added to the relation
S with the default value specified for the column. The default value may be
a specific value of the appropriate type, NULL or USER. The latter sets the
value of an unspecified column to be the name of the user responsible for the
update introducing the tuple.

INGRES [Sto86; Dat87] allows for a slightly different use of default values, as
a replacement for nulls, along the lines of Date’s proposal [Dat86]. An INGRES
schema may contain a NOT NULL WITH DEFAULT declaration on a column. The
effect of such a declaration is to replace any null value in a tuple added to the
relation S with the default value appropriate for the type of the corresponding
column. For numeric types this is zero; for fixed length strings it is the string
of blanks of the appropriate length; for variable length strings it is the empty
string.

SQL queries are evaluated using three valued logic, following Codd [Cod79].
Comparisons involving a null value always return the truth value "unknown”.
However, some SQL operators, including "EXISTS” return only two values.
(Date [Dat89] illustrates some counter-intuitive consequences resulting from the
SQL interpretation of the EXISTS operator.) The inconsistency is compounded
by the treatment of relational operators such as union. For example, the union
of two relations, each containing the tuple (Acme, @), contains a single copy
of the tuple. In effect, this amounts to the assumption that the values being
represented by the two nulls in these tuples is the same. This violates the
principle that a comparison of nulls should evaluate to ”unknown”.

SQL also provides for a quite expressive set of types of integrity constraints,
but the interaction of these constraints with null values is weak, from a logical
point of view. No attempt is made to integrate integrity constraints with query
processing along the lines discussed in Section 10.8. The primary interaction
is in the way integrity constraints limit the occurrence of null values. For
example, columns, or sets of columns, of a relation may be specified to be
UNIQUE, which constrains the relation to contain at most one tuple with any
given value(s) those columns. Columns specified to be unique implicitly acquire
the NOT NULL constraint, so may not contain null values.

The inconsistencies in the SQL standard mean that it is not possible to
ascribe any intuitive logical semantics to the treatment of nulls in SQL. This is
not surprising: we have already noted in Section 10.4 that it is a fundamental
limitation of Codd tables that the set of relational operators for which they
form a (weak or strong) representation system is severely restricted.

Unfortunately, the inherent computational complexity of query processing
in semantically more satisfactory proposals has thus far prevented these from
having much impact on database practice. This may change as the technology

REFERENCES 347

is increasingly applied to applications, such as planning and design, which are
more demanding of support for handling of incomplete information, and which
may be prepared to pay the cost of high query complexity.

References

[ABY4]

[ABW89]

[AdA93]

[AGS5]

[AGMS5]

[AKG91]

[AMS4]

[AMSG6]

[ANST75]

[ATS9]

[Bid91]

[Bis81]

K. R. Apt and R. N. Bol. Logic programming and negation: A
survey. Journal of Logic Programming, 19/20:9-71, 1994.

K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declar-
ative knowledge. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89-148. Morgan Kauf-
man, 1989.

P. Atzeni and V. de Antonellis. Relational Database Theory. Ben-
jamin/Cummings, Redwood City, CA, 1993.

S. Abiteboul and G. Grahne. Update semantics for incomplete
databases. In Proc. Int. Conf. on Very Large Data Bases,, pages
1-12, Stockholm, Sweden, August 1985.

D. Alchouron, P. Gardenfors, and D. Makinson. On the logic of the-
ory change: partial meet contraction and revision functions. Journal
of Symbolic Logic, 50:510-530, 1985.

S. Abiteboul, P. Kanellakis, and G. Grahne. On the representa-
tion and querying of sets of possible worlds. Theoretical Computer
Science, 78:159-187, 1991.

P. Atzeni and N. M. Morfuni. Functional dependencies in relations
with null values. Information Processing Letters, 18(4):233-238,
14 May 1984.

P. Atzeni and N. M. Morfuni. Functional dependencies and con-
straints on null values in database relations. Information and Con-
trol, 70(1):1-31, July 1986.

ANSI/X3/SPARC. Study group on database management systems.
SIGMOD FDT Bulletin, 7(2), 1975.

P. Atzeni and R. Torlone. Approaches to updates over weak in-
stances. In Proc. First Symposium on Mathematical Fundamentals
of Database Systems, pages 12-23, Visegrad, Hungary, June 1989.
N. Bidoit. Negation in rule-based database languages: a survey.
Theoretical Computer Science, 78(1):3-83, 21 January 1991.

J. Biskup. A formal approach to null values in database relations.
In H. Gallaire, J. Minker, and J. Nicolas, editors, Advances in Data
Base Theory, volume 1, pages 299-341. Plenum Press, New York,
1981.

348 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[Bis83]

[Bis84]

[BJO91]

[BK94]
[BK97]
[Bor95]

[ChaT6]
[Cha93]
[Che80]

[Cla78]

[CM76]

[Cod70]

[Cod72]

[Cod79]

[Dat86]

[Dat87]

J. Biskup. A foundation of Codd’s relational maybe-operations.
ACM Transactions on Database Systems, 8(4):608-636, December
1983.

J. Biskup. Extending the relational algebra for relations with maybe
tuples and existential and universal null values. Fundamenta Infor-
matice, VII(1):129-150, 1984.

P. Buneman, A. Jung, and A. Ohori. Using powerdomains to gener-
alize relational databases. Theoretical Computer Science, 91(1):23—
55, 9 December 1991.

A. J. Bonner and M. Kifer. An overview of transaction logic. The-
oretical Computer Science, 133(2):205-265, 1994.

A. Bonner and M. Kifer. Logic Programming for Database Trans-
actions. chapter 5. 1997.

A. Borgida. Description logics in data management. IEEE Trans-
actions on Knowledge and Data Management, 7(5):671-68, 1995.
C. L. Chang. DEDUCE: A deductive query language for relational
data bases. In C. H. Chen, editor, Pattern Recognition and Artificial
Intelligence, pages 108-134. Academic Press, New York, 1976.

E. Chan. A possible world semantics for disjunctive databases.
IEEFE Transactions on Data and Knowledge Engineering, 5(2):282—
292, 1993.

B. Chellas. Modal Logic. Cambridge University Press, 1980.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, 1978.
A K. Chandra and P.K. Merlin. Optimal implementation of con-
junctive queries in relational databases. In Proceedings of the ACM
Symposium on the Theory of Computing, pages 77-90. Association
for Computing Machinery, 1976.

E. F. Codd. A relational model for large shared data banks. Com-
munications of the ACM, 13(6):377-387, 1970.

E. F. Codd. Relational completeness of data base sublanguages. In
R. Rustin, editor, Data Base Systems, pages 33—64. Prentice-Hall,
Englewood Cliffs, New Jersey, 1972.

E. F. Codd. Extending the database relational model to capture
more meaning. ACM Transactions on Database Systems, 4(4):397—
434, December 1979.

C. J. Date. Relational Database: Selected Writings, chapter 15: Null
Values in Database Management, pages 313-334. Addison-Wesley,
Reading, MA, 1986.

C. J. Date. A guide to INGRES : a user’s guide to the INGRES
product. Addison-Wesley, Reading, Mass, 1987.

[Dat89]

[DDY3)

[DL94]

[DS93]

[DvdR92]

[EG92]

[EG95]

[EG96)]

[EGMO7]

[Esc90]

[FC85)

[FKUVS6]

[FMO1]

[FUV83)

REFERENCES 349

C. J. Date. Relational Database Writings 1985 - 1989, chapter 13:
EXISTS is Not ‘Exists’! (some logical flaws in SQL), pages 339-356.
Addison-Wesley, Reading, MA, 1989.

C. J. Date and H. Darwen. A Guide to The SQL Standard, 3rd ed.
Addison-Wesley, Reading, MA, 1993.

F. Dong and L. V. S. Lakshmanan. Intuitionistic interpretation
of deductive databases with incomplete information. Theoretical
Computer Science, 133(2):267-306, 1994.

C. E. Dyreson and R. T. Snodgrass. Valid-time indeterminacy. In
Proceedings of the International Conference on Data Engineering,
pages 335-343, Vienna, Austria, April 1993.

F. Dignum and R. P. van de Riet. Addition and removal of infor-
mation for a knowledge base with incomplete information. Data &
Knowledge Engineering, 8:293-307, 1992.

T. Eiter and G. Gottlob. On the complexity of propositional knowl-
edge base revision, updates, and counterfactuals. Artificial Intelli-
gence, 57(2-3):227-270, 1992.

T. Eiter and G. Gottlob. On the computational cost of disjunctive
logic programming: Propositional case. Annals of Mathematics and
Artificial Intelligence, 15:289-323, 1995.

T. Eiter and G. Gottlob. The complexity of nested counterfactuals
and iterated knowledge base revisions. Journal of Computer and
System Sciences, 53(3):497-512, 1996.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM
Transactions on Database Systems, 22(3):364-418, 1997.

C. Esculier. Non-monotonic knowledge evolution in VLKDBs. In
Proc. of the 16th Int. Conf. on Very Large Databases, Brisbane,
Australia, 1990.

A L. Furtado and M.A. Casanova. Updating relational views. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing in
Database Systems. Springer-Verlag, 1985.

R. Fagin, G. Kuper, J. D. Ullman, and M. Y. Vardi. Updating
logical databases. In Advances in Computing Research, volume 3,
pages 1-18, 1986.

J.A. Fernandez and J. Minker. Bottom-up evaluation of hierarchi-
cal disjunctive deductive databases. In K. Furukawa, editor, Logic
Programming: Proceedings of the FEighth International Conference,
pages 660-675. The MIT Press, 1991.

R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of up-
dates in databases. In Proc. ACM Symp. on Principles of Database
Systems, pages 352—-365, 1983.

350 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[Gab94]

[Gal86]

[Gel94]

[Ges90]

[Ges91]

D. M. Gabbay, editor. Handbook of Logic in Artificial Intelligence
and Logic Programming, volume III: Nonmonotonic Reasoning and
Uncertain Reasoning. Oxford University Press, Oxford, 1994.

J. Gallier. Logic for Computer Science: Foundations for Automatic
Theorem Proving, chapter 9: SLD-Resolution and Logic Program-
ming. Computer Science Series. Harper and Row, New York, 1986.
M. Gelfond. Logic programming and reasoning with incomplete in-
formation. Annals of Mathematics and Artificial Intelligence, 12:89—
116, 1994.

G. H. Gessert. Four value logic for relational database systems.
SIGMOD Record, 19(1):29-35, 1990.

G. H. Gessert. Handling missing data by using stored truth values.
SIGMOD Record, 20(3):30-42, September 1991.

[GGGMI7] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity Constraints:

[GIT79]

[GLSS]

[GLO1]

[GMTS]

[GMS6]

[GM95]

[GMRO7]

[GNP92]

Semantics and Applications. chapter 9. 1997.

M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, New York,
1979.

M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In R.A. Kowalski and K.A. Bowen, editors, Logic
Programming: Proc. Fifth International Conference and Sympo-
sium, pages 1070-1080. The MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365-385,
1991.

H. Gallaire and J. Minker. Logic and Data Bases. Plenum Press,
New York, 1978.

J. Grant and J. Minker. Answering queries in indefinite databases
and the null value problem. In P. Kanellakis, editor, Advances in
Computing Research, volume 3, pages 247-267. JAI Press, London,
1986.

G. Grahne and A. O. Mendelzon. Updates and subjunctive queries.
Information and Computation, 116:241-252, 1995.

G. Grahne, A. O. Mendelzon, and P. Z. Revesz. Knowledgebase
transformations. Journal of Computer and System Sciences, 54:98—
112, 1997.

S. K. Gadia, S. S. Nair, and Y.-C. Poon. Incomplete information
in relational temporal databases. In Proc. Conf. on Very Large
Databases, Vancouver, Canada, August 1992.

[Gol81]

[GR95)

[Gra77]

[Gra9l]

[Gre69]

[GRS91]

[GZ8S]

[Heg87]

[TL83]

[IL84]

[IL89]

[Imi89]

[Imi91a]

[Imi91b]

REFERENCES 351

B. Goldstein. Constraints on null values in relational databases. In
Proc. of the Int. Conf. on Very Large Databases, pages 101-110,
Cannes, France, September 1981.

P. Gardenfors and H. Rott. Belief revision. In D. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, volume IV: Epistemic and
Temporal Reasoning, pages 35-132. Oxford University Press, 1995.
J. Grant. Null values in a relational data base. Information Pro-
cessing Letters, 6(5):156-157, October 1977.

G. Grahne. The Problem of Incomplete Information in Relational
Databases. Springer LNCS No. 554, 1991.

C. Green. Theorem-proving by resolution as a basis for question
answering systems. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 183-205. American Elsevier Publishing Co.,
1969.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620—
650, 1991.

G. Gottlob and R. Zicari. Closed world databases opened through
null values. In Proc. Int. Conf. on Very Large Databases, pages
50-61, Los Angeles, CA, 1988.

S. Hegner. Specification and implementation of programs for up-
dating incomplete information databases. In Proc. ACM Symp. on
Principles of Database Systems, San Diego, CA, March 1987.

T. Imielinski and W. Lipski, Jr. Incomplete information and de-
pendencies in relational databases. In ACM SIGMOD International
Conference on Management of Data, pages 178-184, 1983.

T. Imielinski and W. Lipski, Jr. Incomplete information in relational
databases. Journal of the ACM, 31(4):761-791, 1984.

T. Imielinski and W. Lipski, Jr. Epilogue to ‘Incomplete information
in arelational database’. In M. L. Brodie and J. Mylopoulos, editors,
Readings in Artificial Intelligence and Databases. Springer-Verlag,
Berlin, 1989.

T. Imielinski. Incomplete information in logical databases. IEEFE
Database Engineering Bulletin - Special Issue on Imprecision in
Databases, 12(2):29-40, June 1989.

T. Imielinski. Abstraction in query processing. Journal of the ACM,
38(1):534-558, 1991.

T. Imielinski. Incomplete deductive databases. Annals of Mathe-
matics and Artificial Intelligence, 3(2-4):259-293, 1991.

352 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[IMV95]

[INV91a]

[INV91D]

[JFM92]

[JL87]

[JLP92]

[TP95]

[Kan90]

[Kel86)

[KKR95]

[KM92]

T. Imielinski, R. van der Meyden, and K. Vadaparty. Complexity
tailored design: A new design methodology for databases with in-
complete information. Journal of Computer and System Sciences,
51(3):405-432, Dec 1995.

T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects—A
data model for design and planning applications. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 288-297, Den-
ver, CO, May 1991.

T. Imielinski, S. Naqvi, and K. Vadaparty. Querying design and
planning databases. In Proc. Int. Conf. on Deductive and Object-
Oriented Databases, Munich, Germany, December 1991.

Y. Jia, Z. Feng, and M. Miller. A multivalued approach to handle
nulls in RDB. In Future Database’92, Proceedings of the Second Far-
East Workshop on Future Database Systems, pages 71-76, Kyoto,
Japan, April 1992.

J. Jaffar and J-L. Lassez. Constraint logic programming. In Proc.
ACM Symp. Principles of Programming Languages, pages 111-119,
1987.

A. Jung, L. Libkin, and H. Puhlmann. Decomposition of domains.
In Stephen Brookes, Michael Main, Austin Melton, and Michael
Mislove, editors, Proc. of Mathematical Foundations of Program-
ming Semantics. Tth Int. Conf., Pittsburgh, PA, USA, March 25-
28, 1991: Proceedings, volume 598 of LNCS, pages 235-258, Berlin,
Germany, March 1992. Springer.

A. Jung and H. Puhlmann. Types, logic, and semantics for nested
databases. In M. Main and S. Brookes, editors, 11th Conf. on
Mathematical Foundations of Programming Semantics, volume 1 of
Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers B.V., 1995.

P. C. Kanellakis. Elements of relational database theory. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, pages
1071-1156. MIT Press, Cambridge, Mass., 1990.

A. M. Keller. Set-theoretic problems of null completion in rela-
tional databases. Information Processing Letters, 22(5):261-265,
April 1986.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query
languages. Journal of Computer and System Sciences, 51(1):26-52,
1995.

H. Katsuno and A. Mendelzon. On the difference between updating
a knowledge base and revising it. In P. Gardenfors, editor, Belief

[Kou94a]

[Kou94b)

[Kou97]

[Kow74]

[KowT78]

[KW84]

[KW85]

[Kwadl]

[Ler86]

[Lev84]

[Lev92)

[Lev96)

REFERENCES 353

Revision, pages 183-203. Cambridge University Press, Cambridge,
1992.

M. Koubarakis. Database models for infinite and indefinite temporal
information. Information Systems, 19(2):141-173, 1994.

M. Koubarakis. Foundations of indefinite constraint databases. In
A. Borning, editor, Proc. of the 2nd Int. Workshop on the Principles
and Practice of Constraint Programming, Springer LNCS No. 874,
pages 266280, 1994.

M. Koubarakis. The complexity of query evaluation in indefi-
nite temporal constraint databases. Theoretical Computer Science,
171(1-2):25-60, 1997.

R. A. Kowalski. Predicate logic as a programming language. In Pro-
ceedings IFIP Congress, pages 569-574, Amsterdam, 1974. North
Holland Publishing Co.

R. A. Kowalski. Logic for data description. In H. Gallaire J. Minker,
editor, Logic and Data Bases, pages 77-103. Plenum Press, New
York, 1978.

A. M. Keller and M. W. Wilkins. Approaches for updating
databases with incomplete information and nulls. In Proc. of the
Int. Conf. on Data Engineering, pages 332-340, Los Angeles, CA,
April 1984. IEEE Computer Society, IEEE Computer Society Press.
A. M. Keller and M. W. Wilkins. On the use of an extended re-
lational model to handle changing incomplete information. IEFEE
Transactions on Software Engineering, 11(7):620-633, July 1985.
K.L. Kwast. The incomplete database. In Proc. Int. Joint Conf. on
Artificial Intelligence, pages 897-902, 1991.

N. Lerat. Query processing in incomplete logical databases. In
G. Ausiello and P. Atzeni, editors, Proc. of the Int. Conf. on Data-
base Theory, pages 260—277, Rome, Italy, September 1986. Springer-
Verlag.

H. J. Levesque. The logic of incomplete databases. In M. Brodie,
J. Mylopoulos and J. W. Schmidt, editors, On Conceptual Mod-
eling: Perspectives from Artificial Intelligence Databases and Pro-
gramming Languages, pages 165—-186. Springer-Verlag, Berlin and
New York, 1984.

M. Levene. The Nested Universal Relation Database Model.
Springer LNCS No. 595, 1992.

A.Y. Levy. Obtaining complete answers from incomplete databases.
In Proc. of the 22nd Int. Conf. on Very Large Databases, pages 402—
412, 1996.

354 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[LGO4]

[Lib91]

[Lib94]

[Lib95]

[Lip79]

[Lip81]

[Lip84]

[LLL86]

[LL90]

[LLO1]

[L1087]
[LMR92]
[LT85]

[LW96]

L. Libkin and E. Gunter. OR-SML: A functional database program-
ming language with support for disjunctive information. In D. Kara-
giannis, editor, Proc. 5th Int. Conf. on Database and Ezpert Systems
Applications (DEXA), volume 856, pages 641-650, Athens, Greece,
September 1994. Springer-Verlag, Lecture Notes in Computer Sci-
ence.

L. Libkin. A relational algebra for complex objects based on partial
information. In B. Thalheim, editor, Proc. of the Symp. on Math.
Fundamentals of Database Systems (MFDBS), volume 495, pages
136-147, Rostock, Germany, May 1991. Springer-Verlag, Lecture
Notes in Computer Science.

L. Libkin. Aspects of partial information in databases. PhD the-
sis, Computer and Information Science, University of Pennsylvania,
1994.

L. Libkin. Normalizing incomplete databases. In Proc. ACM Symp.
on Principles of Database Systems, pages 219-230, 1995.

W. Lipski, Jr. On semantic issues connected with incomplete in-
formation databases. ACM Transactions on Database Systems,
4(3):262-296, September 1979.

W. Lipski, Jr. On databases with incomplete information. Journal
of the ACM, 28(1):41-70, 1981.

W. Lipski, Jr. On relational algebra with marked nulls. In Proc.
ACM Symp. on Principles of Database Systems, pages 201-203, Wa-
terloo, Ontario, Canada, April 1984.

N. Lerat and W. Lipski, Jr. Nonapplicable nulls. Theoretical Com-
puter Science, 46:67-82, 1986.

M. Levene and G. Loizou. The nested relation type model: An
application of domain theory to databases. The Computer Journal,
33:19-30, 1990.

M. Levene and G. Loizou. Correction to null values in nested rela-
tional databases by M. A. Roth, H. F. Korth, and A. Silberschatz.
Acta Informatica, 28:603-605, 1991.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, second edition, 1987.

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive
Logic Programming. MIT Press, Cambridge, MA, 1992.

J. W. Lloyd and R. Topor. A basis for deductive database systems.
Journal of Logic Programming, 2:93-109, 1985.

L. Libkin and L. Wong. Semantic representations and query lan-
guages for or-sets. Jouwrnal of Computer and System Sciences,
52(1):125-142, February 1996.

[Mai80]

[Mai83]

[Men64]
[Mey93]

[Mey97]

[Min82]

[Moo85]
[Mot89]

[MP84]

[MP85]
[MS96]
[MT91]

[MvdM92]

[NG78]

[Oho90a]

[Oho90b]

REFERENCES 355

D. Maier. Discarding the universal instance assumption: Prelim-
inary results. In XPI1 Workshop on Relational Database Theory.
SUNY at Stony Brook, NY, June-July 1980.

D. Maier. The Theory of Relational Databases, chapter 12: Null
Values, Partial Information, and Database Semantics. Computer
Science Press, Rockville, MD, 1983.

E. Mendelson. Introduction to Mathematical Logic. D. van Nostrand
Co., New York, 1964.

R. van der Meyden. Recursively indefinite databases. Theoretical
Computer Science, 116:151-194, 1993.

R. van der Meyden. The complexity of querying indefinite data
about linearly ordered domains. Journal of Computer and System
Sciences, 54(1):113-135, Feb 1997.

J. Minker. On indefinite databases and the closed world assump-
tion. In 6th Conference on Automated Deduction, pages 292-308.
Springer LNCS No. 138, 1982.

R. Moore. Semantical considerations on nonmonotonic logic. Arti-
ficial Intelligence, 25:75-91, 1985.

A. Motro. Integrity = validity + completeness. ACM Transactions
on Database Systems, 14(4):480-502, December 1989.

J. Minker and D. Perlis. Applications of protected circumscription.
In Proc. of the 7th Conference on Automated Deduction, pages 414—
425. Springer, 1984.

J. Minker and D. Perlis. Computing protected circumscription.
Journal of Logic Programming, 2(4):235-249, December 1985.

A. Motro and P. Smets, editors. Uncertainty Management in Infor-
mation Systems. Kluwer Academic Publishers, Boston, 1996.

V. W. Marek and M. Truszczynski. Autoepistemic logic. Journal
of the ACM, 38(3):588-619, 1991.

L. T. McCarty and R. van der Meyden. Reasoning about indefinite
actions. In Proc. 8rd Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning, pages 59-70. Morgan Kaufmann, 1992.
J. M. Nicholas and H. Gallaire. Data base: theory vs. interpretation.
In H. Gallaire and J. Minker, editors, Logic and Databases, pages
33-54. Plenum Press, New York, 1978.

A. Ohori. Orderings and types in databases. In F. Bancilhon
and P. Buneman, editors, Advances in Database Programming Lan-
guages, pages 97-116. ACM Press, 1990.

A. Ohori. Semantics of types for database objects. Theoretical
Computer Science, 76(1):53-91, 31 October 1990.

356 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[Osb81]

[Ost87]

[Pap94]

[PP90]

[Prz89]

[Prz91]

[Prz93)]

[Prz95]

[PY97]

[Rei78a]

[Rei78b]

[Rei84]

S. Osborn. Insertions in a multi-relation database with nulls. In
Proc. of COMPSACS81: IEEE Computer Society’s Fifth Int. Com-
puter Software and applications Conference, pages 75-80, Chicago,
IL, November 1981.

P. Ostermann. Modal logic and incomplete information. In Proc.
First Symposium on Mathematical Fundamentals of Database Sys-
tems, pages 181-196, Dresden, GDR, January 1987.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

T. Przymusinski and H. Przymusinska. Semantic issues in deduc-
tive databases and logic programs. In R. Banerji, editor, Formal
Techniques in Artificial Intelligence. A Source-book, pages 321-367.
North Holland, 1990.

T.C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In J. Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193-216. Mor-
gan Kaufman, 19809.

T. Przymusinski. Stable semantics for disjunctive programs. New
Generation Computing, 9:401-424, 1991.

T. Przymusinski. Logic programming and non-monotonic reasoning.
Journal of Logic Programming, 17:91-94, 1993. Special Issue on
Non-Monotonic Reasoning.

T. Przymusinski. Static semantics for normal and disjunctive
logic programs. Annals of Mathematics and Artificial Intelligence,
14:323-357, 1995.

C. H. Papadimitriou and M. Yannakakis. On the complexity of
database queries. In Proc. ACM Symp. on Principles of Database
Systems, 1997.

R. Reiter. Deductive question answering on relational databases.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
149-178. Plenum, New York, 1978.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 55-76. Plenum, New York,
1978.

R. Reiter. Towards a logical reconstruction of relational database
theory. In M. Brodie, J. Mylopoulos and J. W. Schmidt, editors,
On Conceptual Modeling: Perspectives from Artificial Intelligence
Databases and Programming Languages, pages 191-238. Springer-
Verlag, Berlin and New York, 1984.

[Rei86]

[Rei88]

[Rev93)

[RKS89]

[RKS91]

[RLMS8]

[Roy91]

[RTSS]

[Sak89]

[Scig0]

[She88]

[SRR94]

[Sto86]

[Sub90]

REFERENCES 357

R. Reiter. A sound and sometimes complete query evaluation al-
gorithm for relational databases with null values. Journal of the
ACM, 33(2):349-370, 1986.

R. Reiter. On integrity constraints. In M. Y. Vardi, editor, Proc.
Conf. Theoretical Aspects of Reasoning about Knowledge, pages 97—
112, 1988.

P. Z. Revesz. On the semantics of theory change: Arbitration be-
tween new and old information. In Proc. ACM Symp. on Principles
of Database Systems, pages 71-82, 1993.

M. A. Roth, H. F. Korth, and A. Silberschatz. Null values in nested
databases. Acta Informatica, 26:615-642, 1989.

M. A. Roth, H. F. Korth, and A. Silberschatz. Addendum to null
values in nested relational databases. Acta Informatica, 28:607-610,
1991.

A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world
assumption. Journal of Automated Reasoning, 5:293-307, 1989.

V. Royer. The semantics of incomplete databases as an expression of
preferences. Theoretical Computer Science, 78(1):113-136, January
1991.

K. A. Ross and R. W. Topor. Inferring negative information from
disjunctive databases. Journal of Automated Reasoning, 4(2):397—
424, 1988.

C. Sakama. Possible model semantics for disjunctive databases. In
Proc. of the Int. Conf. on Deductive and Object-Oriented Databases
(DOOD’90), Kyoto, Japan, December 1989.

E. Sciore. The Universal Instance and Database Design. PhD thesis,
Princeton University, Princeton, NJ, 1980.

J. Shepherdson. Negation in logic programming. In J. Minker,
editor, Deductive Databases and Logic Programming, pages 19-88.
Morgan Kaufmann, Los Altos, CA, 1988.

D. Srivastava, R. Ramakrishnan, and P. Z. Revesz. Constraint ob-
jects. In Proc. of the 2nd Int. Workshop on Principles and Practice
of Constraint Programming, Springer LNCS No. 874, pages 218-228,
1994.

M. Stonebraker, editor. The INGRES Papers: Anatomy of a Rela-
tional Database System. Addison-Wesley, Reading, Mass., 1986.
V. 8. Subrahmanian. Paraconsistent disjunctive deductive
databases. In Proc. of the 20th Int. Symp. on Multiple- Valued Logic,
pages 339-346, Charlotte, NC, May 1990.

358 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[TCG*T93] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and

[U1188]

[Var82]

[Var86a]

[Var86b]

[Var9s]

[Vas79]

[Vas80]

[Win90]

[YFM92]

[YHS5]

[Yue91]

[Zan84]
[Zic90]

[ZP96]

R. Snodgrass, editors. Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, Redwood City, Cal., 1993.
J.D. Ullman. Principles of Database and Knowledge Base Systems,
volume I. Computer Science Press, 1988.

M. Y. Vardi. The complexity of relational query languages. In
Proceedings of the ACM Symposium on the Theory of Computing,
pages 137-146, 1982.

M. Y. Vardi. On the integrity of databases with incomplete informa-
tion. In Proc. ACM Symposium on Principles of Databases, pages
252-266, 1986.

M. Y. Vardi. Querying logical databases. Journal of Computer and
System Sciences, 33:142-160, 1986.

M. Y. Vardi. On the complexity of bounded-variable queries. In
Proc. ACM Symp. on Principles of Database Systems, pages 266—
276, May 1995.

Y. Vassiliou. Null values in database management: a denotational
semantics approach. In Proc. of the 1979 ACM SIGMOD Int. Conf.
on Management of Data, pages 162-169, New York, May 1979. ACM
Press.

Y. Vassiliou. Functional dependencies and incomplete information.
In Int. Conf. on Very Large Databases, pages 260-269, October
1980.

M. Winslett. Updating Logical Databases. Cambridge University
Press, Cambridge, 1990.

Y. Yia, Z. Feng, and M. Miller. A multivalued approach to handle
nulls in RDB. In Proc. 2nd Far-Fast Workshop on Future Database
Systems, Kyoto, Japan, April 1992.

A. Yahya and L. J. Henschen. Deduction in non-Horn databases.
Journal of Automated Reasoning, 1(2):141-160, 1985.

K. Yue. A more general model for handling missing information in
relational databases using A 3-valued logic. ACM SIGMOD Record,
20(3):43-49, September 1991.

C. Zaniolo. Database relations with null values. Journal of Com-
puter and System Sciences, 28:142-166, 1984.

R. Zicari. Incomplete information in object-oriented databases.
ACM SIGMOD Record, 19(3):5-16, September 1990.

E. Zimanyi and A. Pirotte. Imperfect knowledge in relational
databases. In A. Motro and P. Smets, editors, Uncertainty Manage-
ment in Information Systems. Kluwer Academic Publishers, Boston,
1996.

