
Remarks on the GWV Firewall

Ron van der Meyden
School of Computer Science and Engineering,

University of New South Wales

October 18, 2010

Abstract

Greve, Wilding and Vanfleet (2003) have proposed a formal security
policy for separation kernels, and used it prove a security claim for a
firewall implemented in a system satisfying this security policy. The paper
revisits their example and formulates a more general version of the result,
that simplifies its structure and clarifies its information theoretic content.

1 Introduction

Separation kernels [Rus81] are a kind of minimalist operating system, intended
to provide the abstraction of a set of partitions within which computation can
proceed independently, without interference from other partitions, and with
communication between these partitions forced to conform to a given security
policy. The classical notion of separation assumed the simplest possible policy
for interprocess communication – complete prohibition – but this has long been
understood to be too restrictive for practical purposes. More recent work has
dealt with policies that permit some communication between processes, but
constrain this to specific channels [GWV03, MWTG00].

Given the key role that separation kernels play as infrastructural components
in systems security, it has been of interest to subject them to formal verification.
This raises the question of what specific properties a kernel should be formally
shown to posses – one that is best answered by asking how such properties
enable further reasoning about systems constructed on the basis of a separation
kernel. Surprisingly little of the literature seems to have addressed this question.

One example is the work by Greve, Wilding and Vanfleet (henceforth GWV)
[GWV03] who have defined a security policy that has served as the basis for their
kernel verification efforts. GWV have presented as evidence for the appropriate-
ness of their policy model an application to a particular class of configurations,
intended to represent systems with a firewall through which all information from
a secure domain to an insecure domain must flow.

In this paper, we revisit this example, and argue that its formulation can
be significantly simplified and clarified. Our presentation of the example makes

1

it clear that the example makes information theoretic assumptions, a fact that
was hidden in the GWV presentation, where a key property is stated as a
safety property plus the assumption that a function satisfying certain constraints
exists. We argue that our presentation is simpler and more general.

We describe the GWV policy in Section 2 and present the firewall example in
Section 3. Our improved presentation is treated in Section 4. Some conclusions
are drawn in Section 5.

2 The GWV Policy Model

The GWV separation policy has undergone a number of revisions: a discussion
of the variants can be found in [Gre10]. We base our treatment here on the
original version [GWV03], in which the firewall example is cast, and which
suffices for the points we wish to make.

The GWV system model assumes that a system is decomposed into a set
Part of partitions, and that each partition p ∈ Part is associated with a set of
segments, denoted segs(p). We write Seg for the set of all segments. Partitions
may overlap, i.e., there may be segments that are associated to more than one
partition. The set of states of a machine is denoted S. In each state s ∈ S,
each segment a ∈ Seg has a value, which we denote vala(s). System evolution
is deterministic: given a state, the following state after one step of computation
is represented by a function next : S → S. Each step of computation is viewed
as being executed within or by a particular partition, represented by a function
cur : S → Part. That is, given a machine state s, the currently active partition
is cur(s), and the result of one step of computation by this partition is the state
next(s). We represent a machine conforming to this system model by the tuple
M = 〈Part, Seg, segs, S, cur, val, next〉.

Definition of the security policy for such a machine begins by describing
how information is permitted to flow from segment to segment. Formally, this is
captured by a relation �⊆ Seg×Seg. Intuitively, a � b means that information
from segment a is permitted to flow to segment b. Given a set X of segments
and two states s, t ∈ S, we say that s and t are equivalent on X, and write
s ≡X t, if vala(s) = vala(t) for all a ∈ X. The GWV separation policy is now
defined by the following condition.

Sep: For all segments a and states s, t ∈ S, if cur(s) = cur(t), and
s and t are equivalent on {a} ∪ {b ∈ segs(cur(s)) |b � a}, then
vala(next(s)) = vala(next(t)).

To understand this property, it is helpful to define a more general notion
that will also prove useful in the sequel. Suppose that Xp is a set of segments
for each partition p. (If Xp = X for all p we represent this parameterized set
simply by X.) If a is a segment, say that a machine M satisfies the condition
that the next value of a depends only on X and the current partition if for
all states s, t, if cur(s) = cur(t) and s and t are equivalent on Xcur(s) then
vala(next(s)) = vala(next(t)). Intuitively, this states that the next value of

2

the value of a is a function of the current partition p and the current values
of segments in Xp. We may now rephrase Sep as stating that the next value
of a segment a depends only on Xp = {a} ∪ {b ∈ segs(p) |b � a} and the
current partition p. That is, segments on which the next value of a is allowed to
depend are a itself, together with segments b satisfying b � a (i.e., from which
the policy permits flow of information to a) that are also associated with the
currently active partition.1

3 GWV and Rushby’s Firewall Example

By way of justification of their framework, GWV consider a firewall-like exam-
ple. They show that if a machine satisfies the separation policy with respect
to a particular flow policy �, plus a condition concerning the correct opera-
tion of a partition representing the firewall, then information is released in a
secure fashion. Their work was conducted in the theorem prover ACL2, and
has been reproduced by Rushby [Rus04] using the theorem prover PVS. Both
formulations of the example make use of certain auxiliary functions and require
a nontrivial set of additional assumptions about these functions. The impact of
these assumptions on the class of systems to which the result applies is unclear.
In this section we describe this example and presentations of it by GWV and
Rushby. We offer an improved presentation in the following section.

The partition to which information is released by the firewall is called B,
for “Black”. The firewall itself is represented by a partition F . A nonspecified
set of other partitions may exist in the system. Information from the firewall to
the black partition is constrained to flow through a particular segment outbox.
This is formally represented by the firewall policy condition

FW-Pol: For all segments a ∈ segs(B), segments b and partitions
P 6= B, if b � a and b ∈ segs(P), then a = outbox and P = F .

That is, the only partition besides B from which information is permitted to
flow to B is F , and such flow is only permitted via the segment outbox.

GWV then consider a distinction between “black” and “red” data. “Black”
data, intuitively, is the data that is permitted to be released to the Black par-

1Some subtleties about this definition are worth noting. We could have distinct partitions
p, p′ such that segs(p) = segs(p′). Depending on which partition is active, the next value of
the segment a could differ (consider two partitions running two different programs over the
same shared data). Thus, expressing this notion as “the next value of a depends only on X”
would not quite capture the content of the definition.

Note also that in case b � a for no b in the current partition, the definition states that
the next value of a depends only on {a}. This does allow that the value of a changes,
but any changes must be deterministic. Ticking of a clock, or progress in a deterministic
computation using only the segment, would be examples of this. GWV state that it also
allows “asynchronous arrival of (partition specific) information from external sources.” Given
the determinism of the function next, this would seem to require the very strong assumption
that the future arrival of such information is already encoded into the segment using, e.g.,
prophecy variables.

3

tition. Safe operation of the firewall is then represented by the property that if
all data in the Black partition is black, then it will always remain black.

Suppose we formally represent the fact that the data in a segment a is black
in a state s by the notation s |= black(a). Then we we may capture the
statement that the firewall maintains the invariant that all data in the segment
outbox is black by the property

FW-Blackens: For all states s, if cur(s) = F and s |= black(outbox)
then next(s) |= black(outbox).

GWV now claim that if a machine satisfies Sep, FW-Pol and FW-Blackens,
then it maintains the invariant that all data in the Black partition are black.
More formally,

FW-Correct: For all states s, if s |= black(a) for all a ∈ segs(B),
then next(s) |= black(a) for all a ∈ segs(B).

To prove this claim, they require an auxiliary function scrub mapping a
segment and a state to a state. We write the resulting state as scruba(s) for
a segment a and state s. The intuition for this function is that it blackens the
segment: a concrete interpretation they discuss involves zeroizing the segment
in order to remove sensitive information. GWV state the following properties
for this function.

S1: (scrub-commutative) For all states s and segments a, b, we
have scruba(scrubb(s)) = scrubb(scruba(s))

S2: (segment-scrub-different) For all states s and segments a, b,
if a 6= b then vala(scrubb(s)) = vala(s).

S3: (black-scrub) For all states s and segments a, b, scrubb(s) |=
black(a) iff a = b or s |= black(a).

S4: (current-scrub) For all states s, we have cur(s) = cur(scruba(s)).

S5: (spontaneous-generation) For all states s, if s |= black(a)
for all segments a, then next(s) |= black(a) for all segments a.

S6:(black-function-of-segment) For all states s, t and segments
a, if vala(s) = vala(t), then s |= black(a) iff t |= black(a).

Rushby [Rus04] (apparently drawing on information in GWV’s published
ACL2 proof scripts [GWV03]) gives a formulation that uses a function blacken :
S → S. Intuitively, blacken turns all segments black. Its required properties
are:

B1: For all a ∈ Segs, and all states s, we have blacken(s) |=
black(a).

4

B2: For all segments a and states s, if s |= black(a) then vala(s) =
vala(blacken(s)).

B3: For all states s, we have cur(s) = cur(blacken(s)).

B4: For all states s, t and segments a, if vala(s) = vala(t), then
s |= black(a) iff t |= black(a).

B5: For all states s, if s |= black(a) for all segments a, then
next(s) |= black(a) for all segments a.

The relationship between these formulations can be seen in the following
result.

Proposition 1 Suppose that the set of segments in a machine is finite and that
the machine satisfies S1-S6. Define the function blacken to map a state to the
state resulting from scrubbing all non-black segments, i.e., if the set of non-black
segments in state s is {a1, . . . , an} then

blacken(s) = scruba1(scruba2(. . . scruban
(s))).

Then the machine satisfies B1-B5.

Proof: B1 follows from S3. B2 follows from S2, noting that blacken does not
scrub already black segments. B3 is immediate from S4. B4 is identical to S6.
B5 is identical to S5. �

Thus, Rushby’s assumptions are weaker than GWV’s (under the reasonable
assumption of finiteness of the set of segments, which necessarily holds in GWV’s
theory as a result of representing states using finite lists). The proof of the GWV
result now proceeds by showing that Sep, FW-Pol and FW-Blackens imply
FW-Correct, in the presence of B1-B5. Both papers note that the use of
the additional functions and properties raises a question: is the extended set
of axioms even consistent? If not, the reason that these automated proofs are
successful may be simply the inconsistency of the assumptions. To allay this
concern it is shown that there exists a model for the collection of assumptions.

However, we note that even this check does not suffice to establish the orig-
inal claim. It may well be that the assumptions B1-B5 can be satisfied, but at
the cost of restricting the class of systems to which the result applies. What is
really required, if the function blacken satisfying B1-B5 is to be just a device
of the proof, is that every system satisfying Sep, FW-Pol and FW-Blackens
can, by suitable definition of blacken, be extended to one also satisfying B1-
B5. This has not been proved by GWV or Rushby. Indeed, inasmuch as the
existence of the function blacken satisfying B1 implies the existence of a state
in which every segment is black, it is apparent that the extra assumptions are in
fact restrictive on the class of machines to which the result applies. We return
to this issue below, where we give a sharper statement of this observation.

5

4 An Alternative Formulation of the Firewall

We propose here and prove correct an alternative formulation of the GWV
correctness claim. Our approach is to eliminate use of auxiliary functions like
scrub and blacken altogether, and replace the conditions B1-B5 by a property
somewhat like B5, but which captures more of the intuition underlying the
predicate black.

Condition B5 can be understood as saying that once all data in the system
are black, they remain black forever. More general than this is the following:
if some data are derived solely from black data, then they are black. We may
capture this formally using the notion of dependency introduced above. (Note
here we quantify over sets X that do not depend on the partition p, and use the
convention introduced above that Xp = X for all p.)

Black: For all sets X ⊆ Seg, segments a and states s, if the
next value of a depends only on X and the current partition, and if
s |= black(b) for all b ∈ X, then next(s) |= black(a).

We would argue that this condition is entirely compatible with GWV’s intu-
itions. Note that it implies B5. It is also apparent that this assumption places
no constraints on the machine. Note that for every machine, there exists an
interpretation of the predicate s |= black(a) such that Black is satisfied, viz.,
take s |= black(a) to hold for all states s and segments a. The following shows
that the condition Black is weaker than B1-B5.

Proposition 2 If a machine satisfies B1-B5 then it satisfies Black.

Proof: Assume B1-B5. Suppose that the next value of a segment a depends
only on X and the current partition. Suppose that s is a state such that s |=
black(b) for all segments b ∈ X. We need to prove that next(s) |= black(a).

For this, consider the state blacken(s). Since all segments in X are black
in s, by B2, s and blacken(s) are equivalent on X. By B3, we also have
that have that cur(s) = cur(blacken(s)). Thus, since the next value of a
depends only on X and the current partition, it follows that vala(next(s)) =
vala(next(blacken(s))).

Now by B1, all segments are black in blacken(s). By B5, it follows that
next(blacken(s)) |= black(a). By B4 and the fact that vala(next(s)) =
vala(next(blacken(s))), we now obtain that next(s) |= black(a). �

The following result shows that the single condition Black can play the role
of all of B1-B5 in GWV’s result.

Theorem 1 If a machine satisfies Sep, FW-Pol, FW-Blackens and Black,
then it satisfies FW-Correct.

Proof: Suppose that the system satisfies Sep, FW-Pol, FW-Blackens and
Black. Let s be a state such that s |= black(c) for all c ∈ segs(B). We

6

show that next(s) |= black(a) for all a ∈ segs(B). We consider four cases for
the segment a ∈ segs(B) and the current partition cur(s), showing that the
conclusion holds in each case.

Case 1: Assume a ∈ segs(B) \ {outbox}. Let X = B. By FW-Pol, we
see that if b � a then b ∈ segs(B). It follows using Sep that the next value
of a depends only on X and the current partition. It is now immediate using
Black, X = B and the assumption that s |= black(c) for all c ∈ segs(B) that
next(s) |= black(a).

For the remaining cases, we assume a = outbox ∈ segs(B) and consider the
different possible values for cur(s): B, F , or neither.

Case 2: Assume a = outbox ∈ segs(B) and cur(s) = B. Let X =
{a} ∪ {b ∈ segs(cur(s)) |b � a}. By Sep, the next value of a depends only on
X and the current partition. Since cur(s) = B, we have X ⊆ segs(B). By the
assumption that s |= black(c) for all c ∈ segs(B), we have s |= black(c) for all
c ∈ X. It now follows from Black that next(s) |= black(a).

Case 3: Assume a = outbox ∈ segs(B) and cur(s) = F . Since outbox ∈
segs(B), we have by assumption that s |= black(outbox). It is now immediate
from FW-Blackens that next(s) |= black(outbox).

Case 4: Assume a = outbox ∈ segs(B) and cur(s) 6∈ {F,B}. Let X =
{a}∪{b ∈ segs(cur(s)) |b � a}. Then by Sep, the next value of a depends only
on X and the current partition. By FW-Pol, we have X = {a} = {outbox}.
Since outbox ∈ segs(B)}, it follows from the assumption that s |= black(c) for
all c ∈ X. It now follows from Black that next(s) |= black(a). �

What we have shown so far is that the condition Black, which is weaker
than both the GWV and the Rushby assumptions, suffices to prove the firewall
correctness claim. One might still ask whether this condition is strictly weaker:
conceivably, if Black holds in a machine then it can be extended to one satisfying
B1-B5.

We now show that this is not the case under the most straightforward inter-
pretation of the term “extend”: the simple addition of a function blacken : S →
S to the machine, without transforming any of the components of the machine.
Note first that whereas B4 requires that the predicate black be a function of
the state and segment, no such requirement is imposed by the condition Black.
A concrete setting in which this requirement is in fact undesirable is when we
wish black to express some past-time property of a segment. A machine M =
〈Part, Seg, segs, S, cur, val, next〉 can be unfolded using a standard type of con-
struction, producing a machine M∗ = 〈Part, Seg, segs, S∗, cur∗, val∗, next∗〉
with the same set of partitions, segments and same relationship of association,
but with the other components defined as follows:

1. S∗ is the set of finite sequences s0, s1, . . . , sn such that each si ∈ S and
si+1 = next(si);

2. cur∗(s0, s1, . . . , sn) = cur(sn);

3. val∗a(s0, s1, . . . , sn) = vala(sn);

7

X f(a) f(b) f(c) next(f)(a) g(a) g(b) g(c) next(g)(a)
{a, b} 1 0 0 0 1 0 1 1
{a, c} 1 0 0 0 1 1 0 1
{b, c} 0 0 1 0 1 0 1 1

Figure 1: The next value of a depends on at least {a, b, c}

4. next∗(s0, s1, . . . , sn) = s0, s1, . . . , sn, next(sn).

Intuitively, M∗, behaves exactly like M , but maintains a record of past states.
This enables us to define past time properties as predicates on the state. Con-
sider a machine M in which the segment values are natural numbers and the
only operation that can be performed is to add the values of two segments and
store the result in a third. In this case we can define s |= black(x) to be the
predicate “the current value of segment x is greater than or equal to the ini-
tial value of segment a” which is a function of the segment x and the state
s0, s1, . . . , sn in M∗, and satisfies Black, but is not a function of the current
segment value of x in that machine.

A second obstacle to justifying the function blacken as an artifact of proof by
straightforward extension of the machine is that there exist machines satisfying
Black in which no state has all segments black (and hence fail to provide the
state required to satisfy B1). Consider a machine with three segments Seg =
{a, b, c} and a single partition B. Let the set of states S be the set of functions f :
Seg→ {0, 1} that are not everywhere 1, and for such a state f define valf (x) =
f(x) for x ∈ Seg. Define the function next by next(f)(a) = f(a)∧ (f(b)⊗f(c))
and next(f)(b) = f(b) ∧ (f(a) ⊗ f(c)) and next(f)(c) = f(c) ∧ (f(a) ⊗ f(b))
where ‘⊗’ is exclusive-or. (Note that if we had next(f)(a) = next(f)(b) =
next(f)(c) = 1 we would have f(a) = f(b) = f(c) = 1 as well as f(b)⊗f(c) = 1.
This is plainly a contradiction. Hence next does map S to S.) For all states
f we let cur(f) = B. Let the predicate black be defined by f |= black(x) iff
f(x) = 1. Since there does not exist a state f with f(a) = f(b) = f(c) = 1, the
function blacken cannot be defined.

We claim that this machine satisfies Black. To see this, we note that for
all segments x, the smallest set X of segments such that the next value of x
depends only on X and the current value is Seg itself. This is demonstrated
for the segment a in Table 1, by provision for each maximal set X contained in
Seg a pair of states f, g such that f and g are equivalent on X but such that
vala(next(f)) 6= valb(next(g)). For the other segments the claim follows by
symmetry. Thus the only set X that we need to consider in the antecedent of
Black is X = Seg, for which the condition stating that all segments in X are
black in the state s is false by construction. Hence Black holds trivially in this
machine. We note that by defining the policy so that x � y for all segments
x, y, the machine also satisfies Sep, FW-Pol and FW-Blackens.

It might still be argued that “extension of a machine by a function blacken”

8

should be defined in such as way as to allow addition of new states, and that it
may be possible to prove the equivalence of Black and B1-B5 for such a notion
of extension. For this to be meaningful in the present context, the notion of
extension should support a proof of the firewall theorem in the original machine.
Given that Sep and Black both rely on the notion of dependence, which is very
sensitive to the set of states in the machine, finding such a notion of extension
would appear to be a nontrivial matter.

5 Conclusion

The example studied in this paper can be understood as a case study in com-
positionality in reasoning about systems using causal notions. The formula-
tion of the firewall example in Section 4 makes it apparent that the predicate
s |= black(a), like the separation policy Sep, is inherently about the causal
history of segments. Thus, our alternate formulation highlights that the exam-
ple is about what can be derived when one composes two specifications that
concern dependency properties in a system.

It would be interesting to have a more general theory about reasoning using
such properties. Although the idea of separation kernels has existed since the
1980’s and compositionality in reasoning about security has received consider-
able attention [McC90, McL96, Mil90, WJ90], there seems to be surprisingly
little literature that deals directly with what formal properties can be derived
about systems that have been built on the foundation of systems satisfying sep-
aration properties. Investigation of further examples and a closer comparison
with known principles of compositionality in reasoning about security would
appear to be a necessary next step in the development of a more general under-
standing of this area.

There has been a considerable amount of research on process algebraic defi-
nitions of noninterference in the past ten years [FG01, Rya01], but very little of
this considers separability directly. Roscoe and Wulf [RW95] do present some
results showing that certain types of noninterference policies entail separability
in the sense of Jacob [Jac90]. However, this notion of separability states that
the system is equivalent to an interleaved parallel composition of separated pro-
cesses, in which each process is enabled at each moment of time. This means
that these results cannot be applied directly to systems operating subject to a
scheduler, as we have considered here.

References

[FG01] R. Focardi and R. Gorrieri. Classification of security properties
(Part I: information flow). In R. Focardi and R. Gorrieri, editors,
Foundations of Security Analysis and Design, FOSAD 2000, Berti-
noro, Italy, September 2000, volume 2171 of LNCS, pages 331–396.
Springer, 2001.

9

[Gre10] D. Greve. Information security modelling and analysis. In David S.
Hardin, editor, Design and Verification of Microprocessor Systems
for High-Assurance Applications, pages 249–299. Springer, 2010.

[GWV03] D. Greve, M. Wilding, and M. Vanfleet. A separation
kernel formal security policy. In Proc. Fourth Interna-
tional Workshop on the ACL2 Theorem Prover and Its
Applications, 2003. Paper and associated proof scripts at
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[Jac90] J. Jacob. Separability and the detection of hidden channels. Infor-
mation Processing Letters, 34:27–29, Feb 1990.

[McC90] D. McCullough. A hookup theorem for multilevel security. IEEE
Trans. Software Eng., 16(6):563–568, 1990.

[McL96] J. McLean. A general theory of composition for a class of “possi-
bilistic” properties. IEEE Trans. Software Eng., 22(1):53–67, 1996.

[Mil90] J.K. Millen. Hookup security for synchronous machines. In Proc.
IEEE Computer Security Foundations Workshop, pages 84–90,
1990.

[MWTG00] W. Martin, P. White, F.S. Taylor, and A. Goldberg. Formal con-
struction of the mathematically analyzed separation kernel. In
IEEE Computer Society Press, editor, Proc. 15th IEEE Conf. on
Automated Software Engineering, 2000.

[Rus81] J. Rushby. Design and verification of secure systems. In Proc. 8th
Symposium on Operating Systems Principles, pages 12–21, Asilo-
mar CA, Dec 1981. (ACM Operating Systems Review, Vol 15, No.
1).

[Rus04] J. Rushby. A separation kernel formal security policy in PVS. CSL
Technical Note, SRI International, March 2004.

[RW95] A.W. Roscoe and L. Wulf. Composing and decomposing systems
under security properties. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 9–15, 1995.

[Rya01] P.Y. Ryan. Mathematical models of computer security. In R. Fo-
cardi and R. Gorrieri, editors, Foundations of Security Analysis
and Design, FOSAD 2000, Bertinoro, Italy, September 2000, vol-
ume 2171 of LNCS, pages 1–62. Springer, 2001.

[WJ90] J. T. Wittbold and D. M. Johnson. Information flow in nondeter-
ministic systems. In IEEE Symposium on Security and Privacy,
pages 144–161, 1990.

10

