
Information Flow in Systems with Schedulers
(Part II: Refinement)

Ron van der Meydena, Chenyi Zhanga,b

aSchool of Computer Science and Engineering, University of New South Wales, Sydney,

Australia
bSchool of Information Technology and Electrical Engineering, University of Queensland,

Brisbane, Australia

Abstract

Refinement is a relation on systems models: a concrete model is a refinement of
a more abstract model if it has fewer behaviours. When properties of the ab-
stract model are guaranteed to be preserved in the concrete model, refinement
supports a top-down development process. This paper considers preservation
of a range of information flow security properties in synchronous systems with
schedulers, when these schedulers are refined. Notions of refinement are defined
for both an abstract notion of scheduler as well as for their concrete represen-
tation as automata. The security properties that are preserved by refinement
over schedulers are then characterized. The results are applied to characterize a
number of scheduler independent security properties, which state that a system
is secure with respect to all schedulers.

1. Introduction

Information-flow security is concerned with the ability of agents in a system
to make deductions about the activity of others, or to cause information to flow
to other agents. This paper is part II of a two part series in which we conduct
a systematic study of the impact of schedulers on information-flow security. In
part I of the series, we proposed a number of variants of existing definitions of
security from the literature that newly accommodate the setting of synchronous
scheduled systems, and study the relationships between the new definitions.

In deploying a system, it may be desirable to adapt the scheduler under
which it runs to accommodate the performance requirements of the particular

Email addresses: meyden@cse.unsw.edu.au (Ron van der Meyden), czhang@unsw.edu.au
(Chenyi Zhang)

NOTICE: this is the authors’ version of a work that was accepted for publication in
Theoretical Computer Science. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control mechanisms may
not be reflected in this document. Changes may have been made to this work since it was
submitted for publication.

Preprint submitted to Theoretical Computer Science January 4, 2013

deployment context. The maximum degree of flexibility for such adaptations
obtains when the system satisfies the desired properties for all schedulers. Fail-
ing this, an alternate approach would be to first show that the system has these
properties for some abstract scheduler, and then rely on a result stating that the
desired properties are preserved however that scheduler is made more concrete.
Such relationships between the abstract and the concrete are formalized in the
literature using notions of refinement, which are relations on systems, defined
by stating that system A refines system B if every observable behaviour of A is
also an observable behaviour of B (see e.g. [GM93]). Such refinement relations
can be used in a top-down development process, where they generally ensure
that properties of the more liberal system description B are preserved in the
more specific implementation represented by A.

However, many information-flow properties are not preserved by refinement,
i.e., when A refines B, the fact that B satisfies an information-flow property
does not necessarily imply that A also satisfies that property. This is known
as the refinement paradox [Jac88, McL94]. The present paper considers which
of the new definitions of security from Part I are preserved under refinement of
schedulers, and applies the results to characterize definitions that state that a
system is secure with respect to all schedulers.

We work with a setting in which systems contain a low security level agent
L and a high security level agent H , and in which the security policy states,
intuitively, that information about H should not flow to L. The definitions we
developed in part I are variants of the following three types of definitions from
the prior literature which capture ways that L might deduce information about
H :

1. nondeducibility on inputs [Sut86], which is appropriate for settings where
L acts as an outside observer attempting to infer, from its observations,
information about H activity,

2. the stronger notion of nondeducibility on strategies [WJ90], which takes into
account that L may have placed a Trojan horse at H , and requires that no
flow of information from H to L is possible even if this is the case, and

3. restrictiveness [McC87, McC88], a definition stronger than both of the
above, which is closely related to the unwinding [GM84] proof technique
for noninterference, and one of Focardi and Gorrieri’s bisimulation based
definitions of security [FG95].

In developing variants of these notions that are suited for our setting of scheduled
synchronous systems, we found that there is more than one plausible candidate
for each of these notions in a setting with nondeterministic schedulers.

Non-deterministic schedulers allow multiple concrete schedules, and the pre-
cise schedule in a given run, which orders H , L and system actions, might not
be known to L. We generally work with H-oblivious schedulers, i.e., schedulers
that are independent of H ’s behaviour, so that the scheduler itself does not
represent a channel for flow of information from H to L. One of the dimensions
causing the bifurcation of definitions is the question of whether security should
be preserved even if the precise schedule were to become known to L.

2

Another factor affecting the formulation of the definitions is the representa-
tion for schedulers. We work with two types of representation. One is abstract:
it views a scheduler as a function that determines which agent can be scheduled
next after a given history. The other representation is concrete: it implements
an abstract scheduler as an automaton. It turns out that our new variants of
nondeducibility on inputs and nondeducibility on strategies are not sensitive to
the choice of concrete scheduler implementation. Our variants of restrictive-
ness require a concrete scheduler implementation in their statement, but are
sensitive to the choice of implementation. In order to obtain implementation-
independent variant of the restrictiveness definitions that is meaningful at the
level of abstract schedulers, we need to quantify over scheduler implementa-
tions. The quantification can be done universally or existentially, each leading
to a different definition. We summarize the resulting definitions and their re-
lationships in Section 2, but we refer the reader to part I of the paper for a
detailed discussion of the notions defined within each class.

Our contribution in the present paper is to consider refinement relations
on schedulers and their impact on the definitions of security from part I. In
particular, at the abstract level, we take one scheduler to refine another when,
for all histories, the set of enabled agents for the latter scheduler is a subset
of that for the former. We ask whether security is preserved under this notion
of scheduler refinement, i.e., whether, if a system is secure with respect to a
scheduler, it is also secure with respect to all its refinements.

When we consider our variants of nondeducibility on inputs and nonde-
ducibility on strategies, we find that the only versions of these notions that are
preserved under refinement are the versions that require that the the system to
remain secure even if the schedule were to become known to L. In case of our
four implementation-independent variants of restrictiveness, we again find that
only the two stronger variants (which quantify universally over scheduler imple-
mentations) are preserved under scheduler refinement. In order to establish this
result, we introduce a notion of refinement on concrete scheduler implementa-
tions, and develop results on scheduler refinement at the concrete level.

As a benefit of this study of refinement, we also obtain answers to the ques-
tion of when a system is secure with respect to all schedulers. As noted above,
this is a quite desirable property, since it means that the system can be very
flexibly configured: the scheduler can be selected arbitrarily according to the
requirements of the specific environment within which the system is to operate,
without loss of security. One can ask this question for each of the notions of
security from part I. It turns out that many of the distinctions collapse in this
case. We characterize the collapse, and moreover show that for each of the re-
maining distinct notions, the question of security with respect to all schedulers
can be characterized as security with respect to a particular scheduler. This
fact helps to simplify the problem of verifying that the system is secure for all
schedulers by reducing it to a single case.

The paper is structured as follows. In Section 2 we briefly recall the system
model and the security notions from part I. Section 3 introduces a notion of
refinement on schedulers and studies the security properties that are preserved

3

by this relation. Section 4 considers a new refinement relation on scheduler
implementations which preserves some bisimulation based properties. Section 5
deals with a generalization of scheduler implementation independence — the
security of systems for all schedulers in certain classes. Section 6 addresses
related work and in Section 7 we summarize the results of the paper and make
some concluding remarks.

2. Preliminaries

This section present the formal model on which the new security notions
are defined. For a detailed discussion of the security motivations and examples
to distinguish the notions, we refer to part I of the paper. We consider a
synchronous model in which there is a discrete global clock shared by all agents,
and all agents are able to continue making observations at all times, including
times when they are not scheduled to perform an action. We define a signature
as a tuple (A, D, dom) consisting of a set of actions A, a set of agents D and
a function dom : A → D associating an agent with each action. For u ∈ D we
define Au = {a ∈ A | dom(a) = u} to be the set of actions associated to domain
u. For a number of semantic purposes (machines and schedulers), we use the
following general type of model that is essentially a classical labelled transition
system enhanced by observation functions.

Definition 2.1. A state-observed labelled transition system (SOLTS) for a sig-
nature (A, D, dom) is a tuple of the form T = 〈S, S0,→, O, obs〉 where

– S is a set of states (with elements denoted by s, t, t1, etc.),

– S0 ⊆ S represents the set of initial states,

– →⊆ S × A × S is a transition relation,

– O is a set of observations,

– obs : D × S → O is a function representing the observation made in each
state by each agent.

Write L
o for the set of all such systems.

For readability, we ‘curry’ the function obs (or its variants) by writing obsu(s)

for obs(u, s). We write s
a

−→ t when (s, a, t) ∈→, and s
a

−→ when there exists

t such that s
a

−→ t. More generally, we write s0
α

−→ sn when s0
a1−→ s1

a2−→
. . .

an−→ sn and α = a1a2 . . . an. A run r of a SOLTS is a sequence of the
form s0

a1−→ s1
a2−→ . . .

an−→ sn with s0 ∈ S0. We write R(T) for the set of all
runs of T . We write rk for the prefix of r consisting of the first k transitions,
i.e., rk = s0

a1−→ s1
a2−→ . . .

ak−→ sk, provided r has at least k transitions. We
denote the sequence of actions in a run r by Act(r) = a1a2 . . . an, and for each
agent u write Actu(r) for the subsequence of Act(r) consisting of actions a with

4

dom(a) = u. A SOLTS is deterministic if for s, t1, t2 ∈ S and a ∈ A, if s
a

−→ t1

and s
a

−→ t2 then t1 = t2. It is input-enabled if s
a

−→ for all s ∈ S and a ∈ A.
An agent’s observations give it knowledge about the present and past. The

following definition of the view function aims to capture this intention; a view
is a trace of an agent’s past, alternating observations and actions.

Definition 2.2. Given a SOLTS T and an agent u, the function viewu : R(T) →
O((Au ∪ {a})O)∗ is inductively defined by viewu(s0) = obsu(s0), and

viewu(r
a

−→ s) =

{

viewu(r) · a · obsu(s) if a ∈ Au

viewu(r)· a ·obsu(s) otherwise

where r ∈ R(T), a ∈ A and s ∈ S. We write Viewsu(T) for {viewu(r) | r ∈
R(T)}.

Intuitively, this says that an agent’s view of a run is the log of all its observa-
tions as well as its own actions in the run, with “a” where an action of another
agent is performed. We note that implicit in this definition is an assumption
of synchrony, in the sense that an agent can always determine from its view
viewu(r) of a run r what is the time (the length of r), simply by counting the
number of elements of O or Au ∪ {a}.

Like most of the literature, we confine our attention to systems with two
security domains High (H) and Low (L) and the security policy L ≤ H , which
permits information flow from L to H but prohibits information flow from H

to L. However, in order to deal with scheduling and passage of time, it is
convenient to include a third agent Sys that may act when both H and L are
waiting. The agent Sys can be understood as corresponding to the scheduler
activity as well as system internal actions. For the remainder of this paper, we
let D = {H, L,Sys}. The systems we study in the paper are defined as follows:

Definition 2.3. A machine is an input-enabled SOLTS M = 〈S, S0,→, O, obs〉
for a signature (A, D, dom) with D = {H, L,Sys} and ASys = {τ}. We write
M for the set of all machines.

The condition that ASys = {τ} still allows that Sys actions may be non-
deterministic, but we assume that there is no need to distinguish specific Sys

events. Whereas AH and AL can be thought of as representing inputs provided
by the agents, Sys provides no inputs, but only represents the automatic evo-
lution of the state over time. Given an action sequence α ∈ A∗ and A′ ⊆ A,
write α|A′ for the sequence obtained from α by removing all actions not in A′.

Diagrammatic Convention for Machines: When presenting examples
we depict machines as graphs in which vertices correspond to states, and are
labelled by the observation made by L at that state. Edges are labelled by
actions and correspond to transitions. Not all transitions from a state are de-
picted: if the only transition with a given action is a self-loop, it may be elided.
Since machines are input-enabled, where there is no edge labelled by an action
a from a state s, this implies that there is a self-loop from s labelled by a. (This
convention helps to reduce clutter in diagrams of machines.)

5

2.1. Schedulers

The scheduler defined in this paper only resolves the nondeterminism con-
cerning the next agent to act: we leave this agent free will to choose which
action to perform when it is scheduled.

Definition 2.4. A scheduler (for a machine M with actions A and domains D)
is a function σ : A∗ → P(D). A scheduled machine is a pair (M, σ) consisting
of a machine M and a scheduler σ for M .

We write Υ for the set of all schedulers. Intuitively, given a history of actions
α ∈ A∗, one of the agents in the set σ(α) will be scheduled next. This definition
leaves underspecified precisely how and when the nondeterminism in a scheduler
is resolved. Later we introduce the notion of scheduler SOLTS which provides
a more concrete way to model this nondeterminism. A schedule is a finite or
infinite sequence sch = u0u1u2u3 . . . where each ui ∈ D. For α = a0a1a2 . . .,
we write sch(α) for the schedule dom(a0) dom(a1) dom(a2) If r is a run we
also write sch(r) for sch(Act(r)).

We say that a run of a machine is compatible with a scheduler if the agent
that acts at each step of the run is one of the agents enabled by the scheduler,
given the history so far. Formally, compatibility of a finite sequence of actions
with a scheduler σ is defined by the following induction: the empty sequence
ǫ is compatible with σ, and αa is compatible with σ iff α is compatible with
σ and dom(a) ∈ σ(α), where α ∈ A∗ and a ∈ A. An infinite action sequence
is compatible with a scheduler σ if all its finite prefixes are compatible with σ.
A run r of a machine is defined to be compatible with a scheduler σ if Act(r)
is compatible with σ. Given a machine M , we write R(M, σ) for the set of all
runs of M compatible with σ. We also write Viewsu(M, σ) for {viewu(r) | r ∈
R(M, σ)}.

We henceforth assume that schedulers do not terminate, so that if α is
compatible with σ, then σ(α) 6= ∅. A scheduler σ is deterministic if σ(α) is a
singleton for all compatible α ∈ A∗. We write Υd for the set of deterministic
schedulers.

Schedulers may be represented as SOLTS. A scheduler SOLTS is a SOLTS
of the form 〈Q, Q0,→,{⊥}, obs〉 that satisfies

1. there is a transition from each state,

2. all transitions from a state are by the same agent, and all actions of that

agent are enabled, i.e., if s
a

−→ and s
b

−→ then dom(a) = dom(b), and s
c

−→
for all c ∈ Adom(a), and

3. obsu(s) = ⊥ for all states s and agents u.

(Note that (3) means that agents do not obtain information about the scheduled
agents from their observations on any state of a scheduler SOLTS.) Let sched :
Q → D map each scheduler SOLTS state to the unique agent that has its
actions enabled in the state. A scheduler SOLTS 〈Q, Q0,→, {⊥}, obs〉 represents
a scheduler σ if for all α ∈ A∗ compatible with σ, we have σ(α) = {sched(q) |

q0
α

−→ q, q0 ∈ Q0}.

6

Scheduling may be represented as a parallel composition of a machine and
a scheduler SOLTS. Given a machine M = 〈S, S0,→, O, obs〉, and a sched-
uler SOLTS A = 〈Q, Q0,→′,⊥, obs′〉 with the same signature, the parallel
composition M ‖ A is the SOLTS 〈S × Q, S0 × Q′

0,→
′′, O, obs〉 where →′′=

{((s1, q1), a, (s2, q2)) | s1
a

−→ s2 ∧ q1
a

−→ q2}. This corresponds to the lock-step
execution of the two systems with synchronisation on actions.

In order to prevent the scheduler being a channel for information flow,
we define a notion that expresses that the decisions of the scheduler are in-
dependent of the actions of an agent. For the definition, we need an op-
eration on actions that masks actions of agent u: define µu(a) = a when
a ∈ A \ Au and µu(a) = ⊥u when a ∈ Au. For a sequence α = a1a2 . . . ∈ A∗

define µu(α) = µu(a1)µu(a2) Define a scheduler σ to be u-oblivious if
µu(α) = µu(α′) implies σ(α) = σ(α′) for all α, α′ ∈ A∗. Intuitively, this says
that scheduling decisions do not depend on the actions performed by agent u.
We may therefore view a u-oblivious scheduler σ as a function from (µu(A))∗ to
P(D), where µu(A) = (A\Au)∪{⊥u}. A scheduler is oblivious if it is u-oblivious
for all u ∈ D. Similarly, a scheduler SOLTS is u-oblivious for u ∈ D if for all
states s, t and actions a, if s

a
−→ t and dom(a) = u then s

c
−→ t for all actions

c ∈ Au. Intuitively, this says that the state t carries no information about which
u action was used to reach it. A scheduler SOLTS is oblivious if it is u-oblivious
for all u ∈ D. A dual notion called schedule-awareness is defined as follows.
An agent u is schedule-aware in a scheduled machine (M, σ), if for all runs
r, r′ ∈ R(M, σ), we have that viewu(r) = viewu(r′) implies sch(r) = sch(r′).
Intuitively, this says that the agent always knows the schedule of the current
run.

It can be seen that for an oblivious scheduler σ, we have that σ(α) depends
only on sch(α). We may therefore represent an oblivious scheduler σ by the set
of all its schedules, or more concisely by a set whose prefix closure is the set of
schedules generated by σ. We often do this when presenting examples, where
we represent such sets of schedules by regular expressions, using operators + for
union, concatenation for sequencing, ∗ for (Kleene) finite iteration, and ω for
infinite iteration.

As we confine ourselves to the policy L ≤ H , we need to ensure that the
schedules obtained, which may be observable to L, do not convey information
to L about H ’s activity. Therefore we focus on H-oblivious schedulers, in which
schedules do not carry any information about H actions. Write ΥHO for the set
of schedulers that are H-oblivious, and ΥO for the set of oblivious schedulers.

We will be interested in definitions of security that classify a machine M as
secure or insecure when it is scheduled according to a scheduler σ. We define the
security of scheduled machines (M, σ), and assume agents have a synchronous
view of the machine, make an observation at each moment of time, and are able
to distinguish one moment of time from the next, even if they did not perform
an action. We permit that the agents are aware of the scheduler being used, but
may not have complete information concerning the schedule in a particular run.
In the case when a scheduler SOLTS is given, we define security of the composite

7

system M ‖ A. For our trace-based security properties, it can be shown that
(M, σ) is secure iff M ‖ A is secure for any scheduler SOLTS A that represents
σ. That is, such definitions are implementation independent. However, this is
not true for our bisimulation-based properties. Detailed explanations of this are
presented in Part I of the paper.

We also seek properties with respect to a set of schedulers. Given Σ ⊆ Υ, we
write X(Σ) for the set of machines M such that (M, σ) ∈ X for all σ ∈ Σ. (When
Σ = {σ}, we write simply X(σ).) This gives a notion that is of independent
interest: if M ∈ X(Σ), we are guaranteed that M is secure according to property
X whatever scheduler in Σ is selected. This gives flexibility in the choice of
a scheduler for the machine, which is desirable for machines that need to be
deployed into diverse settings.

Diagrammatic Convention for Scheduler SOLTS: we depict scheduler
SOLTS as graphs in which vertices correspond states, and are labelled by the
agent whose actions are enabled at that state. Edges are labelled by actions and
correspond to transitions. All transitions from a state are depicted: we note that
we use a different diagrammatic convention in the diagrams of machines, where
self-loops are elided.

2.2. Trace-based Security Definitions

For asynchronous systems, the notion of nondeducibility on inputs (NDI) [Sut86]
states that a system is secure if L cannot deduce from its view any information
about the sequence of H actions that have been performed. We formulate the
following three versions of NDI for scheduled machines.

Definition 2.5. Let M be a machine and σ a scheduler.

• (M, σ) ∈ tNDI1 if for all possible L views β ∈ ViewsL(M, σ) and H se-
quences α ∈ Aω

H , there is a run r ∈ R(M, σ) such that viewL(r) = β and
ActH(r) is a prefix of α.

• (M, σ) ∈ tNDI2 if for all possible L views β ∈ ViewsL(M, σ), and se-
quences of H actions α ∈ A∗

H with |α| ∈ PnaH(M, σ, β), there exists r in
R(M, σ) such that ActH(r) = α and viewL(r) = β, where PnaH(M, σ, β) is
the set of numbers n such that there exists r ∈ R(M, σ) with viewL(r) = β

and |ActH(r)| = n.

• (M, σ) ∈ tNDI3 if for all r ∈ R(M, σ), and α ∈ A∗
H with |α| = |ActH(r)|,

there exists a run r′ ∈ R(M, σ) with sch(r) = sch(r′) and viewL(r) =
viewL(r′) and ActH(r′) = α.

Intuitively, the first definition tNDI1 says that L is never able to rule out α

as the sequence of actions that will be performed by H over time. If L is able
to rule out a prefix of α then L will be able to rule out α as an infinite sequence
of H actions, therefore tNDI1 can be regarded as a basic security requirement
— every finite H behaviour is (potentially) possible from every L-view. This
notion does not take into account the fact that L may be able to determine from

8

its view some constraints on the number of H actions that have been (actually)
performed in the run. Plainly, the number of H actions cannot be more than
the number of observations in the view. However, knowledge of the scheduler
may enable L to further restrict this set of possibilities, or even to determine
the exact number of H actions. The second definition tNDI2 is based on this
intuition that the possible numbers of H actions should be all that L knows
about the H actions. (However, the fact that there is nondeterminism in the
scheduler leaves open the possibility that the new sequence of H actions may
need to be scheduled in a different way in order to preserve the L view.) The
last definition tNDI3 states that L should not be able to make any deductions
about what actions H has performed, even if L were to discover the schedule.

Nondeducibility on inputs represents an attack model in which it is assumed
that L is the attacker and H is a trusted agent that may engage in any of its
possible behaviours. A stronger attack model is to consider situations where
H may be a Trojan horse or insider that is attempting to pass information to
L. By engaging in specific behaviour, known to L, it may be possible for the
insider to pass information to L. Wittbold and Johnson [WJ90] showed by
example that nondeducibility on inputs is too weak for this type of attack, and
proposed an alternative definition called nondeducibility on strategies (NDS).
We can formulate a variant of this notion as follows. First we capture the effect
of a particular H-level process:

Definition 2.6. An H strategy in a scheduled machine (M, σ) is a function

π : ViewsH(M, σ) → AH . A run r = s0
a1−→ s1

a2−→ . . .
an−→ sn is consistent

with π if dom(ai) = H implies ai = π(viewH(ri−1)) for all i. Write R(M, σ, π)
for the set of runs in R(M, σ) that are consistent with π.

Intuitively, an H strategy is a rule describing how the agent H chooses its
next action as a function of its view, and a run is consistent with a strategy if at
each stage in the construction of the run, the next H action executed is chosen
according to this rule.

Using the notion of strategy, we may now formulate definitions of security
in scheduled machines that are similar to Wittbold and Johnson’s notion of
nondeducibility on strategies in their simultaneous action setting.

Definition 2.7. Let M be a machine and σ a scheduler.

• (M, σ) ∈ tNDS1 if for every r ∈ R(M, σ) and H strategy π, there exists
r′ ∈ R(M, σ, π) such that viewL(r) = viewL(r′).

• (M, σ) ∈ tNDS2 if for every r ∈ R(M, σ) and H strategy π, there exists
r′ ∈ R(M, σ, π) such that viewL(r) = viewL(r′) and sch(r) = sch(r′).

Intuitively, tNDS1 says that for all strategies π that H might choose to run,
there is no change to the set of possible L views, which is always the same as
the set of possible L views when H does not constrain its behaviour in any way.
Thus, there is no way that a Trojan horse at H could pass information to L by

9

constraining H behaviour to a particular strategy. However, it is also of interest
to consider the security of a scheduled machine when L may learn the schedule
producing a particular run. This leads to tNDS2.

2.3. Bisimulation-based Security Definitions

McCullough introduced a security properties called Restrictiveness (RES)
for nondeterministic event systems with states [McC88]. The essence of this
notion in state-based model is a nondeterministic generalization of the notion of
unwinding relation [GM84], which is a binary relation ≈ on the set of machine
states. In asynchronous systems, an unwinding relation is a bisimulation relation
treating L’s inputs as external actions, with H actions not causing changes
distinguishable by L. The conditions are as follows:

(OC) If s ≈ s′ then obsL(s) = obsL(s′).

(SC) If s ≈ s′ and s
a

−→ t for a ∈ AL, then there exists a state t′ such

that s′
a

−→ t′ and t ≈ t′; and if s ≈ s′ and s′
a

−→ t′ for a ∈ AL, then there
exists a state t such that s

a
−→ t and t ≈ t′.

(LRa) For all states s, t and actions a ∈ AH , if s
a

−→ t then s ≈ t.

For scheduled systems, we defined in part I two variants of this idea.

Definition 2.8. Given a SOLTS M = 〈S, S0,→, O, obs〉,

1. An insensitive synchronous unwinding relation is a relation ≈ ⊆ S × S

including (s0, s0) for all s0 ∈ S0, satisfying OC, SC and LR, where LR is
defined as: for all states s, s′ with s ≈ s′ and actions a, b ∈ AH ∪ ASys, if

s
a

−→ t and s′
b

−→ then there exists s′
b

−→ t′ such that t ≈ t′; if s′
b

−→ t′

and s
a

−→ then there exists s
a

−→ t such that t ≈ t′.

2. A sensitive synchronous unwinding relation is a relation ≈ ⊆ S × S in-
cluding (s0, s0) for all s0 ∈ S0, satisfying OC, SC, LRH and LRSys, where
LRH(LRSys) is defined as: for all states s, s′ with s ≈ s′ and actions

a, b ∈ AH(ASys), if s
a

−→ t then there exists s′
b

−→ t′ such that t ≈ t′; if

s′
b

−→ t′ then there exists s
a

−→ t such that t ≈ t′.

Say that a state s is reachable if there exists an initial state s0 and a sequence
of actions α ∈ A∗ such that s0

α
−→ s. The existence of an (in)sensitive unwinding

on a SOLTS may depend on the behaviour of the SOLTS on unreachable states.
On the other hand, it seems unreasonable that the security of the system should
be affected by the behaviour of the system on unreachable states. Thus, we
henceforth assume that every state is reachable. Note that given the set of
states S of the machine M and Q of the scheduler SOLTS A, it is possible that
not all states in S × Q are reachable in the combined SOLTS M ‖ A even if
all states in S and Q are reachable in M and A, respectively. In this case we
restrict the combined SOLTS M ‖ A to the reachable subset of S × Q.

10

One major difference between RES and NDI/NDS is that the definition of
RES requires an explicit representation of states and transitions, which is more
discriminative than the notion of sets of runs required for NDI/NDS. In order
to formulate a version of RES for a scheduled machine (M, σ) we need to apply
the notion of unwinding relation to the SOLTS (M ‖ A) where A represents σ.

A problem that then arises is two implementations of a scheduler may vary in
their branching structure, but unwinding is sensitive to this structure. It turns
out that satisfaction of tRES1 and tRES2 depends on the choice of the scheduler
implementations: there exists systems M and implementations A1 and A2 of a
scheduler σ such that M ‖ A1 and M ‖ A2 do not both satisfy these properties.
Detailed examples are given in part I. This observation leads to the following
notions, in which we quantify over scheduler implementations in order to obtain
implementation independent definitions of security.

Definition 2.9. 1. (M, σ) ∈ tRES
∀
1(tRES∃1) if there exists an insensitive syn-

chronous unwinding relation on the SOLTS M ‖ A for all (some) H-
oblivious scheduler SOLTS A representing σ.

2. (M, σ) ∈ tRES
∀
2(tRES∃2) if there exists a sensitive synchronous unwinding

relation on the SOLTS M ‖ A for all (some) H-oblivious scheduler SOLTS
A representing σ.

3. Refinement of Schedulers

Refinement relations are used in the literature to relate abstract system
descriptions to more concrete system descriptions in such a way that certain
properties of interest are preserved. Such a relation is useful in ensuring that
design decisions in a top-down development approach preserve system properties
established earlier in the design process. Refinement has been studied for a
variety of underlying system semantics and types of property. In this section
we introduce a notion of refinement between schedulers and study whether the
trace-based security properties in systems with scheduling are preserved by this
definition.

Definition 3.1. For schedulers σ and σ′, we write σ′ ⊑ σ, and say that σ

refines σ′, if σ(α) ⊆ σ′(α) for all α compatible with σ.

Intuitively, σ refines σ′ if σ has fewer choices than σ′. (The contravariance of this
definition follows the convention in the literature, e.g., [HHS87], in the sense that
if A refines B then A is said to be more concrete and thus more deterministic
than B.) We have the following property for the refinement relation.

Lemma 3.2. For schedulers σ and σ′, σ′ ⊑ σ iff for all α ∈ A∗, if α is com-
patible with σ then α is compatible with σ′.

Proof: Straightforward induction on the length of the action sequence α. �

Now we seek an answer to the question whether, given a machine M and a
scheduler σ such that (M, σ) satisfies a property X , a refinement σ′ of σ satisfies

11

(M, σ′) ∈ X . We find that for some properties, such as tNDI3 and tNDS2, which
require that no information is permitted to flow from H to L even when L knows
the exact schedule of a particular run, security is preserved by H-oblivious
refinements. That is, if (M, σ) ∈ tNDI3 (or tNDS2), then (M, σ′) ∈ tNDI3 (or
tNDS2) provided σ ⊑ σ′ and σ′ ∈ ΥHO. However, for the other trace-based
security properties (tNDI1, tNDI2 and tNDS1), this result does not hold. We
start with the following lemma which says that a scheduler σ being H-oblivious
is a necessary condition for a machine to satisfy tNDI3(σ) or tNDS2(σ).

Lemma 3.3. For X ∈ {tNDI3, tNDS2}, if (M, σ) ∈ X then σ is H-oblivious.

Proof: Suppose (M, σ) ∈ tNDI3. We need to show that for all α, α′ ∈ A∗,
if µH(α) = µH(α′), then σ(α) = σ(α′). If α is compatible with σ, then σ(α) is
nonempty. Let u ∈ σ(α), we show u ∈ σ(α′). Let a ∈ A satisfy dom(a) = u,
then α · a is compatible with σ, and it is now sufficient to show α′ · a is also
compatible with σ. By α · a compatible with σ, there exists a run r ∈ R(M, σ)
with Act(r) = α · a. Since µH(α) = µH(α′), we have |(α|AH)| = |(α′|AH)|, and
thus |(α · a|AH)| = |(α′ · a|AH)|. Then by (M, σ) ∈ tNDI3, there exists a run
r′ ∈ R(M, σ) such that viewL(r) = viewL(r′), sch(r) = sch(r′) and ActH(r′) =
(α′ · a)|AH . Because L’s actions are contained in the L-view and there exists
only one Sys action, it is obvious that Act(r′) = α′ ·a, thus u = dom(a) ∈ σ(α′).
This proves σ(α) ⊆ σ(α′). The converse containment follows by symmetry.

If (M, σ) ∈ tNDS2 then by Lemma 5.2(3), which is also Proposition 5.11(3)
in part I of the series, (M, σ) ∈ tNDI3, and the result immediately follows. �

The next lemma shows that for an H-oblivious scheduler, two runs in a ma-
chine are necessarily both compatible or both incompatible with the scheduler
if they have the same L-view and they are scheduled in the same way.

Lemma 3.4. If r ∈ R(M, σ) and σ is H-oblivious, then for all r′ ∈ R(M),
sch(r′) = sch(r) and viewL(r′) = viewL(r) implies r′ ∈ R(M, σ).

Proof: Given r′ ∈ R(M) and σ H-oblivious, we can show that r′ is com-
patible with σ by induction on the prefixes of r′. �

We can now show that tNDI3 and tNDS2 are preserved by refinement by an
H-oblivious scheduler. (Note that the requirement that the refining scheduler
be H-oblivious cannot be relaxed, by Lemma 3.3.)

Proposition 3.5. If (M, σ) ∈ X then (M, σ′) ∈ X for all H-oblivious sched-
ulers σ′ with σ ⊑ σ′, where X ∈ {tNDI3, tNDS2}.

Proof:

• Let M ∈ tNDI3(σ) and σ ⊑ σ′, we show M ∈ tNDI3(σ
′). Let r ∈

R(M, σ′) and α ∈ A∗
H such that |α| = |ActH(r)|. By σ ⊑ σ′, r is also

a run in R(M, σ). By M ∈ tNDI3(σ), there exists a run r′ ∈ R(M, σ)
such that ActH(r′) = α, sch(r′) = sch(r) and viewL(r′) = viewL(r).
Since σ′ is H-oblivious by assumption, together with sch(r′) = sch(r),
viewL(r′) = viewL(r), by Lemma 3.4, we have r′ ∈ R(M, σ′). This gives
M ∈ tNDI3(σ

′).

12

0

s0

0

s1

0

s2

0

s3

0

s4

1

s5

h

h′

τ

τ

τ

h′

h

(a)

0

s0

0

s1

0

s2

0

s3

0

s4

1

s5

h

h′

τ

τ

τ

τ

τ

(b)

0

s0

0

s1

0

s2

0

s3

1

s4

l

l

h

h

h′h′

(c)

Figure 1: (a) a machine showing that tNDI2 is not preserved by refinement, (b) a machine
showing that tNDS1 is not preserved by refinement (c) a machine showing tNDI3(ΥHO) 6⊆

tNDS1(ΥHO)

• Let M ∈ tNDS2(σ) and σ ⊑ σ′, we show M ∈ tNDS2(σ
′). Let r ∈ R(M, σ′)

and let π be an H strategy. Then r ∈ R(M, σ). By M ∈ tNDS2(σ),
there exists r′ ∈ R(M, σ, π) such that viewL(r′) = viewL(r) and sch(r) =
sch(r′). By assumption σ′ is H-oblivious, thus r′ is a run of R(M, σ′) by
Lemma 3.4, and r′ is compatible with π. This gives all that we need to
show M ∈ tNDS2(σ

′). �

A statement similar to that of Proposition 3.5 does not hold for tNDI1,
tNDI2 and tNDS1. For tNDI1 and tNDI2, Figure 1(a) represents a machine M

satisfying (M, σ) ∈ tNDI2 (hence (M, σ) ∈ tNDI1) for the oblivious scheduler σ

with set of schedules (HSys+SysH)(H+L)ω. Let σ′ be the oblivious scheduler
producing schedules of the form HSys(H + L)ω, then σ ⊑ σ′ and σ′ is H-
oblivious. However, (M, σ′) 6∈ tNDI1, since the view 0 a 0 a 1 is incompatible
with any infinite H action sequences starting with h. Also (M, σ′) 6∈ tNDI2.
Figure 1(b) represents a machine M satisfying (M, σ) ∈ tNDS1 with oblivious
scheduler σ producing schedules of the form (H + Sys)Sys(H + L)ω. Define σ′

such that it produces a schedule of the form HSysHω. Then σ ⊑ σ′ and σ′ is
H-oblivious. (Moreover σ′ is deterministic.) It is obvious that (M, σ′) 6∈ tNDS1.

Example 3.6. As an example of the fact that tNDI3 is preserved by refinement,
consider the machine M depicted in Figure 1(c), and the oblivious scheduler σ

that produces schedules in (L+H)ω. We have that (M, σ) ∈ tNDI3. Because Sys

is never scheduled, L always knows the schedule of the current run by observing
when it is scheduled, but it has no way to determine from its view exactly which
actions are being performed by H. Let another oblivious scheduler σ′ produce
schedules (LH)ω. Then we have σ ⊑ σ′. It can also be shown that (M, σ′) ∈
tNDI3. Intuitively, since σ′ generates a subset of the schedules of σ, and M is
secure for every schedule in σ, the machine M is also secure for every schedule
in σ′. (In this example the schedulers are L-oblivious. Proposition 3.5 also
applies to the case where the scheduled domain may depend on what L actions
have been performed.)

13

Note that we refine just the scheduler, but not the system. We remark that
the same example shows that tNDI3 is not preserved by refinement of the system
(by reducing nondeterminism in the system). For example, if the system were
refined by removing the transition from s0 to s2, then L would be able to deduce
from the view 0 ℓ 0 a 1 that H performed h′ in the second step.

Given the refinement relation on schedulers, one may regard a scheduler σ as
a collection of its deterministic fragments, i.e., the set of deterministic schedulers
that refine σ. Define σd as the set {σ′ ∈ Υd | σ ⊑ σ′}. The following result
states, intuitively, that the H-oblivious deterministic fragments of σ cover all
the behaviour of σ.

Lemma 3.7.

1. R(M, σ′) ⊆ R(M, σ) for all machines M and σ′ ∈ σd.

2. If σ is H-oblivious, then for all r ∈ R(M, σ), there exists an H-oblivious
scheduler σ′ ∈ σd such that r ∈ R(M, σ′).

Proof: For (1) it is trivial. For (2), given a run r = s0
a1−→ s1 . . .

an−→ sn in
R(M, σ), one can construct a deterministic H-oblivious scheduler σ′ satisfying
σ′(a1 . . . ai) = {dom(ai+1)} for all i = 1 . . . n, in such a way that additionally,
σ′(α) = σ′(α′) for all α, α′ ∈ A∗ satisfying µH(α) = µH(α′). (This is done
by assigning σ′(α) = {dom(ai+1)} whenever µH(α) = µH(a1 . . . ai).) Then
a1 . . . an is also compatible with σ′, so r ∈ R(M, σ′). Note that such a scheduler
may not be unique. �

Lemma 3.7(1) states that a refinement of a scheduler yields a smaller set of
runs than the scheduler it refines. Lemma 3.7(2) states that the collection of
H-oblivious deterministic fragments are sufficient to represent the behaviours
of an H-oblivious scheduler.

We have shown that some properties, such as tNDI3 and tNDS2, are preserved
by all H-oblivious refinements of a scheduler. Now we show the converse: if a
machine is secure with respect to all H-oblivious schedulers in σd, then it is
secure with respect to σ. Furthermore, this is the case not just for tNDI3 and
tNDS2, but for all our trace-based properties.

Proposition 3.8. For X ∈ {tNDI1, tNDI2, tNDI3, tNDS1, tNDS2} and σ an H-
oblivious scheduler, we have the following. If (M, σ′) ∈ X for all H-oblivious
σ′ ∈ σd, then (M, σ) ∈ X.

Proof: For tNDI1, suppose a machine M does not satisfy tNDI1(σ). Then
M does not satisfy tNDI3(σ), i.e., there exists a run r ∈ R(M, σ) and α ∈ A∗

H

with |α| = |ActH(r)| such that for all runs r′, sch(r) = sch(r′) and viewL(r) =
viewL(r′) implies that ActH(r′) 6= α. By Lemma 3.7(2), there exists an H-
oblivious scheduler σ′ ∈ σd such that r ∈ R(M, σ′). We show that M 6∈
tNDI1(σ

′). Since σ′ is both deterministic and H-oblivious, L is schedule-aware
in (M, σ′), so it is equivalent to show M 6∈ tNDI3(σ

′). For this it suffices to
show that for all r′′ ∈ R(M, σ′), viewL(r′′) = viewL(r) implies ActH(r′′) 6= α.

14

(It is obvious that sch(r′′) = sch(r) and |α| = |ActH(r)|.) By Lemma 3.7(1) we
have r′′ ∈ R(M, σ). Then from the fact that for all runs r′, sch(r) = sch(r′)
and viewL(r) = viewL(r′) implies that ActH(r′) 6= α, we have ActH(r′′) 6= α.
Therefore M 6∈ tNDI3(σ

′), and thus M 6∈ tNDI1(σ
′). The cases of tNDI2(σ) and

tNDI3(σ) are similar.
For tNDS1, suppose a machine M does not satisfy tNDS1(σ). Then M does

not satisfy tNDS2(σ). Thus there exists an H strategy π and run r ∈ R(M, σ)
such that for all r′ ∈ R(M, σ, π) with sch(r′) = sch(r), we have viewL(r) 6=
viewL(r′). Similarly to the argument above, by Lemma 3.7(2) there exists an H-
oblivious σ′ ∈ σd such that r ∈ R(M, σ′). We show that M 6∈ tNDS1(σ

′), which
is equivalent to showing M 6∈ tNDS2(σ

′), by the fact that L is schedule-aware
in (M, σ′). Let r′′ be a run of R(M, σ′, π). We show that if sch(r′′) = sch(r)
then viewL(r′′) 6= viewL(r). Suppose viewL(r′′) = viewL(r). Then from the
fact that σ is H-oblivious, by induction on the length of r′′ we have that r′′ is
also a run of R(M, σ, π). Thus from the fact that for all runs r′ ∈ R(M, σ, π),
sch(r) = sch(r′) implies viewL(r) 6= viewL(r′), we have viewL(r′′) 6= viewL(r),
which is contradiction. Therefore M 6∈ tNDS2(σ

′) and thus M 6∈ tNDS1(σ
′). The

case of tNDS2(σ) can be proved in a similar way. �

Note that the contrapositive of this result means that to demonstrate that a
system is insecure, it suffices to find a single deterministic schedule with respect
to which it is insecure. We will use this fact in Section 5 to prove that some of
the distinctions between our definitions of security collapse when we consider
security with respect to all schedulers.

4. Refinement of Scheduler SOLTS

In Section 3, we considered a refinement relation between (abstract) sched-
ulers, and studied the preservation of trace-based security definitions under this
notion of refinement. This section, we take up the question of the preservation of
the bisimulation-based definitions of the previous section under refinement. In
particular, we show that tRES∀1 and tRES

∀
2 are preserved under scheduler refine-

ment, but tRES∃1 and tRES
∃
2 are not. In order to do so, we first develop a notion

of refinement on the concrete scheduler SOLTS representations of schedulers.
We define a refinement relation on scheduler SOLTS as the reverse of simula-

tion on states of schedulers SOLTS. Given two scheduler SOLTS A1 = 〈Q1, Q
1
0,→, O, obs〉

and A2 = 〈Q2, Q
2
0,→, O, obs〉, a simulation of A1 by A2 is a relation ≤⊆

Q1 × Q2, such that if q1 ≤ q2 then

1. sched(q1) = sched(q2),

2. for all a ∈ A, if q1
a

−→ q′1 then there exists q′2 such that q2
a

−→ q′2 and
q′1 ≤ q′2.

Intuitively, q1 ≤ q2 means that every possible behavior from the state q1 is also
possible from the state q2. Define a bisimulation between A1 and A2 to be a
relation ≡⊆ Q1 × Q2 such that if q1 ≡ q2 then

1. sched(q1) = sched(q2),

15

2. for all a ∈ A, if q1
a

−→ q′1 then there exists q′2 such that q2
a

−→ q′2 and
q′1 ≡ q′2.

3. for all a ∈ A, if q2
a

−→ q′2 then there exists q′1 such that q1
a

−→ q′1 and
q′1 ≡ q′2.

Plainly, the identity relation on the states of A is a simulation of A by A, in
fact, a bisimulation. Given two scheduler SOLTS A1, A2, with states q1, q2,
respectively, write (A1, q1) ≤ (A2, q2) if there exists a simulation of A1 by
A2 such that q1 ≤ q2. Similarly, write (A1, q1) ≡ (A2, q2) if there exists a
bisimulation between A1 and A2 such that q1 ≡ q2. We have the following
observations.

Lemma 4.1. For all q1, q2, q3 as states of scheduler SOLTS A1,A2,A3,

1. (A1, q1) ≤ (A2, q2) and (A2, q2) ≤ (A3, q3) implies (A1, q1) ≤ (A3, q3).
(transitivity)

2. (A1, q1) ≡ (A2, q2) implies (A1, q1) ≤ (A2, q2).

Proof: Trivial by definition. �

Simulation can be used to define refinement between states of scheduler
SOLTS. If state s simulates state t, then state s has at least as much behaviour
as state t. We lift it to a relation between scheduler SOLTS, by defining a
relation ⊑S on all scheduler SOLTS on the signature (A, D, dom).

Definition 4.2. For H-oblivious scheduler SOLTS A1, A2, define A1 ⊑S A2,
or A2 refines A1, if for all initial states q2 of A2, there exists an initial state q1

of A such that (A2, q2) ≤ (A1, q1).

Our main concern in this section is the preservation of the unwinding-based
security notions under this notion of refinement. Before we come to the main
results, we develop a few lemmas. The following result states that for two states
in a machine running under a scheduler to be related by a sensitive synchronous
unwinding, the corresponding scheduler states must be bisimilar. (Since it also
talks about future behaviour, this is a stronger conclusion than that of the
similar Lemma 6.2(1) in part I, which says only that the same agent is scheduled
at states related by the unwinding.)

Lemma 4.3. Let M be a machine and A be an H-oblivious scheduler SOLTS.
For all states s1, s2 of M and q1, q2 of A, if there exists a sensitive synchronous
unwinding relation ∼ on M ‖ A such that (s1, q1) ∼ (s2, q2), then (A, q1) ≡
(A, q2).

Proof: Define a relation ≈ on the states of A by q1 ≈ q2 if there exists
a sensitive synchronous unwinding relation ∼, and states s1, s2 of M such that
(s1, q1) ∼ (s2, q2). We show that ≈ is a bisimulation on the state space of
A. Let q1 ≈ q2. Then by definition, there exists states s1, s2 of M such that
(s1, q1) ∼ (s2, q2) by a sensitive synchronous unwinding relation ∼.

16

(1) sched(q1) = sched(q2) is by (s1, q1) ∼ (s2, q2) and the definition of sensi-
tive unwinding.

(2) We consider the cases a ∈ AL, a ∈ AH and a ∈ ASys separately.

For all a ∈ AL, and q1
a

−→ q′1, we have (s1, q1)
a

−→ (s′1, q
′
1) for some

s′1. Since ∼ is a sensitive unwinding relation, by SC, there exists a state

(s′2, q
′
2) such that (s2, q2)

a
−→ (s′2, q

′
2) and (s′1, q

′
1) ∼ (s′2, q

′
2). So q′1 ≈ q′2

by definition, and q2
a

−→ q′2.

For all actions a ∈ AH , and q1
a

−→ q′1, we have (s1, q1)
a

−→ (s′1, q
′
1)

for some s′1. Since ∼ is a sensitive unwinding relation, by an instance
of LRH with pair of actions a, a, there exists a state (s′2, q

′
2) such that

(s2, q2)
a

−→ (s′2, q
′
2) and (s′1, q

′
1) ∼ (s′2, q

′
2). So q′1 ≈ q′2 by definition, and

q2
a

−→ q′2.

The case of a ∈ ASys is similar to that of a ∈ AH .

(3) The argument for part (3) of the definition of bisimulation is symmetric
to that for (2). �

Using the above lemma, we can now show that the existence of a sensitive
unwinding is preserved under refinement of the scheduler implementation.

Proposition 4.4. For all machines M and H-oblivious scheduler SOLTS A1

and A2, if A2 ⊑S A1 and there exists a sensitive unwinding relation on M ‖ A2,
then there exists a sensitive unwinding relation on M ‖ A1.

Proof: Suppose A2 ⊑S A1. Let S be the state space of M , and Q1, Q2 be
the state spaces of A1 and A2. Suppose ∼⊆ (S ×Q2)

2 is a sensitive unwinding
relation on M ‖ A2, define a relation ≈ on S × Q1, by (s1, q1) ≈ (s2, q2)
if (A1, q1) ≡ (A1, q2) and there exists r1, r2 ∈ Q2 with (A1, q1) ≤ (A2, r1),
(A1, q2) ≤ (A2, r2), and (s1, r1) ∼ (s2, r2). We show that ≈ is a sensitive
unwinding relation on M ‖ A1.

Let (s1, q1) ≈ (s2, q2), we show the following conditions hold.

• OC is trivial.

• To show SC, if (s1, q1)
a

−→ (s′1, q
′
1) with a ∈ AL, then s1

a
−→ s′1 and q1

a
−→

q′1. By (A1, q1) ≤ (A2, r1) there exists a state r′1 such that r1
a

−→ r′1 and

(A1, q
′
1) ≤ (A2, r

′
1). Therefore (s1, r1)

a
−→ (t1, r

′
1). Since ∼ is a sensitive

unwinding relation there is a state (t2, r
′
2) such that (s2, r2)

a
−→ (t2, r

′
2)

and (t1, r
′
1) ∼ (t2, r

′
2). Then we have s2

a
−→ t2. Since (A1, q1) ≡ (A1, q2),

there exists a state q′2 ∈ Q2 with q2
a

−→ q′2 and (A1, q
′
1) ≡ (A1, q

′
2). Then

we have (s2, q2)
a

−→ (t2, q
′
2). Note by Lemma 4.3 (A2, r

′
1) ≡ (A2, r

′
2). Since

(A1, q
′
2) ≡ (A1, q

′
1) and (A1, q

′
1) ≤ (A2, r

′
1) we obtain (A1, q

′
2) ≤ (A2, r

′
2)

by Lemma 4.1. Thus we have all that we need to show (t1, q
′
1) ≈ (t2, q

′
2).

17

0

s0

0

s1

0

s2

0

s3

1

s4

h

h′

h, h′

h, h′,τ

τh, h′, τ

H

q0

H

q1

Sys

q2

...

...

H

q′0

H

q′1

H

q′2

Sys

q′3

...

...

A1

A2

M

Figure 2: Insensitive unwinding is not preserved by scheduler SOLTS refinement

• For LRH , let a, b ∈ AH , if (s1, q1)
a

−→ (t1, q
′
1), we show there exists a

state (t2, q
′
2) such that (s2, q2)

b
−→ (t2, q

′
2) and (t1, q

′
1) ≈ (t2, q

′
2). By

assumption we have s1
a

−→ t1 and q1
a

−→ q′1. By (A1, q1) ≤ (A2, r1) there

exists a state r′1 such that r1
a

−→ r′1 and (A1, q
′
1) ≤ (A2, r

′
1). Therefore

(s1, r1)
a

−→ (t1, r
′
1). Since ∼ is a sensitive unwinding relation there exists

(s2, r2)
b

−→ (t2, r
′
2) such that (t1, r

′
1) ∼ (t2, r

′
2), by LRH . Therefore s2

b
−→

t2. Since (A1, q1) ≡ (A1, q2) by Lemma 4.3, there exists a state q′2 ∈ Q2

with q2
a

−→ q′2 and (A1, q
′
1) ≡ (A2, q

′
2). As A1 is H-oblivious we also have

q2
b

−→ q′2. Therefore (s2, q2)
b

−→ (t2, q
′
2). Since (A2, r

′
1) ≡ (A2, r

′
2) by

Lemma 4.3, we have (A1, q
′
2) ≤ (A2, r

′
2) by Lemma 4.1. Thus we have all

that we need to show that (t1, q
′
1) ≈ (t2, q

′
2).

• If (s1, q1)
τ

−→ (t1, q
′
1), then there exists a state (t2, q

′
2) such that (s2, q2)

τ
−→

(t2, q
′
2) and (t1, q

′
1) ≈ (t2, q

′
2). This can be proved in a similar way to the

above cases.

• To show (s0, q
1
0) ≈ (s0, q

1
0) for every s0 ∈ S0 and q1

0 ∈ Q1, note that since
A2 ⊑S A1, there exists q2

0 ∈ Q2 such that (A1, q
1
0) ≤ (A2, q

2
0). Moreover

we have (A1, q
1
0) ≡ (A1, q

1
0), and (s0, q

2
0) ∼ (s0, q

2
0) by the fact that ∼ is a

sensitive unwinding relation. �

Note that this result does not hold for insensitive unwinding relations. This
can be seen from an example presented in Part I, shown here as Figure 2. We
showed in part I that A1 and A2 represent the same scheduler, and there is an
insensitive unwinding relation on M ‖ A1, but there are no insensitive unwinding
relations on M ‖ A2. Since we also have that A1 ⊑S A2, the same example
shows that insensitive unwinding is not preserved by refinement of scheduler
SOLTS.

The following example provides an illustration of Proposition 4.4.

Example 4.5. Consider a system in which a transmission buffer is shared be-
tween two users, H and L, and the system Sys, under the control of a scheduler.

18

H

LSys
Buffer

Figure 3: A transmission buffer example

⊥

s0

suc

s1

full

s2

⊥

s3

full

s4

τ

τ

sndL

τ

τ

sndL

sndL sndH

M

L

q1

H

q0

Sys

q3

Sys

q2

A

L

q′1

H

q′0

Sys

q′3

Sys

q′2

A′

Figure 4: Machine for the buffer and two scheduler SOLTS

The high level structure of the system is shown in Figure 3. It works in the fol-
lowing way. A user H or L, when allocated a time slot, may request a message
to be sent by writing it to the buffer. A user may also choose to skip. If the
buffer contains a message when the system Sys is scheduled, it will dispatch the
message immediately. The system does not change the buffer if it is empty.2

We assume the buffer has a capacity of at most one message. As usual, the
security policy says that H is not allowed to interfere with L.

A machine M representing the buffer is shown on the left of Figure 4. State
s0 represents that the buffer is empty, in states s1 and s1 it contains an L

message and in states s3 and s4 it contains an H message. A user can attempt
to write to the buffer by performing the action sndL (or sndH). If L writes to
the buffer when it is empty, then L subsequently observes “suc”, indicating that
the write was successful. If the buffer is not empty when L tries to write, the
write will fail and a “full” message is returned to L. (Our graphical convention
for machines is that only L’s observations are shown in the graph, but in this
example we may assume, for the sake of simplicity, that H makes the same
observation as L at every state, which implies that H can also determine, either
from its observation or its knowledge of its action, whether the buffer contains a
message.) Observation ⊥ is used to denote empty observation. Recall that we
elide self-loops, so, e.g., there is an implicit edge from s1 to s1 labelled sndH .

Consider the scheduler SOLTS A in the middle of Figure 4, which represents
an oblivious scheduler that generates schedules of the form (HSys+LSys)ω. We

2This is a simplified variant of the motivating example from Part I of the series, where the
system may also store information in the buffer.

19

show that M ‖ A is secure, by showing that there exists a sensitive synchronous
unwinding relation in the combined system M ‖ A. For example, one may define
a relation ∼ as the set

{((s0, q0), (s0, q0)), ((s0, q1), (s0, q1)), ((s0, q2), (s3, q2)),
((s3, q2), (s0, q2)), ((s3, q2), (s3, q2)), ((s1, q3), (s1, q3))}.

This can be shown to be a sensitive unwinding relation on the scheduled system
M ‖ A. We leave this as an exercise for the interested reader.

Now consider the scheduler SOLTS A′, on the right of Figure 4 which rep-
resents a scheduler that contains schedules of the form (HSysLSys)ω. Now
we have A ⊑S A′, i.e., the SOLTS A′ refines the SOLTS A, in that A′ is
simulated by A. Taking effectively the same relation as above, i.e., defining
(si, q

′
j) ∼

′ (sk, q′l) iff (si, qj) ∼ (sk, ql), it can also be verified that ∼′ is a sensi-
tive synchronous unwinding relation on M ‖ A′.

Essentially, the machine M is insecure, but the only way for H to pass
information to L is to write to the buffer and let L detect whether the buffer is
full. A carefully designed scheduler, such as the one represented by A, may rule
out such possible flows. Moreover, removing choices from A, as implemented in
A′, does not turn a secure system into an insecure one. �

Next, we connect the refinement relation ⊑ on schedulers and the refinement
relation ⊑S on scheduler SOLTS by the following lemmas. Given a scheduler σ,
its characteristic scheduler Aσ (as per Definition 4.3 in Part I of the paper) is
〈Q, Q0,→, {⊥}, obs〉 where

1. Q = A∗ × D,

2. Q0 = {(ǫ, v) | v ∈ σ(ǫ)},

3. (γ, v)
a

−→ (γ′, w) iff dom(a) = v and γ′ = γ · a and w ∈ σ(γ′),

4. obs(v, γ) = ⊥ for all v ∈ D and γ ∈ Q.

If σ is H-oblivious, in a similar way, Aσ
H is a deterministic H-oblivious scheduler

SOLTS that characterizes σ. We show that both Aσ and Aσ
H are maximal

implementations, in the sense that if σ is refined by σ′, then Aσ is refined by
every implementation of σ′.

Lemma 4.6. Let σ and σ′ be two (H-oblivious) schedulers satisfying σ′ ⊑ σ.
Then Aσ′

⊑S A (Aσ′

H ⊑S A) for every (H-oblivious) scheduler SOLTS A repre-
senting σ.

Proof: Let Aσ′

= 〈Q′, Q′
0,→, {⊥}, obs〉, and let A = 〈Q, Q0,→, {⊥}, obs〉

such that A represents σ, i.e., for all sequences α ∈ A∗ compatible with σ, we
have σA(α) = σ(α). Now we define a relation ≤ ⊆ Q×Q′ by for all q1 ∈ Q and

q2 ∈ Q′, q1 ≤ q2 if there exists α ∈ A∗ and q0 ∈ Q0 such that q0
α

−→ q1 and
q2 = (α, sched(q1)). We show that ≤ is a simulation.

1. If q1 ≤ q2 then for some α, we have q2 = (α, sched(q1)), so sched(q2) =
sched(q1), as required.

20

2. Suppose q1 ≤ (α, u) and q1
a

−→ q′1. Then there exists q0 ∈ Q0 such that

q0
α

−→ q1 and u = sched(q1) = dom(a). Thus u ∈ σA(α) = σ(α), hence
u ∈ σ′(α) by σ′ ⊑ σ. Moreover, with v = sched(q′1), we have v ∈ σA(α·a) =

σ(α · a), hence v ∈ σ′(α · a). By construction of Aσ′

, (α, u)
a

−→ (α · a, v)

and since q0
α·a
−→ q′, we have q′1 ≤ (α · a, v).

It is obvious that for all q0 ∈ Q, we have q0 ≤ (ǫ, sched(q0)) ∈ Q′
0. Therefore

A ≤ Aσ′

, and Aσ′

⊑S A.
Suppose σ′ is H-oblivious. An argument similar to that above shows that

for every H-oblivious scheduler SOLTS A representing σ we have A ≤ Aσ′

H , and

thus Aσ′

H ⊑S A. �

In particular, it follows from this result that if there exists a refinement
relation between two schedulers, we can establish a refinement relation between
their corresponding characteristic scheduler SOLTS. Moreover, we obtain the
equivalence of tRES∀2 with respect to a scheduler σ and the existence of sensitive
unwinding relation on the SOLTS M ‖ Aσ.

Corollary 4.7.

1. Aσ1 ⊑S Aσ2 and Aσ1

H ⊑S Aσ2

H for all schedulers σ1, σ2 satisfying σ1 ⊑ σ2.

2. (M, σ) ∈ tRES
∀
2 iff there exists a sensitive unwinding relation on M ‖ Aσ

H .

Proof: Part (1) is immediate from Lemma 4.6. For part (2), suppose
that there exists a sensitive unwinding on M ‖ Aσ

H . Let A be any H-oblivious
scheduler SOLTS representing σ. By Lemma 4.6, Aσ

H ⊑S A. Thus, by Propo-
sition 4.4, there exists a sensitive unwinding on M ‖ A. This shows that
(M, σ) ∈ tRES

∀
2 . The converse is immediate from the definition of tRES∀2 and

the fact that Aσ
H is an H-oblivious scheduler SOLTS representing σ. �

The above connections imply the following result that tRES∀2 is preserved by
refinement of H-oblivious schedulers.

Proposition 4.8. Let σ1, σ2 be two H-oblivious schedulers satisfying σ1 ⊑ σ2.
Then for all machines M , if M ∈ tRES

∀
2(σ1) then M ∈ tRES

∀
2(σ2).

Proof: Suppose σ1 ⊑ σ2. Let M be a machine in tRES
∀
2(σ1). Since

M ∈ tRES
∀
2(σ1) and Aσ1

H is an H-oblivious scheduler SOLTS representing σ1,
there exists a sensitive unwinding relation on M ‖ Aσ1

H . By Lemma 4.6,
Aσ1

H ⊑S A′ for every H-oblivious scheduler SOLTS A′ representing σ2. Thus,
by Proposition 4.4, there also exists a sensitive unwinding relation on M ‖ A′

for all A′ representing σ2. Therefore M ∈ tRES
∀
2(σ2). �

A similar result can be proved for tRES
∀
1 using a simpler proof technique.

(Actually, this simpler technique could also be applied to give proof of Proposi-
tion 4.8, but the sequence of results on scheduler SOLTS refinement yields more
information, and we have other applications for them below.)

Proposition 4.9. Let σ1, σ2 be two H-oblivious schedulers satisfying σ1 ⊑ σ2.
Then for all machines M , if M ∈ tRES

∀
1(σ1) then M ∈ tRES

∀
1(σ2).

21

0
r0

0
s1

0
s0

h1

h2

0
t3

0
t2

0
t1

0
t0

l1, l2

l1, l2

l1, l2

l1, l2

0
u3

0
u2

0
u1

0
u0

l1, l2

l1, l2

l1, l2

l1, l2

1

0

h1, h2, l1, l2

h1, h2, l1, l2

l1, l2

h1, h2

h1, h2

l1, l2

M

Figure 5: A counterexample showing tRES∃
2

is not preserved by refinement

Proof: Suppose (M, σ1) ∈ tRES
∀
1 , we show that (M, σ2) ∈ tRES

∀
1 . Let A be a

scheduler SOLTS that implements σ2, with state space Q. Define a scheduler
SOLTS A′ that is constructed by taking a disjoint union of Aσ1

H with A. First
we show that A′ represents σ1. Given α ∈ A∗, we have σA′ (α) = σ1(α)∪σ2(α),
by Aσ1

H representing σ1 and A representing σ2. Since σ1 is refined by σ2, we
have σ2(α) ⊆ σ1(α), and thus σA′(α) = σ1(α).

Since M ∈ tRES
∀
1(σ1), there exists an insensitive unwinding relation ∼ on

M ‖ A′. Let M have state space S, and we define ∼′=∼ ∩(S × Q) to be the
restriction of ∼ to the component M ‖ A of M ‖ A′. (Note that M ‖ A′ consists
of two disconnected components M ‖ Aσ1

H and M ‖ A. It follows from the fact
that ∼ is an insensitive unwinding relation on M ‖ A′ that ∼′ is an insensitive
unwinding relation on M ‖ A. For the constraint s0 ∼′ s0 on initial states s0

this is straightforward, as is the constraints OC for ∼′. For SC, note that if
s ∼′ t and s

a
−→ s′ where s, t, s are states of M ‖ A, then we have s ∼ t and

s
a

−→ s′ in M ‖ A′. By SC for M ‖ A′ we have that there exists a state t′

of M ‖ A′ with t
a

−→ t′ and t ∼ t′. But since A′ is constructed as a disjoint

union, the fact that t
a

−→ t′ and t is a state of A implies that also t′ is a state
of A, and it follows that t ∼′ t′, giving the requirement of SC for A. The other
constraints for insensitive unwinding follow by a similar argument. �

However, neither tRES∃1 nor tRES∃2 is preserved by refinement of H-oblivious
schedulers. We take the machine M which is depicted in Figure 5. Let the H-
oblivious scheduler σ encode schedules in the form HLL(H + L)Lω. Then we
have M ∈ tRES

∃
2(σ), i.e., there exists an H-oblivious scheduler SOLTS repre-

senting σ, such that an (in)sensitive unwinding relation can be found on the
composed SOLTS. To see this, consider the scheduler SOLTS A1 shown in
Figure 7. A synchronous sensitive unwinding relation ∼ on M ‖ A1 can be
constructed as follows.

22

• For the lower schedule HLLL . . ., we let (s0, q1) ∼ (s0, q1), (t1, q
′
1) ∼

(t2, q
′
1), (s1, q

′′
1) ∼ (s3, q

′′
1) and (s2, q

′′
1) ∼ (s4, q

′′
1). Since the fourth tran-

sition is scheduled to L, s5 and s7 both lead to “0” as L’s observations.
Similarly, s6 and s8 both lead to “1” as L’s observations.

• For the upper schedule HLLH . . ., we have (s0, q1) ∼ (s0, q1), (t1, q
′
1) ∼

(t2, q
′
1), (s1, q

′′
1) ∼ (s4, q

′′
1) and (s2, q

′′
1) ∼ (s3, q

′′
1). Now since the fourth

transition is scheduled to H , s5 and s7 both lead to L’s observation “0”,
and s6 and s8 both lead to L’s observation “1”.

Therefore (M, σ) ∈ tRES
∃
2 , and thus (M, σ) ∈ tRES

∃
1 , by Proposition 6.6(2)

in part I. Next, we define an H-oblivious scheduler σ′ satisfying σ ⊑ σ′ and
M 6∈ tRES

∃
2(σ′).

• σ′(ǫ) = {H},

• σ′(h1) = σ′(h2) = {L},

• σ′(α) = {L} for all compatible α with |α| = 2,

• σ′(x l1 l1) = σ′(x l2 l2) = {H} for all x ∈ AH ,

• σ′(x l1 l2) = σ′(x l2 l1) = {L} for all x ∈ AH ,

• σ′(α) = {L} for all compatible α with |α| > 3.

We show that for all scheduler SOLTS A that represent σ′, there does not exist
a synchronous sensitive unwinding relation on M ‖ A. Intuitively, the reason is
as follows. Note that in the second and third step, L performs two actions, and
under the scheduler σ′, these actions determine whether L or H is scheduled
in the fourth step. Each of the four horizontal streams under this scheduler
results in a single final observation. The choice of L or H in the fourth step
can change the final observation in the upper two streams, but not in the lower
two streams. However, an unwinding would need to relate, already after the
second step, each one of the upper two streams to one of the lower two streams
in such a way as to lead to the same final observation. Since there is, after the
second step, not enough information to know which lower stream will produce
the same result as an upper stream, this cannot be done.

More precisely, suppose there were a scheduler SOLTS A = 〈Q, Q0,→
, {⊥}, obs〉 representing σ′ and an unwinding relation ∼ on M ‖ A. For q0 ∈ Q0,
we would have (s0, q0) ∼ (s0, q0). Then step by step we show that the existence
of ∼ leads to contradiction.

1. Since σ′(ǫ) = {H}, we must have sched(q0) = H . Let q1 be a state of A such

that (s0, q0)
h1−→ (t1, q1). Choosing h1, h2 for an application of LRH , there

exists a state (t2, q
′
1) for some q′1 ∈ Q, such that (s0, q0)

h2−→ (t2, q
′
1) and

(t1, q1) ∼ (t2, q
′
1). By definition of σ′, we have sched(q1) = sched(q′1) = L.

23

2. Since (t1, q1) ∼ (t2, q
′
1), we choose l1 ∈ AL for an application of SC. Let q2

be a state of A such that (t1, q1)
l1−→ (s1, q2). Then by SC, there exists some

s ∈ {s3, s4} and q′2 ∈ Q, such that (t2, q
′
1)

l1−→ (s, q′2) and (s1, q2) ∼ (s, q′2).
By definition of σ′, we have sched(q2) = sched(q′2) = L. For the destination
state s, we show it is impossible to have (s1, q2) ∼ (s, q′2) no matter whether
we let s be s3 or s4.

(a) Suppose s = s3. We show it cannot be the case that (s1, q2) ∼ (s3, q
′
2).

Because if so, let us choose l1 ∈ AL as the action for the next transition.
Since M is deterministic from s1 and s3, it follows using SC that we
would have (s5, q3) ∼ (s7, q

′
3) for some q3, q

′
3 ∈ Q. Since σ′(h1 l1 l1) =

σ′(h2 l1 l1) = {H}, we must have that sched(q3) = sched(q′3) = H .
Now an application of action h1 from (s5, q3) leads to the state (v0, q4),
and by LRH we must be able to match this by a transition on h1 from
(s7, q

′
3). Any such transition must be to a state of the form (v1, q

′
4) for

some q′4 ∈ Q, so that we have (v0, q4) ∼ (v1, q
′
4) by LRH . But since L

makes observation 0 at (v0, q4) and observation 1 at (v1, q
′
4), this gives

a contradiction with OC.
(b) Suppose s = s4. An argument similar to that above shows that we can-

not have (s1, q2) ∼ (s4, q
′
2) either. For, if so, then we choose l2 ∈ AL

as the action for the next transition. Since σ′(h1 l1 l2) = σ′(h2 l1 l2) =
{L}, the fourth step will be an action of L. The determinism of M ,
together with two applications of SC, leads to the conclusion that we
must have a relation of the form (v0, q4) ∼ (v1, q

′
4), which again con-

tradicts OC.

Thus, there does not exist a sensitive unwinding relation on M ‖ A, i.e.,
(M, σ′) 6∈ tRES

∃
2 . As both σ and σ′ never schedule Sys, there also does not

exist an insensitive unwinding relation on M ‖ A, and we have (M, σ′) 6∈ tRES
∃
1 .

Nevertheless, one may easily observe that (M, σ′) is in tNDS2, and this is another
example showing that the inclusion tRES

∃
2 ⊂ tNDS2 is proper.

Recall that for scheduled machines in which L is schedule-aware, the tNDI

properties collapse (see Lemma 5.2(1), which is Proposition 5.6(2) in part I of
the series) as do the tNDS properties (see Lemma 5.2(2), which is proposition
5.11(3) in part I of the series). We now consider whether there is a similar
collapse for the tRES properties. Since the tRES properties concern scheduler
implementations, the existence of unwinding relations in a scheduled machine
(M, σ) does not seem to be related with L’s ability to know the current sched-
ule. We strengthen the requirement by showing the relationship between tRES

properties when a scheduler is deterministic. (Recall that L is schedule-aware
when the scheduler is deterministic and H-oblivious.)

Proposition 4.10. If H-oblivious scheduler SOLTS A represents deterministic
scheduler σ, then A ⊑S Aσ

H .

Proof: Recall that the characteristic scheduler SOLTS Aσ
H has the state space

(µH(A))∗ × D, initial states {(ǫ, v) | v ∈ σ(ǫ)}, and transition relation defined

24

by (γ, v)
a

−→ (γ′, w) iff dom(a) = v, γ′ = γ · µH(a) and w ∈ σ(γ′). Let the
scheduler SOLTS A = 〈Q, Q0,→, {⊥}, obs〉 represent σ, i.e., for all states q and

γ ∈ A∗, we have σ(γ) = {sched(q) | q0
γ

−→ q, q0 ∈ Q0}. Let σ be deterministic,
i.e., for all compatible α ∈ A∗, we have that σ(α) is a singleton set. We show
that Aσ

H is simulated by A.
Define the relation ≤⊆ (µH(A)∗ × D) × Q, by (γ, u) ≤ q if there exists

q0 ∈ Q0 such that q0
γ

−→ q and u = sched(q). We show that ≤ is a simulation.
Suppose that (γ, u) ≤ q. We check the two conditions for ≤ to be a simulation.

By definition, we have that q0
γ

−→ q and u = sched(q) for some q0 ∈ Q0.

(1) Since sched((γ, u)) = u, we have that sched((γ, u)) = u = sched(q), as
required.

(2) Suppose a ∈ A and (γ, u)
a

−→ (γ′, v). Then dom(a) = sched((γ, u)) =
u = sched(q), so a is enabled at q. Also, by construction of Aσ, we have

γ′ = γ · µH(a) and v ∈ σ(γ′). Let q
a

−→ q′. Then q0
γ

−→ q
a

−→ q′, and we

obtain that q0
γ′

−→ q′. Since A represents σ, it follows that sched(q′) ∈
σ(γ′). But, since σ is deterministic, and we also have v ∈ σ(γ′), this

implies that sched(q′) = v. Thus we have q0
γ′

−→ q′ and v = sched(q′), so

that (γ′, v) ≤ q′. We now have that q
a

−→ q′ and (γ′, v) ≤ q′, as required
by part (2) of the definition of simulation.

It remains to show that for all initial states (ǫ, v) of Aσ there exists an initial
state q0 of A such that (ǫ, v) ≤ q0. By determinism of σ, there is a unique agent
v such that (ǫ, v) is an initial state of Aσ. Take q0 to be any initial state of A.

Since A represents σ, we also have sched(q0) = v. Moreover, q0
ǫ

−→ q0, so we
have (ǫ, v) ≤ q0. We now have all that we need for A ⊑S Aσ

H . �

A useful corollary of this result is that the distinction between tRES
∀
i and

tRES
∃
i collapses with respect to deterministic schedulers, and any scheduler

SOLTS representing the scheduler can be used for the verification of these prop-
erties. (We already used this fact in some of the examples above.)

Corollary 4.11. If H-oblivious scheduler SOLTS A represents deterministic
scheduler σ, then the following are equivalent:

1. (M, σ) ∈ tRES
∀
1 ,

2. (M, σ) ∈ tRES
∀
2 ,

3. (M, σ) ∈ tRES
∃
1 ,

4. (M, σ) ∈ tRES
∃
2 ,

5. there exists an insensitive unwinding relation on M ‖ A,

6. there exists a sensitive unwinding relation on M ‖ A.

Proof: Since σ is deterministic, there exists a sensitive unwinding relation
on M ‖ A′ iff there exists an insensitive unwinding relation on M ‖ A′, by
Lemma 6.4 in part I. It therefore suffices to show the equivalence of (2),(4) and
(6).

25

From (2) to (6) is immediate from the definition: if (M, σ) ∈ tRES
∀
2 and A

represents σ, then there exists a sensitive unwinding relation on M ‖ A. It is
also immediate from the definition that (6) implies (4). To show (4) implies
(2), suppose there exists a sensitive unwinding relation on M ‖ A′. We have
A′ ⊑S Aσ

H by Proposition 4.10. It follows using Proposition 4.4 that there is
a sensitive unwinding relation on M ‖ Aσ

H . Now, (M, σ) ∈ tRES
∀
2 follows by

Corollary 4.7(2). �

Proof that tRES∀1 ⊆ tRES
∃
2 :

We use the results in this section to finish the only missing case for the the
relationships between the properties proposed in Part I.

To show this, we treat σ as a collection of deterministic schedulers refining
σ, i.e. the set σd.

Given an action sequence α, write σα for the set {σ′ ∈ σd | σ′(α) 6= ∅}. That
is, we take the subset of deterministic H-oblivious fragments of σ that are com-
patible with α. (Note by the well-formedness assumption, if α is incompatible
with σ′ then σ′(α) = ∅.)

Lemma 4.12. For all α ∈ A∗, we have σ(α) =
⋃

σ′∈σα σ′(α).

Proof: We assume α is compatible with σ, because otherwise both sides have
empty sets. For all u ∈ σ(α), we show u ∈

⋃

σ′∈σα σ′(α). Construct an infinite
sequence γ ∈ Aω that has its every prefix compatible with σ, and also has α · a
as a prefix with dom(a) = u. Then it is obvious that σγ is a deterministic
H-oblivious scheduler that is compatible with σ and σγ(α) = {u}. Since every
prefix of γ is compatible with σ, we can show that σ ⊑ σγ . Therefore σγ ∈ σα.
Therefore u ∈

⋃

σ′∈σα σ′(α).
For all u ∈

⋃

σ′∈σα σ′(α), there exists σ′ ∈ σα such that σ′(α) = u. Since
σ ⊑ σ′, we have u ∈ σ(α) by definition. �

Lemma 4.13. Given σ, for each σ′ ∈ σd, let Aσ′ be a scheduler SOLTS that
represent σ′. Then if A(σ) is the scheduler SOLTS constructed as the disjoint
union of the Aσ′ with σ′ ∈ σd, then A(σ) represents σ.

Proof: We only need to show that for all α ∈ A∗, we have σA(σ)(α) = σ(α).
In fact σA(σ)(α) =

⋃

σ′∈σd Aσ′(α) =
⋃

σ′∈σd σ′(α). By Lemma 4.12, we have
⋃

σ′∈σd σ′(α) = σ(α), and the result immediately follows. �

Proposition 4.14. For all machines M and schedulers σ, if (M, σ) ∈ tRES
∀
1

then (M, σ) ∈ tRES
∃
2 .

Proof: Suppose (M, σ) ∈ tRES
∀
1 . For every σ′ ∈ σd, since σ ⊑ σ′, we have

(M, σ′) ∈ tRES
∀
1 by Proposition 4.9. Since σ′ is deterministic and H-oblivious,

by Corollary 4.11, we have (M, σ′) ∈ tRES
∃
2 , i.e., there exists a scheduler SOLTS

Aσ′ that represents σ′, such that there exists a sensitive unwinding relation
on M ‖ Aσ′ . Taking the disjoint union of the scheduler SOLTS Aσ′ for all
σ′ ∈ σd, we get a scheduler SOLTS A(σ) which, by Lemma 4.13, represents σ.
Therefore we have a sensitive unwinding relation on M ‖ A(σ). This proves
(M, σ) ∈ tRES

∃
2 . �

26

5. Scheduler-Independent Properties

All the previous properties are about security with respect to a particular
scheduler. As already noted above, it is also of interest to consider security with
respect to sets of schedulers, since this gives flexibility to configure the system.
In this section, we consider security with respect to the set of all H-oblivious
schedulers, corresponding to flexibility to choose an arbitrary scheduler while
retaining security.

It turns out that some of the distinct trace-based notions of security we
have identified collapse when we require security with respect to all H-oblivious
schedulers. However, we do not obtain a similar collapse for the bisimulation-
based notions. We also show that for the trace-based properties, it is possible
to give a very simple characterization of security with respect to all H-oblivious
schedulers in terms of security with respect to one particular scheduler. We also
find such characterizations for two of the bisimulation-based notions (tRES∀1 and
tRES

∀
2). Moreover, in one case (tRES∀2) we are able to reduce security with re-

spect to all schedulers to security with respect to a particular scheduler SOLTS.
Intuitively, given a system controlled by a nondeterministic scheduler, if

there is evidence that the system is insecure, then that evidence can also be
produced by a finite deterministic fragment of that scheduler. As a consequence
of Proposition 3.8, we obtain the following results.

Proposition 5.1. For all X ∈ {tNDI1, tNDI2, tNDI3, tNDS1, tNDS2}, we have
X(ΥHO) = X(ΥHO ∩ Υd).

Proof: As ΥHO ∩ Υd ⊆ ΥHO, we only need to show that for all machines M , if
M ∈ X(ΥHO ∩ Υd) then M ∈ X(ΥHO). For tNDI1, if M 6∈ tNDI1(Υ

HO), we show
M 6∈ tNDI1(Υ

HO ∩ Υd). By assumption there exists an H-oblivious scheduler
σ such that M 6∈ tNDI1(σ). From Proposition 3.8, there exists σ′ ∈ σd ⊆
ΥHO ∩Υd such that M 6∈ tNDI1(σ

′). Hence, M 6∈ tNDI1(Υ
HO ∩Υd). The cases of

tNDI2, tNDI3, tNDS1, tNDS2, can be proved similarly. �

Using this result, we obtain that there is a collapse of the trace-based defini-
tions of security when we require security for all H-oblivious schedulers. We first
recall the relationship between trace-based security properties by the following
lemma. (The results have been proved as Proposition 5.6 and Proposition 5.11
in part I of the series.)

Lemma 5.2. 1. If L is schedule-aware in (M, σ), then (M, σ) ∈ tNDI1 iff
(M, σ) ∈ tNDI2 iff (M, σ) ∈ tNDI3.

2. If L is schedule-aware in (M, σ), then (M, σ) ∈ tNDS1 iff (M, σ) ∈ tNDS2.

3. tNDS1 ⊆ tNDI1 and tNDS2 ⊆ tNDI3.

Corollary 5.3. tNDS1(Υ
HO) = tNDS2(Υ

HO) ⊆ tNDI1(Υ
HO) = tNDI2(Υ

HO) =
tNDI3(Υ

HO)

Proof: By Proposition 5.1 we have X(ΥHO) = X(ΥHO ∩Υd) for all trace-based
properties X . Since L is schedule-aware for every scheduler σ in ΥHO ∩ Υd,

27

0

0

0

0

0

0

1

0

h′

h

l

l

l

h, h′

h, h′

h, h′

h, h′

1

0

1

0

. . .

. . .

l

l

h, h′

h, h′

l

l

Figure 6: A machine showing containment tRES∃
1
(ΥHO) ⊆ tNDS1(ΥHO) is strict.

we have tNDI1(σ) = tNDI2(σ) = tNDI3(σ), by Lemma 5.2(1) and tNDS1(σ) =
tNDS2(σ), by Lemma 5.2(2). By Lemma 5.2(3), we have tNDS1(σ) ⊆ tNDI1(σ).
The result immediately follows. �

To show that tNDSi(Υ
HO) for i ∈ {1, 2} is strictly stronger than tNDIj(Υ

HO)
for j ∈ {1, 2, 3} we refer to Figure 1(c) which is a machine in tNDI3(σ) for all
deterministic H-oblivious σ, but it is obviously not in tNDS1(Υ

HO).
We now show, using the results on refinement relations over schedulers, that

we are able to characterize security over the set of schedulers ΥHO by security
with respect to a single scheduler. Define a chaos scheduler σc by σc(α) = D =
{H, L,Sys} for all α ∈ A∗.

Theorem 5.4. X(ΥHO) = X(σc) for X ∈ {tNDI1, tNDI2, tNDI3, tNDS1, tNDS2}.

Proof: By Corollary 5.3, it suffices to consider only X = tNDI3 and X = tNDS2.
Since σc ∈ ΥHO, we only need to show X(σc) ⊆ X(ΥHO). Let X be tNDI3 and let
M be a machine with M ∈ tNDI3(σc). By Proposition 5.1, it suffices to show
to show that for all σ ∈ ΥHO ∩ Υd we have M ∈ tNDI3(σ). This can be derived
by Proposition 3.5 using σc ⊑ σ and σ is H-oblivious. For X = tNDS2 it can be
proved in a similar way. �

This result helps us to reduce verification of a trace-based property with re-
spect to ΥHO to the same security property with respect to the particular sched-
uler σc. (Recall that the trace-based properties are scheduler-implementation
independent, so we may further work with the smallest implementation of σc

for verification purposes.)
Considering the relation to the bisimulation-based properties, it is immediate

from Proposition 6.6 in part I [vdMZ12] and Proposition 4.14 that we have the
chain of containments tRES∀2(ΥHO) ⊆ tRES

∀
1(ΥHO) ⊆ tRES

∃
2(ΥHO) ⊆ tRES

∃
2(ΥHO) ⊆

tNDSi(Υ
HO), for i ∈ {1, 2}.

The containment tRES
∃
1(ΥHO) ⊆ tNDS1(Υ

HO) can be seen to be strict using
the above characterization of tNDS1(Υ

HO) as tNDS1(σc). Consider the machine
M of Figure 6. We argued in part I of our series (in the proof of Proposition 6.8)
that this is in tNDS1(σrr) for the scheduler σrr that alternates H and L; similar
reasoning shows that it is in tNDS1(σc): even for this more flexible scheduler, all
that H can control with its strategy is whether the upper or the lower branch is
taken, but both yield the same possible L views. Hence M ∈ tNDS1(Υ

HO). We
already have shown in part I that M 6∈ tRES

∃
1(σrr), hence M 6∈ tRES

∃
1(ΥHO).

28

Now it is straightforward that we have that tRES
∃
2(ΥHO) ⊆ tNDS2(Υ

HO) is
also strict, since tRES

∃
2(ΥHO) ⊆ tRES

∃
1(ΥHO), tRES

∃
1(ΥHO) ⊂ tNDS1(Υ

HO), and
tNDS1(Υ

HO) = tNDS2(Υ
HO) by Corollary 5.3. For the relationships between the

rest of the properties, by Proposition 4.14, we have tRES
∀
1(ΥHO) ⊆ tRES

∃
2(ΥHO),

and the following result (Proposition 5.5) shows that this inclusion is strict.
Furthermore, it is immediate that the containments tRES

∀
1(ΥHO) ⊆ tRES

∃
1(ΥHO)

and tRES
∀
2(ΥHO) ⊆ tRES

∃
2(ΥHO) are both strict, by tRES

∀
1(ΥHO) ⊂ tRES

∃
2(ΥHO) ⊆

tRES
∃
1(ΥHO), and by tRES

∀
2(ΥHO) ⊆ tRES

∀
1(ΥHO) ⊂ tRES

∃
2(ΥHO), respectively. We

refer to Figure 11 as an overview of the aforementioned relationships, where
the solid arrows denote strict inclusion and dashed arrows denote inclusion with
their strictness left open in this paper.

Proposition 5.5. tRES
∃
2(ΥHO) 6⊆ tRES

∀
1(ΥHO).

Proof: To show this, we assume the signature ({h, h′, l, τ}, {H, L,Sys}, dom)
with dom(h) = dom(h′) = H , dom(l) = L, and dom(τ) = Sys. Consider the
machine M and the scheduler SOLTS A1 and A2 depicted in Figure 7. We used
this example in part I to show that sensitive unwinding relation is implementa-
tion dependent: we showed there that there exists a sensitive unwinding relation
on M ‖ A1, but there do not exist sensitive unwinding relations on M ‖ A2.
Thus, we have M 6∈ tRES

∀
2(ΥHO) since there does not exist a synchronous sen-

sitive unwinding relation on M ‖ A2. Moreover, as Sys is never scheduled in
the scheduler represented by A2, there does not exist a synchronous insensitive
unwinding relation on M ‖ A2, either. Therefore M 6∈ tRES

∀
1(ΥHO).

However, we have M ∈ tRES
∃
2(ΥHO). The argument for this is as follows.

Since L and Sys have a single action each, every H-oblivious scheduler σ can be
implemented by an H-oblivious scheduler SOLTS A, in which all transitions are
deterministic, and the only source of nondeterminism is that there exist multiple
initial states. More precisely, consider a scheduler SOLTS A1 consisting of an
infinite set of states q0, q1, . . . , with qi

a
−→ qi+1 for all actions a enabled on

qi. Every scheduler σ can be implemented by a scheduler SOLTS A that is
a disjoint union of such linear scheduler SOLTS. We show that there exists a
sensitive unwinding on M ‖ A1 for such linear A1, and by taking unions of
these sensitive unwindings, it follows that there exists a sensitive unwinding on
A, hence M ∈ tRES

∃
2(ΥHO).

We briefly describe how to establish a sensitive unwinding relation ∼ on
M ‖ A1. Note that we do not leave state s0 until H is scheduled. Let qi be the
first state in A with sched(qi) = H , and let (s0, qj) ∼ (s0, qj) for all 0 ≤ j ≤ i.
In the next step we move to s or t, and remain there until L is scheduled. Let
qk be the first state in A such that k > i and sched(qk) = L, and then we let
(s, qj) ∼ (t, qj) for all i + 1 ≤ j ≤ k. To construct the unwinding on the states
reached by this next L action, we need to look ahead to the next time H is
scheduled. Let α be the longest sequence of states in the form qkqk+1 . . . qm

satisfying sch(α) ∈ L(D \ {L})∗LSys∗. We have the following two cases.

• If sched(qm+1) = L, we let (s1, qk+1) ∼ (s3, qk+1) and (s2, qk+1) ∼
(s4, qk+1).

29

H L L L ...

H L L H ...

H L L

L

H

...

...

q1 q′1 q′′1

q2 q′2 q′′2

q3 q′3 q′′3

A1

A2

0
s0

0
t

0
s

h

h′

0
s4

0
s3

0
s2

0
s1

l

l

l

l

0
s8

0
s7

0
s6

0
s5

l

l

l

l

1

2

3

4

l

l

l

l

h, h′

h, h′

h, h′

h, h′

Figure 7: An example showing tRES∃
2
(ΥHO) 6⊆ tRES∀

2
(ΥHO)

• If sched(qm+1) = H , we let (s1, qk+1) ∼ (s4, qk+1) and (s2, qk+1) ∼
(s3, qk+1).

The rest of the definition for ∼ is straightforward. This shows that M ∈
tRES

∃
2(ΥHO), and M 6∈ tRES

∀
1(ΥHO). �

However, it is unclear whether the inclusions tRES∀2(ΥHO) ⊆ tRES
∀
1(ΥHO) and

tRES
∃
2(ΥHO) ⊆ tRES

∃
1(ΥHO) are strict. We leave these questions open for future

research.
Results similar to Theorem 5.4 hold for the universal bisimulation-based

properties, as shown in the following theorem. (The main reason is that due
to Proposition 4.8 and Proposition 4.9, both tRES

∀
1 and tRES

∀
2 are preserved by

refinement on schedulers. However, Proposition 4.8 and Proposition 4.9 do not
hold for tRES

∃
1 or tRES∃2 , as we have discussed in Section 4. It therefore is not

clear whether a result similar to the following could be obtained for tRES
∃
1 or

tRES
∃
2 .)

Theorem 5.6. tRES
∀
i (ΥHO) = tRES

∀
i (σc) for i = 1, 2.

Proof: Since σc ∈ ΥHO, it is immediate that tRES
∀
i (ΥHO) ⊆ tRES

∀
i (σc). To

show the converse containment, suppose M ∈ tRES
∀
i (σc). For any σ ∈ ΥHO,

30

H L

Sys

Figure 8: A scheduler SOLTS Ac that represents the chaos scheduler σc

we have σc ⊑ σ, so by Proposition 4.8 and Proposition 4.9, we obtain that
M ∈ tRES

∀
i (σ). Thus M ∈ tRES

∀
i (ΥHO). �

As above, this gives a characterization of tRES∀i (ΥHO) that potentially sim-
plifies verification. However, to check tRES

∀
i (σc) it is still necessary to consider

all scheduler SOLTS representing σc. We now give a sharper characterization
that also eliminates this quantification. We show that the existence of a sen-
sitive unwinding relation on machine M composed with a particular scheduler
SOLTS is sufficient for the existence of a sensitive unwinding relation on M ‖ A
for all H-oblivious scheduler implementations A. Define Ac as the H-oblivious
implementation of σc which is depicted in Figure 8. (All states are initial.) We
may note that this is the most abstract scheduler SOLTS.

Lemma 5.7. For all scheduler SOLTS A, we have Ac ⊑S A.

Proof: It is easily checked that the relation ≤ on states q of A and q′ of
Ac defined by q ≤ q′ if sched(q) = sched(q′) is a simulation. �

The following result says that in the case of the sensitive unwinding relation,
security over all H-oblivious scheduler SOLTS (i.e., tRES∀2(ΥHO)) can be reduced
to consideration of the single scheduler SOLTS Ac.

Theorem 5.8. For every machine M , we have M ∈ tRES
∀
2(ΥHO) iff there exists

a sensitive unwinding relation on M ‖ Ac.

Proof: Since Ac implements σc and σc ∈ ΥHO, we only need to show that
if there exists a sensitive unwinding relation on M ‖ Ac, then M ∈ tRES

∀
2(ΥHO).

Let A be an H-oblivious scheduler SOLTS representing σ ∈ ΥHO, then by
Lemma 5.7, Ac ⊑S A. Then since there is a sensitive unwinding relation on
M ‖ Ac, by Proposition 4.4, there also exists a sensitive unwinding relation on
M ‖ A. Therefore M ∈ tRES

∀
2(ΥHO). �

As synchronous insensitive unwinding relations are not preserved by refine-
ment on scheduler SOLTS, the argument in Theorem 5.8 does not help to show
that M ∈ tRES

∀
1(ΥHO) is equivalent to the existence of an insensitive unwind-

ing on M ‖ Ac. Consider the machine M and scheduler SOLTS A2 depicted
in Figure 2. There exists an insensitive unwinding relation on M ‖ Ac, but
M 6∈ tRES

∀
1(ΥHO) as M 6∈ tRES

∀
1(σA2

).
We introduce the following example which is a multi-level file store shared

between a high level agent H and a low level agent L. This example is adapted

31

system

scheduler

I/O buffers

H L

HI HO LI LO

Figure 9: A file store device shared by H and L

and simplified from a case study in [Zha09, Chapter 6.2], which is motivated
from a block device that uses a file server to support networks with multiple
security levels [Gra08].

Example 5.9. Here we assume there are only two agents H and L. The struc-
ture of the system is depicted in Fig. 9. The device contains a single processor
with a hard disk for data-storage. We omit the processor in the figure because
it does not have an effect on our analysis. We further assume there is only
a single file fH belonging to agent H and a single file fL belonging to agent
L, both of a fixed size. The communication between the system and agents is
done via input buffers and output buffers. Either H or L can read and write its
corresponding input buffer and can read but not write the contents of its output
buffer. The system operates at multiple security levels and can both read and
write these buffers. Apart from the above components, a scheduling algorithm
is implemented that allocates time slices for reading and executing instructions.
When an agent is scheduled, it may request to read or write a file by writing
to its input buffer, and read from its output buffer written by the system. The
system handles a request only when it is scheduled.

In the model we assume a signature (A, {H, L, Sys}, dom), where the set of
actions A =

⋃

u∈D\{Sys} Iu ∪ ASys, with Iu the instruction set of user u, and

ASys = {τ}. The passage of time is observable to the users, as they share a
global clock with the system, and the finest time unit distinguishable by a user
is a single slice (tick). An action of each agent, including τ , takes one tick.

We assume each file can be regarded as a string of binary numbers with
length n. Given a user u, the set of instructions Iu includes ru(f, i): read file
f ∈ {fH , fL} at index i ∈ {1, 2, . . . , n}, wu(f, x, i): write a bit x to file f at
index i, and ǫu: a special input that denotes skipping (this could be viewed as
an abstraction of any action that is local to an agent and not pertinent to the
filestore). When the system is writing to a user’s output buffer, it uses ‘ok’ to
indicate access granted, ‘deny’ for access declined, ‘⊥’ for the default empty
observation, or a binary number as the bit value being returned. A buffer may
contain at most one message. We formally define the device M = 〈S, S0,→
, O, obs〉 as follows.

32

• S = FH × FL × HI × HO × LI × LO is a set of states, and we some-
times write s(c) for the component c ∈ {FH , FL, HI, HO, LI, LO} in
s. Here FH = {0, 1}n represents the state of file fH , FL = {0, 1}n

represents the state of file fL, HI = {⊥} ∪ {wH(f, i, x), rH(f, i) | f ∈
{fL, fH}, i ∈ {1..n}, x ∈ {0, 1}} represents the H input buffer, HO =
{0, 1,⊥, ok, deny} represents the H output buffer, and similarly HI =
{⊥} ∪ {wL(f, i, x), rL(f, i) | f ∈ {fL, fH}, i ∈ {1..n}, x ∈ {0, 1}} and
LO = {0, 1,⊥, ok, deny} represent the L input and output buffer, respec-
tively. We write (fH , fL, hi, ho, li, lo) for a generic state.

• S0 = {(0n, 0n,⊥,⊥,⊥,⊥)} the set of initial states,

• O = (HI ∪ LI) × (HO ∪ LO),

• obs is defined by obsH(s) = (s(HI), s(HO)) and obsL(s) = (s(LI), s(LO)),

• →⊆ S × A × S is a transition relation.

Given a file f , we write f [i 7→ v] to represent the result of updating the i-th
bit of f to value v. Given a state s, we write s[c 7→ v] to represent the state
in which the value of component c is updated to v. The transition relation is
defined by the following rules.

Actions of the agents H, L are stored in the corresponding input buffer, except
for the skip action, which has no effect on state:

s
aL−→ s[LI 7→ aL] for aL ∈ IL (act-L)

s
aH−→ s[HI 7→ aH] for aH ∈ IH (act-H)

s
ǫu−→ s for u ∈ {H, L} (skip)

In order to satisfy the policy that information is only allowed to flow from L to
H, but not from H to L, Sys enforces a number of access rules. The following
rules handle requests by L.

(fH , fL, hi, ho, rL(fL, i), lo)
τ

−→ (fH , fL, hi, ho,⊥, fL(i)) (r-grt-LL)

(fH , fL, hi, ho, rL(fH , i), lo)
τ

−→ (fH , fL, hi, ho,⊥, deny) (r-deny-LH)

(fH , fL, hi, ho, wL(fL, i, x), lo)
τ

−→ (fH , fL[i 7→ x], hi, ho,⊥, ok) (w-grt-LL)

(fH , fL, hi, ho, wL(fH , i, x), lo)
τ

−→ (fH [i 7→ x], fL, hi, ho,⊥, ok) (w-grt-LH)

That is, if there is a pending read request from L to access fL when Sys is
scheduled, the system will return with fL(i), and if it is requesting to read fH ,
the system will decline the access. Requests by L to write either file are granted.
After performing the action, the input buffer is cleared.

The following rules handle requests by H. Note that in each case, the starting
state of the rule has li = ⊥, so that there is no pending request by L. That is,
the system prioritizes requests by L over those by H.

(fH , fL, rH(f, i), ho,⊥, lo)
τ

−→ (fH , fL,⊥, f(i),⊥, lo) for f ∈ {fH , fL} (r-grt-H)

(fH , fL, wH(fH , i), ho,⊥, lo)
τ

−→ (fH [i 7→ x], fL,⊥, ok,⊥, lo) (w-grt-HH)

33

(fH , fL, wH(fL, i), ho,⊥, lo)
τ

−→ (fH , fL,⊥, deny,⊥, lo) (w-deny-HL)

These rules state that all read requests from H are granted, but only a requests
to write to fH from agent H is allowed. If there is no request from either H or
L, there is no change to the state when Sys acts:

(fH , fL,⊥, ho,⊥, lo)
τ

−→ (fH , fL,⊥, ho,⊥, lo) (sys-skip)

This completes the presentation of the transition relation.
A real system sometimes implements complicated scheduling algorithms, which

brings difficulty in verification. However, by Theorem 5.8, it suffices to find a
sensitive unwinding relation in M ‖ Ac where Ac is a simple three state sched-
uler SOLTS representing the chaos scheduler σc, to ensure that M satisfies
tRES

∀
2(σ), the strongest property introduced in the paper, for all H-oblivious

schedulers σ. (Note that it follows from this that we also have M ∈ X(σ) for
all trace-based properties X.)

Let the state space Q of Ac be {qH , qL, qSys}. On the combined state space
S × Q, define a relation ∼ by (s1, q1) ∼ (s2, q2) if s1(fL) = s2(fL), s1(LI) =
s2(LI), s1(LO) = s2(LO), and q1 = q2. We show ∼ is a synchronous sensitive
unwinding relation.

• For OC, we have (s1, q) ∼ (s2, q) implies obsL((s1, q)) = obsL((s2, q)) by
s1(LO) = s2(LO) and s1(LI) = s2(LI),

• For SC, suppose (s1, q) ∼ (s2, q), and we have a transition a ∈ IL,

(s1, q)
a

−→ (s1[LI 7→ a], q′). Then we have sched(q) = L. Therefore

there exists (s2, q)
a

−→ (s2[LI 7→ a], q′), such that s1[LI 7→ a](LI) =
s2[LI 7→ a](LI) = a. Since the LO and fL components are never changed
by (act-L), we have (s1[LI 7→ a], q′) ∼ (s2[LI 7→ a], q′). In case of a (skip)

transition (s1, q)
ǫL−→ (s1, q

′), we can take the matching transition to be

(s2, q)
ǫL−→ (s2, q

′), and obviously (s1, q
′) ∼ (s2, q

′).

• For LRSys, suppose (s1, q) ∼ (s2, q) and (s1, q)
τ

−→ (s′1, q
′). Then sched(q) =

Sys. We have the following cases.

– If there is no pending request from agent L in s1, i.e., s1(LI) =
⊥, then also s2(LI) = ⊥. Thus, both from (s1, q) and from (s2, q)
the system will execute a pending H request, if any, using one of
the rules (r-grt-H), w-grt-HH), w-deny-HL), or (rule sys-skip). The
same successor scheduler state q′ is also available for the transition
from (s2, q). Note the transition rule for the transition (s2, q)

τ
−→

(s′2, q
′) need not be the same as that for (s1, q)

τ
−→ (s′1, q

′). However,
a simple inspection of the rules (r-grt-H), (w-grt-HH), (w-deny-HL)
and (rule sys-skip) shows that they do not change the components
fL, LI, LO, so in all cases we derive (s′1, q

′) ∼ (s′2, q
′) from (s1, q) ∼

(s2, q).

34

– If s1(LI) 6= ⊥, then the system prioritizes the L request, and s′1 =
s1[LI 7→ ⊥, LO 7→ o] for some L output o, by (r-grt-LL), (r-deny-LH),
(w-grt-LL) and (w-grt-LH). Since (s1, q) ∼ (s2, q), we have s2(LI) =
s1(LI) or s2(fL) = s1(fL). In particular, the request to be processed
is the same in (s1, q) and (s2, q), and the same transition rule will
apply. Suppose s1(LI) is a read request, then either we have the
access both granted and the same content returned from s1(fL) and
s2(fL) (by (r-grt-LL)), or the access is declined from both s1 and s2

(by (r-deny-LH)). Suppose s1(LI) is a write request, then it is always
granted with ok returned to LO (by (w-grt-LL) and (w-grt-LH)), and
either the same part of s1(fL) and s2(fL) is modified, or the same
part of s1(fH) and s2(fH). Therefore, in all above cases, there exists

(s2, q)
τ

−→ (s′2, q
′), with s1(LI) = s2(LI), s1(LO) = s2(LO), and

s1(fL) = s2(fL).

• The case of LRH can be proved by easily checking that H actions never
change the components fL, LI and LO (rules (act-H) and (skip)).

�

6. Related Work

Refinement has previously been considered in the literature on information
flow security. The main difference with our work is that we consider the impact
of schedulers on security. We consider systems consisting of a machine and
scheduler, and focus on refinement of the scheduler in particular, rather than
on refinement of the system as an undifferentiated whole.

We have considered two definitions of refinement, at the level of abstract
schedulers σ and at the level of their concrete implementations by scheduler
SOLTS. Both definitions are more or less standard, in that they treat refinement
as reduction of nondeterminism. Our notion of refinement of abstract schedulers
states that a refinement of σ reduces the set of possibilities for the next agent
scheduled after a given sequence α of actions. This is related to trace refinement,
as defined, e.g., in CSP [Ros97], since if σ ⊑ σ′ then any trace of (M, σ′) will be
a trace of (M, σ). Note, however, that it is not equivalent to trace refinement
of the combined system (M, σ), in that scheduler refinement cannot constrain
which actions the scheduled agent is able to perform, whereas trace refinement
does have this power. Our notion of refinement on scheduler SOLTS is a variant
of simulation [Par81] which is well known to be a sound proof technique for trace
refinement.

Our notion of scheduler in SOLTS differs from that used in process algebra,
in which schedulers are used to resolve nondeterministic behaviours, e.g., by
selecting a predefined label on actions. In this way, a process, if combined with
scheduler, becomes a new process that refines the original process. Bisimulation
relations are not preserved by this type of refinement. An interesting work by

35

Konstantinos et al. [CNP09] introduces a stronger type of bisimulation relation
which requires bisimilarity to hold for all schedulers. This relation can be used
to prove secrecy of security protocol even if an attacker controls the scheduler.
That is, after a scheduler is introduced to refine the original system, the new
refined system is secure provided the original system is secure by equivalence-
based definitions of security.

Besides refinement of nondeterminism, there are notions of action refine-
ment in the literature [vGG01], in which a refinement of a system can replace
an abstract action by behaviours expressed in terms of new concrete actions. A
recent work by Bossi et al. [BPR07] formalizes action refinement in the security
process algebra SPA. They treat both trace-based and bisimulation based infor-
mation flow properties [FG95] defined in SPA and conclude that the unwinding
characterized persistent properties [FR06] are closed under action refinement.
We have not studied this sense of refinement in this paper. Data refinement
[dRE98], which operates at the level of state representation e.g. the implemen-
tation of an abstract set data type into a list based implementation, is also out
of the scope of the present work, although simulation is also a valuable proof
technique in this area.

It has frequently been noted in the literature that information flow security
is not necessarily preserved by refinement of a system: this is known as the
refinement paradox [Jac88, McL94]. Whether this is a problem depends on the
role that nondeterminism plays in the system model, which can impact whether
one expects that reduction of the nondeterminism during system design will be
necessary. In case that nondeterminism arises from underspecification, one ex-
pects to move to more determinate specifications, so the refinement paradox is a
genuine concern. However, if the nondeterministic behaviour is inherent in the
system and is not under the control of any agent (e.g., represents deliberate ran-
domization that is used to hide information), then reduction of nondeterminism
is undesirable, and the refinement paradox is less problematic.

We note that our definitions address refinement concerns in a number of
ways: first, we have allowed nondeterminism in the scheduler, but have stated
definitions such as tNDI3 and tNDS2 that require system security for all sched-
ules, which can be viewed as deterministic refinements of a given nondetermin-
istic scheduler – such definitions are preserved under refinement of the nonde-
terminism in the scheduler. Similarly, the strategic definitions we have stated
(tNDS1 and tNDS2) implicitly quantify over all deterministic H behaviours, so
are also preserved under refinement of H behaviour. However, all our defini-
tions retain the inherent nondeterminism in the system itself, so may not be
preserved under refinement of this source of nondeterminism: this is a question
that we have not considered in this paper.

As preservation of security under refinement has generally been considered
to be desirable, a number of works have had the objective of developing refine-
ment operators that preserve information flow properties. The details depend
on the underlying systems and security property definitions. If the security
definition is trace-based and refinement is the subset relation on traces, one ap-
proach is to construct a deterministic subsystem. Jacob [Jac88, Jac89] presents

36

a way to derive secure implementations from an insecure system S, by parallel
composition with the most general deterministic process P satisfying the secu-
rity property, i.e., S ‖ P will be secure. Roscoe’s determinism-based security
notions [Ros95] are preserved with respect to CSP refinement, which yields a
verification methodology using the FDR model checker [GGH+99]. Graham-
Cumming and Sanders [GCS91] specify security as trace equivalence with re-
spect to a given user, and refinement as a downwards simulation, using the
Z-specification language.

Heisel et al. [HPS01, SHP02] define a confidentially preserving notion of re-
finement for a probabilistic version of CSP and also discuss the compositionality
of that refinement operation. Mantel [Man01] presents two step-wise refinement
operators on trace-based properties of event systems (ES). These two operations
work by adding or deleting transitions to preserve the unwinding relations on
state event systems (SES). A number of examples are given to show that this
technique could be applied for all trace properties expressible by the basic se-
curity properties (BSP) [Man00]. Bossi et al. [BFPR03b] study refinement for
persistent security properties [BFPR03a] in a CCS based system, where they de-
fine refinement as the reverse of the simulation relation (similar to our treatment
on scheduler SOLTS). Similar to Mantel’s approach, the refinement operators
introduced in that paper involve deleting more transitions than the traditional
refinement operator, in order to maintain observational equivalence to the low
security level agent L. Alur et al. [AČZ06] present a very general framework
for representing deducibility-based information flow properties. Their secrecy
preserving refinement operator requires a strong condition that the implemen-
tation simulates its specification. These works all deal with automaton-like
representations of systems. Program-like representations have also been consid-
ered: [Mor06] defines a refinement relation for a simple sequential calculus that
preserves ignorance (as expressed in a logic of knowledge [FHMV95]).

We have not studied compositionality or contextuality of our security prop-
erties, but it would be interesting to pursue this. Compositional security or
related notions of security on automaton and trace theoretic models have been
discussed in the prior literature [McC87, McC90].

The complexity of verifying several information flow security properties closely
related to those of the present paper in finite state synchronous systems has
been studied in [CvdMZ10]. A slightly different notion of scheduled system is
adopted in that work, but but based on the results we would conjecture that
the unwinding-based properties of the present paper are tractable (in PTIME),
but the tNDI and tNDS variants are intractable, being complete in PSPACE
and EXPSPACE, respectively. (It remains to be shown that these complexi-
ties hold for the exact model and the multiple variants of the security notions
of the present paper.) This resembles the results in the literature, as for asyn-
chronous sytems, verification of trace-based information flow properties (such as
NDI [vdMZ07] and NDC [FG95]) are PSPACE-complete, but the verification of
unwinding based properties or persistent bisimulation based properties usually
can be performed in PTIME [FPR02, vdMZ07].

37

tRES
∀
2 tRES

∀
1

tRES
∃
2 tRES

∃
1

tNDS2 tNDS1

tNDI3 tNDI2 tNDI1

⋆

⋆

⋆ ⋆

active attacks

passive attacks

preserved if
schedule leaks

Figure 10: The relationship between synchronous scheduler-based security properties, where
the properties marked by ⋆ are preserved under refinement of schedulers.

7. Conclusion

In this paper we have considered information flow security properties on a
synchronous state machine model with a discrete-time semantics and a defini-
tion of scheduler. The security properties extend nondeducibility [Sut86], nond-
educibility on strategies [WJ90] and restrictiveness [McC88] in a synchronous
setting with scheduling. We have studied the preservation of these security prop-
erties under refinement of schedulers. The relationship between the properties
are shown in Figure 10, where we mark by ⋆ the notions that are preserved by
refinement of schedulers.

To summarize, we find that for trace-based properties, only the stronger
ones, i.e., tNDI3 and tNDS2 are preserved by H-oblivious scheduler refinement,
while the other trace-based properties are not preserved by scheduler refine-
ment. For bisimulation-based properties, we have shown that tRES∀1 and tRES

∀
2

are preserved by scheduler refinement, while tRES
∃
1 and tRES

∃
2 are not. We also

defined a refinement notion for scheduler SOLTS. This refinement relation pre-
serves sensitive unwinding relations, but does not preserve insensitive unwinding
relations.

Finally, we have reduced the verification of a number of security properties
that quantify over all H-oblivious schedulers (including all trace-based prop-
erties with respect to ΥHO, tRES∀1(ΥHO) and tRES

∀
2(ΥHO)) to security properties

that refer just to a single scheduler. In particular for tRES
∀
2(ΥHO), we reduce

its verification to finding sensitive unwinding relations when combining with a
particular scheduler SOLTS. This allows us to characterize the relationships be-
tween security properties with respect to the set of schedulers ΥHO. The results
are depicted in Figure 11, where the solid arrows denote strict inclusion and

38

tRES∀
2
(ΥHO) tRES∀

1
(ΥHO)

tRES∃
2
(ΥHO) tRES∃

1
(ΥHO)

tNDS(ΥHO) = tNDS(ΥHO)

tNDI(ΥHO) = tNDI(ΥHO) = tNDI(ΥHO)

Figure 11: The relationship between synchronous scheduler-based security properties on ΥHO

dashed arrows denote inclusion with their strictness left open.
The positive results of this paper have the following application. Where we

have shown that a notion of security is preserved under scheduler refinement, we
obtain a desirable level of flexibility in the choice of scheduler when configuring a
system: any refinement of a scheduler for which a machine is known to be secure
can be used in place of that scheduler, while maintaining security. Moreover,
Theorem 5.4 and Theorem 5.8 show that to prove security with respect to the
class of all H-oblivious schedulers, for all trace-based security definitions and for
the bisimulation-based security definition tRES

∀
2 , it suffices to verifying security

with respect to the special scheduler σc (which has a finite state representation).
However, we have left open the question of how, practically, to show that a

particular scheduled machine satisfies a security property. Automated verifica-
tion of these properties would be desirable, if possible.

Acknowledgments: Work supported by Australian Research Council Dis-
covery grant DP1097203. Thanks to Kai Engelhardt for helpful comments on a
version of this paper.

References

[AČZ06] R. Alur, P. Černý, and S. Zdancewic. Preserving secrecy under
refinement. In Proc. International Colloquium on Automata, Lan-
guages and Programming (ICALP’06), 2006.

[BFPR03a] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Bisimulation and
unwinding for verifying possibilistic security properties. In Proc.
International Conference on Verication, Model Checking, and Ab-
stract Interpretation, 2003.

[BFPR03b] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement operators
and information flow security. In Proc. the First International Con-

39

ference on Software Engineering and Formal Methods, SEFM’03,
2003.

[BPR07] A. Bossi, C. Piazza, and S. Rossi. Action refinement in process alge-
bra and security issues. In Proc. International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR), pages
201–217, 2007.

[CNP09] K. Chatzikokolakis, Gethin Norman, and David Parker. Bisim-
ulation for demonic schedulers. In Proc. Foundations of Software
Science and Computational Structures (FOSSACS), pages 318–332,
2009.

[CvdMZ10] F. Cassez, R. van der Meyden, and C. Zhang. The complexity of
synchronous notions of information flow security. In Proc. Foun-
dations of Software Science and Computational Structures (FOS-
SACS), pages 282–296, 2010.

[dRE98] Willem P. de Roever and Kai Engelhardt. Data Refinement: Model-
oriented Proof Theories and their Comparison, volume 46 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1998.

[FG95] Riccardo Focardi and Roberto Gorrieri. A classification of secu-
rity properties for process algebras. Journal of Computer Security,
pages 5–33, 1995.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
About Knowledge. MIT press, 1995.

[FPR02] R. Focardi, C. Piazza, and S. Rossi. Proofs methods for bisimulation
based information flow security. In Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 16–31, 2002.

[FR06] R. Focardi and S. Rossi. Information flow security in dynamic con-
texts. Journal of Computer Security, pages 65–110, 2006.

[GCS91] J. Graham-Cumming and J.W. Sanders. On the refinement of non-
interference. In Proc. IEEE Computer Security Foundations Work-
shop, pages 35–42, 1991.

[GGH+99] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, A. W. Roscoe,
B. Scattergood, and P. Armstrong. Failure Divergence Refinement
- FDR2 User Manual version 2.64. Formal Systems (Europe) Ltd,
Aug 1999.

[GM84] J.A. Goguen and J. Meseguer. Unwinding and inference control. In
Proc. IEEE Symposium on Security and Privacy, 1984.

40

[GM93] Paul H. B. Gardiner and Carroll C. Morgan. A single complete rule
for data refinement. Formal Aspects of Computing, 5(4):367–382,
1993.

[Gra08] P. Graunke. Verified safety and information flow of a block device.
In Proceedings 3rd International Workshop on Systems Software
Verification (SSV’08), Feb 2008.

[HHS87] C. A. R. Hoare, Jifeng He, and Jeff W. Sanders. Prespecification
in data refinement. Inf. Process. Lett., 25(2):71–76, 1987.

[HPS01] M. Heisel, A. Pfitzmann, and T. Santen. Confidentiality-preserving
refinement. In Proc. the 14th IEEE workshop on Computer Security
Foundations, pages 295–305, 2001.

[Jac88] Jeremy Jacob. Security specifications. In Proc. IEEE Symposium
on Security and Privacy, pages 14–23, 1988.

[Jac89] J. Jacob. On the derivation of secure components. In Proc. IEEE
Symposium on Security and Privacy, pages 242–247, 1989.

[Man00] Heiko Mantel. Possiblistic definitions of security – an assembly
kit. In Proc. IEEE Computer Security Foundation Workshop, pages
185–199, July 2000.

[Man01] H. Mantel. Preserving information flow properties under refine-
ment. In Proc. the IEEE Symposium on Secrecy and Privacy, pages
78–91, 2001.

[McC87] Daryl McCullough. Specifications for multi-level security and a
hook-up property. In Proc. IEEE Symposium on Security and Pri-
vacy, pages 161–166, 1987.

[McC88] Daryl McCullough. Noninterference and the composability of secu-
rity properties. In Proc. IEEE Symposium on Security and Privacy,
pages 177–186, 1988.

[McC90] Daryl McCullough. A hookup theorem for multi-level security.
IEEE Transactions on Software Engineering, 16(6):563–568, 1990.

[McL94] John McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In Proc. IEEE Symposium
on Security and Privacy, pages 79–93, May 1994.

[Mor06] C. C. Morgan. The shadow knows: Refinement of ignorance in se-
quential programs. In Proc. Mathematics of Program Construction
(MPC), pages 359–378, 2006.

[Par81] D. M. R. Park. Concurrency and automata on infinite sequences.
In Proc. Theoretical Computer Science, volume 104 of LNCS, pages
167–183. Springer, 1981.

41

[Ros95] A.W. Roscoe. CSP and determinism in security modelling. In Proc.
IEEE Symposium on Security and Privacy, pages 114–221, 1995.

[Ros97] A. W. Roscoe. The Theory and Practice of CSP. Prentice-Hall
(Pearson), 1997.

[SHP02] T. Santen, M. Heisel, and A. Pfitzmann. Confidentiality-preserving
refinement is compositional - sometimes. In Proc. the 7th Euro-
pean Symposium on Research in Computer Security (ESORICS’02),
pages 194–211, London, UK, 2002. Springer-Verlag.

[Sut86] D. Sutherland. A model of information. In Proc. 9th National
Computer Security Conference, pages 175–183, 1986.

[vdMZ07] Ron van der Meyden and Chenyi Zhang. Algorithmic verification
on noninterference properties. In ENTCS, volume 168, pages 61–75.
Elsevier, 2007.

[vdMZ12] R. van der Meyden and C. Zhang. Information flow in systems
with schedulers (part i: Definitions). Theoretical Computer Science,
2012.

[vGG01] Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and
equivalence notions for concurrent systems. Acta Inf., 37(4/5):229–
327, 2001.

[WJ90] J. T. Wittbold and D. M. Johnson. Information flow in nonde-
terministic systems. In Proc. IEEE Symposium on Security and
Privacy, pages 144–161, 1990.

[Zha09] C. Zhang. Information Flow Security — models, verification and
schedulers. PhD thesis, UNSW, 2009.

42

