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Abstract

This paper studies information flow security in a synchronous state machine
model, in which agents share a global clock and can make observations at all
times, but in which an agents’ ability to perform actions is subject to a sched-
uler. A number of definitions of security for this setting are proposed, depending
on whether the attacker is active or passive, whether the security should be ro-
bust to discovery of the schedule by the attacker, and on whether the definition
is trace-based or bisimulation-based. In particular, the paper studies the depen-
dence of these definitions of security on implementation details of the scheduler.
Such independence is shown to hold for the trace-based definitions, but not for
bisimulation-based definitions. Stronger versions of the bisimulation-based def-
initions are proposed that recover implementation-independence. A complete
characterization of relationships between the definitions of security introduced
in the paper is derived.

1. Introduction

Information flow security is concerned with the ability of agents in a sys-
tem to make deductions about the activity of others, or to cause information to
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flow to other agents. Since the seminal work of Goguen and Meseguer [GM82],
which introduced the notion of noninterference in a deterministic state ma-
chine model, a significant body of literature has developed on this topic, deal-
ing with how noninterference should be defined in nondeterministic state ma-
chines [McCullough88, BY94] and in richer semantic models such as the pro-
cess algebras CCS [FG95, FPR02, HR02] and CSP [Ryan91, Roscoe95]. Al-
though a few early works considered synchronous models [WJ90, Millen90,
BC92, Gray91, McLean94], work in the process algebraic setting has, until re-
cently [FPR02, BFPR03, BG09], concentrated attention on asynchronous mod-
els of computation, assuming that agents do not have access to a system clock.

While an asynchronous modelling has been argued to be appropriate for
distributed systems [FG95], it also ascribes relatively weak powers to the ad-
versary. Many information flow attacks that are of interest in practice are
based on timing channels, often resulting from contention for shared resources
[Gligor93]. An example of channels arising from resource sharing is the origi-
nal motivation for the notion of noninterference, operating systems separation
kernels [Rushby81, Rushby82, Rushby00]. The function of this class of software
systems is to separate security domains in order to prevent information flow
resulting from the use of shared resources such as memory (including registers,
caches, main memory and disks) input-output devices (e.g., network cards), and
processing units. In particular, in a uni-processor system this involves scheduling
the activity of the agents in the system.

In the presence of scheduling, many of the assumptions of the asynchronous
systems models used in the literature break down. For example, a common
assumption in early work in the literature [GM82, Rushby92] is that the sys-
tem is “input enabled” in the sense that each action may be performed at any
state. This is patently not the case in the presence of scheduling, which en-
ables one agent’s actions while simultaneously disabling the actions of others.
The later process algebraic work has developed definitions of security that drop
this assumption, but even the weakest definitions considered (e.g., the weakest
notion NNI in a spectrum of definitions treated in [FG95]) have the property
that every possible sequence of observations of a Low security agent in a secure
system should be consistent with the High security agent having performed no
input actions. This property fails in systems subject to a scheduler. For ex-
ample, if the scheduler alternates the High agent and the Low agent, starting
with High, then when Low is first scheduled it knows that some High actions
have already been processed (even if it cannot discern which actions). More
generally, knowledge of the schedule may permit the Low agent to deduce the
number of actions that the High agent has taken. The asynchronous definitions
of security would classify this as insecure. A correct treatment of systems such
as separation kernels therefore requires different definitions of security. Both the
relevance of timing attacks and the fact that scheduling may imply an ability
to deduce the number of actions of another agent suggest that a synchronous
model is more appropriate.

In this two-part series of papers, we conduct a systematic study of the impact
of schedulers and synchrony on a variety of approaches to the definition of



information flow security from the literature. In the present paper, part I of the
series, we ask how these approaches can accommodate schedulers, and study the
relationships between the resulting definitions of security. A companion paper,
Part II of the series, will consider which of these definitions are preserved under
refinement of schedulers, and applies the results to characterize definitions that
state that a system is secure with respect to all schedulers. We focus in the
remainder of this introduction on the contents of part I.

We begin by developing a formal model of systems running with a global
clock visible to all agents, subject to a scheduler that schedules one agent at
a time. Agents have actions and make observations of the state. We define
schedulers at two levels of abstraction. At the abstract level, a scheduler is a
rule for deciding which of the agents may execute an action at the next step
as a function of the history of actions executed in the past. At the concrete
level, a scheduler may be represented by a labelled transition system which has
each state representing a scheduled agent by means of the actions enabled at
the states reachable after the history of actions. We discuss the relationships
between these two modellings. To allow for freedom of implementation and to
model a discrete approximation of randomised scheduling, we allow schedulers
to be nondeterministic.

We next develop new variants of several definitions of security from the
literature on information flow in asynchronous systems, that are tailored for
our setting of scheduled systems. We focus on systems with three agents H
(representing the high security, or secret level), L (representing the low security,
or public level), and Sys (representing events of the system within which H and
L operate that are not attributable to either agent; this includes actions of
the scheduler). The definitions of security we consider provide different formal
answers to the meaning of a security policy that says that information (more
precisely, information about which actions have been executed) is permitted to
flow from L to H, but not from H to L. Specifically, we develop variants of the
following types of definitions from the literature:

1. nondeducibility on inputs [Sutherland86], which is appropriate for settings
where L acts as an outside observer attempting to infer, from its observa-
tions, information about H activity,

2. the stronger notion of nondeducibility on strategies [WJ90], which takes into
account that L may have placed a Trojan horse at H, and requires that no
flow of information from H to L is possible even if this is the case, and

3. restrictiveness [McCullough87, McCullough88], a definition stronger than
both the above, which is closely related to the unwinding [GM84] proof
technique for noninterference, and one of Focardi and Gorrieri’s bisimula-
tion based definitions of security [FG95].

Nondeducibility on inputs and nondeducibility on strategies can be stated using
a trace-based semantics, but restrictiveness is a bisimulation-like definition that
refers to the branching structure of the system. In developing variants of these
notions that are suited for our setting of scheduled synchronous systems, we
find that there is more than one plausible candidate for each of these notions in



a setting with nondeterministic schedulers. The main issue distinguishing these
candidates is the question of whether the system should remain secure were the
schedule for a given run to become known to L. (Agent L will always know
when its own actions were scheduled, but because there are two other agents H
and Sys, it may still have uncertainty about when H was scheduled; learning
the schedule resolves this uncertainty and may give L more information.) One
of our types of definition requires that a secure system remain secure even in
case of such a release of the schedule, the other does not.

One question of particular concern is the extent to which these definitions
are sensitive to how the scheduler is implemented. A scheduler in the abstract
modelling may be implemented in many different ways in the concrete mod-
elling. For example, nondeterminism in the abstract scheduler may be resolved
in the concrete automaton representation either early (e.g., by flipping a set
of coins before their outcome is needed) or late (e.g., by flipping coins only at
decision points). However, as the private state of the scheduler should be invis-
ible to the agents in the system (although they may know the scheduler being
used), such implementation details should not affect the security of the system.
Independence of scheduler implementation also gives desirable flexibility to the
implementer of the scheduler. We show that our (trace-based) variants of nond-
educibility on inputs and nondeducibility on strategies are independent of the
scheduler implementation, but this is not the case for our (bisimulation-based)
variants of restrictiveness. This means that, whereas it is possible to state the
definitions of our variants of nondeducibility on inputs and nondeducibility on
strategies with respect to our abstract notion of scheduler, our variants of re-
strictiveness must be stated at the concrete level, with respect to a particular
scheduler implementation. This motivates our introduction of two stronger vari-
ants of restrictiveness (based on an existential or universal quantification over
scheduler implementations) that we can show to be invariant with respect to
scheduler implementation. (Together with the issue of security were the sched-
ule to be discovered, this gives four different notions of restrictiveness stated at
the level of abstract schedulers.)

We give a complete characterization of the relationships between all our
versions of these notions of security, showing implications and giving examples
where implications fail. One of the results of this study is that whereas, for asyn-
chronous systems, nondeducibility on inputs and nondeducibility on strategies
turn out to be identical, this fails for our synchronous variants.

The structure of the paper is as follows. In Section 2, we sketch a simple
example where information flow properties are sensitive to time and scheduling.
In Section 3 we introduce the semantic framework within which we work, a type
of labelled transition system with observations. Section 4 defines schedulers and
their representation within this model. Section 5 deals with trace-based defini-
tions of security for systems with schedulers. Section 6 considers bisimulation-
based definitions, where independence of the scheduler implementation becomes
a non-trivial issue. Section 7 discusses related work in the area of noninterfer-
ence with time and/or scheduling, and Section 8 concludes and proposes future
directions.



Figure 1: Motivating Example

2. A Motivating Example

Suppose we have the following scenario, as illustrated in Figure 1. Two
processes H and L are controlled by an operating system Sys that is responsible
for communicating messages to the network as well as scheduling the activity
of the two processes. A process may request that a message be sent by writing
it into a buffer. The buffer is shared between H, L and the system itself, and
has a capacity of at most one message. (Intuitively, H performs actions from a
high security level agent and L represents a low security level agent.)

The system is prompt to respond to requests from H and L: if there is
a message from one of these processes in the buffer when the system regains
control, it immediately dispatches the message and clears the buffer. However,
the system makes greedy use of the buffer for its own purposes: whenever there
is no message in the buffer, it places its own data in the buffer, which it may
keep there for any period of time that it chooses. To counteract this, processes
are allowed to preempt the system’s use of the buffer. This is done in a two-
step process: when the process attempts to write to the buffer and it contains
Sys data, the buffer is first emptied and the process is sent a “retry” message
from the system. If it then re-attempts its write to the buffer while it is clear,
the write will be successful. On the other hand, when H or L tries to write a
message to the buffer and it already contains a message from either process, its
request is rejected and a “full” message returned.

In this example, the scheduler implemented in the system is important to
information flow security analysis. Suppose that the security policy allows in-
formation to flow from L to H but not from H to L. Then, assuming the private
state of the buffer is invisible to L, we have the following observations.

e Suppose the scheduler is a round-robin HLSysH LSys.... Consider runs
in which L attempts to write to the buffer each time that it is scheduled.
Note that this guarantees that there will be a message in the buffer each
time Sys is scheduled, so Sys will clear the buffer before passing control
to H. Each time H fills the buffer, an attempt by L to write to the buffer
in the next step will be rejected with a “full” message. On the other hand,
if H does not write to the buffer, it will be empty, so L’s attempt to write
to the buffer will succeed. L will therefore be able to deduce, from the
result of its write attempt, what action H performed in the preceding
step. Intuitively, this means that the system is insecure: L is able to
deduce information about H, so there is a flow of information from H to
L, in contravention of the policy. Moreover, a Trojan horse at H could



use this as a covert channel to pass H secrets to L, by choosing to send
or not send a message depending on the value of a bit of the secret.

e If the scheduler repeats the pattern H H SysSysSysLLSysSysSys.. ., then,
there is not such a flow of information, and, we claim, the system is se-
cure. If H has filled the buffer during one of its steps, the system will
transmit the message and clear the buffer in its first step. It will then
greedily grab the buffer in its second step, and may or may not release
it in its third step. Thus, in this case, L’s attempt to write to the buffer
will return either a “retry” or “success” message. On the other hand, if
H did not fill the buffer, then Sys will grab the buffer in its first step,
and may or may not have released it by its final step. In this case also,
L’s attempt to write to the buffer will return either a “retry” or “success”
message. Thus, L will not be able to deduce anything about H activity
from its observations®. (Furthermore, each agent is guaranteed to be able
to transmit one message each time it is scheduled: if it tries to fill the
buffer in its first step, but the buffer contains Sys data, it will receive a
"retry” message, and the buffer will be cleared. A second attempt to fill
the buffer in the next step will then be successful.)

e Interestingly, the greediness of the system means that if we use only two
Sys steps between alternating scheduling of H and L (so that the schedule
becomes HH SysSysLLSysSysHH ...) then if L tries to send a message
and it is accepted then L can deduce that H did not send a message (else
this message would have been transmitted in the first Sys step, and the
buffer filled by Sys in the second Sys step, so that L would have received
a “retry” message). This version is insecure.

Note that all the above schedulers are independent of the behaviours of the
processes, so the reason for the insecurities is not that the scheduler directly
passes information about H actions to L by altering the times at which L is
scheduled.

3. A Discrete-Time System Model

We are concerned in this paper in systems that are synchronous and timed
in the sense that there is a discrete global clock shared by all agents, and all
agents are able to continue making observations at all times, including times
when they are not scheduled to perform an action. As a formal model of such
settings, we use an enrichment of the well-established labelled transition system
semantics for process algebra, adding to it a notion of observation on states.
However, we do not interpret labelled transition systems asynchronously, as is
usually done. Our synchronous and timed interpretation is reflected in two

3Note that we assume that Sys choice to release or hold the buffer is nondeterministic,
and there is no known probability with which this happens.



aspects of the semantics. One is our definition of the view that an agent has
of a run of the system, in which it makes an observation of the system state at
each moment of time in the run, even if that state was reached as the result
of another agent’s action. The other is a synchronous composition operator on
our enriched transition systems. Our model could be further enriched, e.g., by
allowing simultaneous actions, but we do not pursue this since we are specifically
interested in systems subject to a scheduler.

The term domain is used in the literature to refer to security levels in an
information flow security policy. Since, in the context of schedulers, we refer
to domains but also need a label to refer to the system itself, which is not an
explicit part of the security policy, we use the the more general term agent. A
signature is a tuple (A, D, dom) consisting of a set of actions A, a set of agents
D and a function dom : A — D associating an agent with each action.

Definition 3.1. A state-observed labelled transition system (SOLTS) for a sig-
nature (A, D, dom) is a tuple of the form T = (S, So, —, O, obs) where

— S is a set of states (with elements denoted by s,t,t1, etc.),
- So C S represents the set of initial states,

- —>C S x A x S is a transition relation,

- O is a set of observations,

— obs: D xS — O is a function representing the observation made in each
state by each agent.

Write L° for the set of all such systems.

We make three different uses of SOLTS. One is the notion of machine, defined
later in this section. The others are for schedulers and for machines running
under the control of a scheduler, both defined in the next section.

For readability, we ‘curry’ the function obs (or its variants) by writing
obs,(s) for obs(u,s). We write s —— t when (s,a,t) €—, and s — when
there exists t such that s — ¢. More generally, we write sy — s, when
so =5 s 2 2 s, and a = ajas . ..an. A run rof a SOLTS is a sequence
of the form sy % 57 2 ... 2% 5, with 59 € Sp. We write R(T) for the set of
all runs of T'. We write ry for the prefix of r consisting of the first £ transitions,
e, e = S0 —5 51 —2 ... 25 g, provided 7 has at least k transitions. We
denote the sequence of actions in a run r by Act(r) = ajas...a,, and for each
agent u write Act,,(r) for the subsequence of Act(r) consisting of actions a with
dom(a) = u. A SOLTS is deterministic if for s,t,,t; € S and a € A, if s - t;
and s — to then t; = to. It is input-enabled if s — for all s € S and a € A.

An agent’s observation at a state in a SOLTS gives it some information
about which state the system is in, and may also give it some information
about the past. In fact, the agent may be able to recall all its past actions
and observations, but not actions of other agents. To give an optimal analysis



of security, we assume that agents have perfect recall of their history. This is

captured in the following definition of the notion of view. For u € D, we define
Ay, ={a € Aldom(a) = u}.

Definition 3.2. Given a SOLTS T and an agent u, the function view,, : R(T) —
O((Ay U {~})O)* is inductively defined by view,(so) = 0bsy(so), and

. a | viewy(r) - a - 0bsy(s) if a€A,
viewy (r — s) = { view, (1) ~ -0bsy(s) otherwise
where r € R(T), a € A and s € S. We write Views,(T) for {view,(r) | r €

Intuitively, this says that an agent’s view of a run is the log of all its observa-
tions as well as its own actions in the run, with “~” where an action of another
agent is performed. We note that implicit in this definition is an assumption
of synchrony, in the sense that an agent can always determine from its view
view,(r) of a run r what is the time (the length of r), simply by counting the
number of elements of O or A, U {~}.

Synchrony is also reflected in the way that we compose SOLTS. Given two
SOLTS T = (S, Sy, —,0, obs), T" = (S', S}, —', 0’ obs') with the same signa-
ture, define the parallel composition T' || T’ to be the SOLTS T” = (S x §’, Sy x
Si,—",0 x O, 0bs") where —"= {((s1,5}),a, (s2,55)) | $1 —= s2 A 8] — sh}
and obs, ((s,s')) = (0bsy(s), obs, (s")) for all w € D. This corresponds to the
lock-step execution of the two systems with synchronisation on common actions.
We use this composition operator only as a technical device to describe the effect
of schedulers (details are in the following section), rather than to view systems
as being composed from smaller components.

Like most of the literature, we confine our attention to systems with two
security domains H (High) and L (Low) and the security policy which permits
information flow from L to H but prohibits information flow from H to L.
However, in order to deal with scheduling and passage of time, it is convenient
to include a third agent Sys that may act when both H and L are waiting.
The agent Sys can be understood as corresponding to the scheduler activity
as well as system internal actions. For the remainder of this paper, we let
D ={H, L, Sys}, and assume there is a special action 7 such that Ag,s = {7}.

The effect of Sys actions may be nondeterministic, but we assume that there
is no need to distinguish specific Sys events. Whereas Ay and Ay, can be thought
of as representing inputs provided by the agents, Sys provides no inputs, but
only represents the internal evolution of the state over time. On the other hand,
we do not model outputs as actions; in our model outputs correspond to the
observations made by the agents at the states of the system.

Definition 3.3. A machine is an input-enabled SOLTS M = (S, Sy, —, O, obs)
for a signature (A, D, dom) with D = {H, L, Sys} and Agys = {T}. We write
M for the set of all machines.



The restriction of input-enabledness is often applied in the security literature
(eg. [GM82, Rushby92]). We do not adopt this assumption for machines running
under the control of a scheduler, but it simplifies matters for us to adopt it for the
bare machines that may be subject to scheduling. One reason is that it finesses
the question of what would happen if an agent were scheduled in a state where
it had no actions enabled. Another is that dropping this assumption raises
the issue of whether, and how, the fact that an action is not enabled would
provide information to an agent that it might exploit in an attack. Process
algebraic approaches use a diversity of methods to capture this information,
often representing it émplicitly in the process semantics (e.g., through the failures
of CSP [Roscoe95], or through a notion of bisimulation [FG95].) We prefer to
take the philosophical position that any information that an agent has should be
explicitly represented in its view. If an action cannot be “successfully” performed
in some state, that fact can still be represented by a transition labelled by that
action to a state where the agent makes an observation that informs it that the
attempt was unsuccessful: this gives an input-enabled modelling of the situation.

In addition, we assume that actions take unit time and that time continues
to flow, so that agents cannot halt the system by failing to act when scheduled.
If failure to act is a possibility in an application, it can be accommodated by
including a “null” action for each agent, after which the scheduler may schedule
another agent.

Diagrammatic Convention for Machines: we depict machines as graphs
in which vertices correspond to states, and are labelled by the observation made
by L at that state. Edges are labelled by actions and correspond to transitions.
Not all transitions from a state are depicted: if the only transition with a given
action is a self-loop, it may be elided. Since machines are input-enabled, where
there is no edge labelled by an action a from a state s, this implies that there
is a self-loop from s labelled by a. (This convention helps to reduce clutter in
diagrams of machines.)

4. Schedulers

Machines can be given an asynchronous semantics, but here we are interested
in the semantics in which machines execute under the control of a scheduler,
which selects an agent at each moment of time. Our model of schedulers resolves
only the nondetermism concerning the next agent to act: we leave this agent
free will to choose which action to perform when it is scheduled.*

We allow that scheduling is nondeterministic: there are several reasons
to consider this. Admitting non-deterministic schedulers gives a more gen-

4We note that the term “scheduler” is also used in the literature on formal models of
nondeterminism to refer to a function that also resolves the nondeterminism concerning the
scheduled agent’s choice of action. The motivation for this is generally to reduce a system
with nondeterminism to a completely deterministic or probabilistic system, so that better
understood definitions and methods for the latter type of systems can be applied. This is a
technical notion of scheduler that is orthogonal to our concerns in this paper.



eral theory that balances the nondeterminism in our machine model. A non-
deterministic scheduler also leaves open a range of possible implementations,
obtained by refining the nondeterminism; we study the impact of such refine-
ment on security in Part IT of the paper. Scheduling may also be done randomly
for reasons of expected performance and fairness, as in, e.g. lottery schedul-
ing [WW94]. Finally, nondeterministic or random scheduling may be done for
reasons of security, in order to hide information from an attacker by creating
uncertainty about which agent is acting. Several other works have dealt with
nondeterministic or probabilistic scheduler models in the different context of
security of programming languages [SS00, VS99, BC02]. (We do not attempt
to deal with probabilistic systems and probabilistic notions of security in this
paper, but nondeterminism can be viewed as an abstraction of probability, so
our work points to some of the issues that would arise in such an extension.)

Definition 4.1. A scheduler (for a machine M with actions A and domains D)
is a function o : A* — P(D). A scheduled machine is a pair (M, o) consisting
of a machine M and a scheduler o for M.

Intuitively, given a history of actions a € A*, one of the agents in the set
o(a) will be scheduled next. (This definition leaves underspecified precisely how
and when the nondeterminism in a scheduler is resolved; the notion of scheduler
SOLTS defined later in this section is a more concrete modelling that allows
specific mechanisms for making such decisions in a scheduler implementation to
be represented.) We say that a run of a machine is compatible with a scheduler
if the agent that acts at each step of the run is one of the agents enabled by the
scheduler, given the history so far. Formally, compatibility of a finite sequence
of actions with a scheduler ¢ is defined by the following induction: the empty
sequence € is compatible with o, and aa is compatible with o iff a is compatible
with o and dom(a) € o(a), where @« € A* and ¢ € A. An infinite action
sequence is compatible with a scheduler ¢ if all its finite prefixes are compatible
with 0. A run r of a machine is defined to be compatible with a scheduler
o if Act(r) is compatible with o. Given a machine M, we write R(M, o) for
the set of all runs of M compatible with o. We also write Views,(M,o) for
{view,(r) | r € R(M,0)}.

We henceforth assume that schedulers do not terminate, so that if « is
compatible with o, then o(«) # 0. A scheduler o is deterministic if o(a) is a
singleton for all compatible o € A*. Write Y for the set of schedulers and Y
for the set of deterministic schedulers. A schedule is a finite or infinite sequence
§ = uguiugus ... where each u; € D. For o = apayas. .., we write sch(a) for
the schedule dom(ag) dom(ay) dom(az).... If r is a run we also write sch(r)
for sch(Act(r)). We write s € o if there is an action sequence a compatible
with o such that s = sch(a). For each infinite schedule s = ugujugus. .., we
define a deterministic scheduler o5, by 0s(a) = {u)o)} for all a € A*, such that
sch(a) is a prefix of s (where || is the length of a finite action sequence «), and
os(a) = 0 otherwise.

In order to prevent the scheduler being a channel for information flow,
we define a notion that expresses that the decisions of the scheduler are in-
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dependent of the actions of an agent. For the definition, we need an op-
eration on actions that masks actions of agent w: define u,(a) = a when
a € A\ A, and py(a) = L, when a € A,. For a sequence o = ajag... € A*
define p, (@) = pu(ar) pu(az).... Define a scheduler o to be u-oblivious if
po (@) = py (@) implies o(a) = o(’) for all o,/ € A*. Intuitively, this says
that scheduling decisions do not depend on the actions performed by agent wu.
We may therefore view a u-oblivious scheduler ¢ as a function from (g, (A))*
to P(D), where u,(A) = (A\ A,) U{Ly}. A scheduler is oblivious if it is
u-oblivious for all v € D.

Example 4.2. Consider a scheduler o in which H and L are allocated alternate
blocks of time of length k, except that L may relinquish some of its share to H
by performing a yield operation. More precisely:

- o(a) ={H}, if |a| div k is odd, or |«| div k is even and there is a yield
in the last |a| mod k actions in «,

- o(a) = {L} otherwise.

Here |z| denotes the length of a sequence x, and div denotes integer division.
Then o is an H-oblivious scheduler, but not L-oblivious. (To see that o is H-
oblivious, note that |a| = |ug ()| and the L action yield is preserved in pp(c).
To see that o is not L-oblivious, note that for any L action a other than yield,
we have pr(a) = pr(yield) = Lp but o(a) = {L} and o(yield) = {H}.)

It is worth noting that if we were to give H a yield action, with the effect of
transferring the remainder of H’s block to L, then there would be a covert chan-
nel and the system would be insecure, since upon seeing that it was scheduled
within an H block, L would obtain information about H’s actions, in contraven-
tion of the policy that information should not flow from H to L. The assumption
of H-obliviousness prevents the existence of such covert channels. O

Schedulers may be represented as SOLTS. A scheduler SOLTS is a SOLTS
of the form (Q, Qo, —,{ L}, obs) that satisfies

1. there is a transition from each state,
2. all transitions from a state are by the same agent, and all actions of that

agent are enabled, i.e., if s - and s -, then dom(a) = dom(b), and s ——
for all ¢ € Agom(a), and
3. obsy(s) = L for all states s and agents u.

(Note that (3) means that agents do not obtain information about the scheduled
agents from their observations on any state of a scheduler SOLTS.)

Diagrammatic Convention for Scheduler SOLTS: we depict scheduler
SOLTS as graphs in which vertices correspond to states, and are labelled by
the agent whose actions are enabled at that state. Edges are labelled by actions
and correspond to transitions. All transitions from a state are depicted: we note
that we use a different diagrammatic convention in the diagrams of machines,
where self-loops are elided.
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Figure 2: A non-oblivious implementation of an oblivious scheduler

We say that a scheduler SOLTS is u-oblivious for u € D if for all states s,
and actions a, if s — t and dom(a) = u then s — t for all actions ¢ € A,,.
Intuitively, this says that the state ¢ carries no information about which v action
was used to reach it. A scheduler SOLTS is oblivious if it is u-oblivious for all
ueD.

Given a scheduler SOLTS A = (Q, Qo, —,{L}, obs), define a scheduler o 4
by oa(a) = {sched(q) | go — ¢, go € Qo}, where sched(q) is the unique agent
that has its actions enabled at q. Now say A represents o if for all @ € A*
compatible with o, we have o(a) = o0 4(a).?

Interestingly, a scheduler SOLTS representing a u-oblivious scheduler is not
necessarily u-oblivious. Intuitively, this is because our definition of obliviousness
of a scheduler SOLTS is based on just one (easily checked) way to ensure that
the SOLTS represents an oblivious scheduler. In Figure 2 there is a scheduler
SOLTS that is not H-oblivious, but it represents the H-oblivious scheduler that
produces schedules LH(H* + L*). (Here we follow the convention of using H*
to denote the infinite sequence HHH ..., and similar for L*.) This scheduler
SOLTS is not H-oblivious since at the second step, different actions from H
lead necessarily to different states.

Since for every w-oblivious scheduler o, there always exists a u-oblivious
scheduler SOLTS that represents o (by Proposition 4.4(2)), we restrict to the
u-oblivious scheduler SOLTS representing o when dealing with o. The next
construction defines a scheduler SOLT'S for every scheduler.

Definition 4.3. For every scheduler o, define the (infinite state) characteristic
scheduler SOLTS A” = (Q, Qo, —, {L}, obs) by

1. Q=A*x D,

2. Qo={(e,v) |vea(e},

3. (7,v) = (¥,0) iff dom(a) =v and v = -a and v' € o(7'),

4. obs(v,y) =L for allve D and v € Q.

It can be readily shown that A% represents o, i.e., o(a) = o4+ () on o com-
patible with o. If o is u-oblivious, we define a similar construction on the state

5There exist schedulers o’ represented by A but different from o4 on incompatible se-
quences.
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space (1y(A))* x D, with its transition relation defined by (v, v) —= (v/,") iff
dom(a) = v and v = v - p,(a) and v’ € o(y’). We write A9 for the resulting
scheduler SOLTS. It will be then obvious that A7 is u-oblivious. This yields
the following result, in which we also note that the set of runs of a SOLTS
compatible with a scheduler can be understood as being obtained via parallel
composition with a scheduler SOLTS representing the scheduler:

Proposition 4.4.

1. Every scheduler has a scheduler SOLTS that represents it.
2. A scheduler is u-oblivious iff it is represented by some u-oblivious SOLTS.
3. If A is a scheduler SOLTS that represents o and M is a machine, then
R(M, o) is the set of Tuns so —= 51 —2 s5... — s, of M for which there

ay as

exists states qo, . . . , qn of A such that (so, qo) —= (s1,q1) —2 (s2,q2) ... —2
(Sn,qn) 15 a Tun of M || A.

Proof:
e Part (1) is trivial by Definition 4.3.

e For Part (2), the ‘only if’ direction is by the construction of A7 similar to
Definition 4.3, as shown above. For the ‘if’ direction, given a u-oblivious
scheduler SOLTS A = (Q, Qo, —, obs), we show that the scheduler o 4 is
u-oblivious. Given any «,a’ € A* satisfying p, () = p. ('), firstly we
have |a| = |&/|, then by a straightforward induction on the length of «,
it can be shown that the sets of states in A reachable by « and o' are
exactly the same set, given A u-oblivious, i.e., {¢ | o — ¢,q0 € Qo} =

{q ] q LN 4,40 € Qo}. Therefore we have {sched(q) | g0 —— q,q0 €
Qo} = {sched(q) | g0 == q,q0 € Qo}, then o 4(a) = o.4(a’) by definition.

e For Part (3), let A represent ¢ and o = ajay...a,. Given r = sg —
S1...8n-1 2 5, € R(M, o), by definition r is a run of M. Since « is
compatible with o, we have dom(a;) € o(€), and dom(a;) € (a1 ...a;—1)
for all i = 2...n. If there does not exist gy — ¢,, we will have r
incompatible with o 4, which contradicts the fact that A represents o. So
there is a run of A of the form gy —% q1 ... — @,. Combining this run

with r we get a run (so,qo) —= (51,q1) — ... =% (s,,a,) of M | A.
Conversely, for every run r = (so,q0) —= (s1,q1) —» (s2,¢2)... —%

(80, qn) of M || A, the run 7' = 59 — 51... — s, is a run of M, and we
need to show that ' € R(M, o), i.e., v’ is also compatible with o. Since
al An . ay
go — q1 ... —> qp is a run of A, we have dom(ay) € o(€) by go — q1.
For every i = 2...n, since A represents o and qq Lt i, Gi—1, wWe
have dom(a;) = sched(q;—1) € o(ajas...a;—1). This shows that ' is
compatible with o. (Il

We will be interested in definitions of security that classify a machine M as
secure or insecure when it is scheduled according to a scheduler o. That is, we
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are interested in defining the security of scheduled machines (M, o). We assume
agents have a synchronous view of the machine, make an observation at each
moment of time, and are able to distinguish one moment of time from the next,
even if they did not perform an action. We permit that the agents are aware
of the scheduler being used, but may not have complete information concerning
the schedule in a particular run.

As already mentioned, we confine ourselves to the security policy which
permits information to flow from L to H but not vice-versa. To prevent the
scheduler providing a channel for the prohibited information flow, we need to
ensure that the schedules obtained, which may be observable to L, do not convey
prohibited information to L about H’s activity. This will sometimes require
us to focus on H-oblivious schedulers, in which schedules do not carry any
information about which specific actions H performed when scheduled. Write
TH0 for the set of schedulers that are H-oblivious, and Y? for the set of oblivious
schedulers.

Since our notion of scheduler ¢ leaves open a choice of implementation A, a
concrete implementation of a scheduled machine (M, o) will have the form of a
SOLTS M || A where A is some scheduler SOLTS representing o. Thus, on first
principles, we should define security as a predicate on these composite SOLTS.
This raises a concern: is the security of the scheduled machine sensitive to the
choice of implementation A? Intuitively, this should not be the case: the role
of the scheduler is only to enable and disable agent activity, and its internal
state is made invisible to the agents H and L, so what matters is the set of
possible schedules, not the implementation details of how these schedules are
generated. We say that a security property X of implementations M || A of
scheduled machines (M, o) is implementation independent if for all schedulers o
and all scheduler SOLTS A;, A; representing o, the SOLTS M || A; satisfies X
iff M || Aq satisfies X. If o is H-oblivious, then we require both A; and A; to
be H-oblivious. We seek properties for which this is the case. In this case, we
may view X as a set of scheduled machines (M, o).

5. Trace-based Security Definitions

In this section, we present a number of definitions of security that adapt
some notions of security from the literature on asynchronous systems. The
common feature of these definitions is that they can be defined using a trace-
based semantics of machines.

5.1. A Trace Set Semantics

All of the trace-based definitions we give can be stated with respect to a
weaker notion of semantics than SOLTS, in a way that easily leads to the prop-
erty of scheduler independence. To clarify this, we define the notion of epistemic
frame which is a tuple Z = (R, {view,, }yep) consisting of a set R and functions
view,, : R — V where V is some set. Intuitively, R represents the set of possible
states of the world, and view,(r) for r € R represents the information u has
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about r. We say (3 is a possible view for v € D in T if there exists r € R with
view,(r) = B.

Epistemic frames can be generated both from SOLTS and from scheduled
machines. In particular, given a machine M, we define the epistemic frame
I(M) = (R(M),{viewy }uep) where the functions view,, are defined as in Sec-
tion 3. For a scheduled machine (M, o), the definition is given similarly by
I(M,0) = (R(M,0),{view, }yep), with the identical definition of the view
functions except that the domain is now R(M, o).

Proposition 5.1. If a scheduler SOLTS A represents the scheduler o and M
is a machine, then Z(M || A) =I(M, o).

Proof: Trivial by Proposition 4.4(3). O

All of the trace based security definitions we give can be stated as properties
X of an epistemic frame Z. By Proposition 5.1, if scheduler SOLTS A; and As
both represent a scheduler o, then Z(M || A1) = Z(M || Az). This leads imme-
diately to the implementation-independence of the definitions. For readability,
sometimes we just write the pair (M, o) for Z(M, o) as the system generated by
machine M scheduled under o.

The scheduling of an agent’s own actions is visible in its view, but this
may leave the agent uncertain as to the scheduling of the other agents. Say
that agent u is schedule-aware in (M, o) if for all runs 7 € R(M,o) with
view,,(r) = view, (r') we have sch(r) = sch(r’). In particular, every agent u is
schedule-aware in (M, o) with deterministic o that is v-oblivious for all v # .5
We show the following result for L, and the result for H is just symmetric.
Note that since we do not distinguish the actions of agent Sys with respect to
D ={H, L, Sys}, a scheduler o is always Sys-oblivious.

Lemma 5.2. L is schedule-aware in (M,o) if o is both deterministic and H -
oblivious.

Proof: Let r,7' € R(M, o) such that view(r) = view(r"). Let sch(r) =
UQUI U3 . . . Up, We prove sch(r’) = wuju)...u), = sch(r) by induction. Base
case: {u(} = o(e) = {uo} since o is deterministic. Suppose u; = u) for all
i € {0...k}, ie., sch(ry) = sch(r},), we show the case of k + 1. Since o
is deterministic, we have {upy1} = o(Act(rg)) and {uj,} = o(Act(r,)). By
viewr,(r) = viewr (1), we have Actr (1) = Actr(r},) , i.e., the L parts of Act(ry,)
and Act(r},) are the same, therefore after masking actions from H we have
pr (Act(ry)) = pr(Act(ry,)). This implies ugq1 = uj, by o being H-oblivious.

(]

5.2. Nondeducibility On Inputs

For asynchronous systems, the notion of nondeducibility on inputs [Sutherland86]
states that a system is secure if L cannot deduce from its view any information

6Obviously this can be a scheduler o derived from a single infinite schedule s.
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about the sequence of H actions that have been performed. We would like to
formulate a similar definition for systems that are subject to a scheduler. There
are a number of subtleties that lead us to state several different definitions.

One difference in the synchronous case is that, using its knowledge of the
scheduler, L can make deductions about the number of H actions that may have
been performed. It may also be able to deduce when these actions occurred. The
following definition abstracts from these concerns by focussing on the possible
infinite sequences of H actions that are compatible with L’s information. (We
write X for the set of all infinite sequences of elements of the set X.)

Definition 5.3. (M,o0) € tNDIy if for all possible L views (3 in Z(M,o) and
H sequences a € AY;, there is a run r € R(M,0) such that viewr(r) = § and
Acty (r) is a prefiz of a.

Intuitively, this definition says that L is never able to rule out « as the sequence
of actions that will be performed by H over time. If L is able to rule out a
prefix of a then L will be able to rule out « as an infinite sequence of H actions,
therefore tNDI; can be regarded as a basic security requirement — every finite H
behaviour is (potentially) possible from every L-view. This definition does not
take into account the fact that L may be able to determine from its view some
constraints on the number of H actions that have been (actually) performed in
the run. Plainly, the number of H actions cannot be more than the number of
observations in the view. However, knowledge of the scheduler may enable L to
further restrict this set of possibilities, or even to determine the exact number
of H actions. Given a possible view § of Z(M, o), define the set of possible
numbers of H actions Pnay (M, o, 3) to be the set of numbers n such that there
exists r € R(M, o) with viewr,(r) = § and |Actg(r)] = n. The intuition for the
next definition is that the possible numbers of H actions should be all that L
knows about the H actions.

Definition 5.4. (M,0) € tNDIy if for all possible L views [ in I(M,o) and
sequences of H actions o € A}, with |a| € Pnag(M,o,3), there exists r in
R(M,0) such that Acty(r) = o and viewr(r) = (.

The above definition says that we may change the sequence of H actions in a
run to a sequence of the same length without changing the L view. However, the
fact that there is nondeterminism in the scheduler leaves open the possibility
that the new sequence of H actions may need to be scheduled in a different way
in order to preserve the L view. The following definition says that the change
may be made without changing how the H actions are scheduled.

Definition 5.5. (M,0) € tNDIg if for all r € R(M,0), and o € A% with
|a| = |Acty(r)|, there exists a run v € R(M,o) with sch(r) = sch(r’) and
viewr,(r") = viewr(r) and Acty(r') = .

The following result gives some relationships between these definitions.

Proposition 5.6.
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Figure 3: (a) (M, o) in tNDI1 but not in tNDIs (b) (M, o) in tNDI2 but not in tNDI3

1. tNDI3 C tNDIy C tNDI;.
2. (M,o0) € tNDIy iff (M,o0) € tNDIy iff (M,o) € tNDIs, given L schedule-
aware in (M, o).

Proof: For Part (1) first we show tNDI3 C tNDI,. Suppose (M,o) €
tNDIs. Let 3 be a possible L view and a € A}; with |a| € Pnag (M, 0,3). Let
|a|] € Pnag(M,o,3) be witnessed by the run . We need to show that there
is a run r € R(M, o) such that viewr(r) = § and Acty(r) = a. We obtain
this directly from (M, o) € tNDI3, which implies that there exists a run r with
viewr,(r) = viewr(r') = f and Acty(r) = o and, moreover, sch(r) = sch(r').

Next we show tNDIs C tNDI;. Suppose (M,o) ¢ tNDI;, then there is a
sequence a € A% and a possible L view (3 such that for all » € R(M, o),
viewr(r) = ( implies Acty(r) is not a prefix of a. Let v’ € R(M, o) be a run
with viewy(r') = 8 and Actgy(r’) = /. Take o’ to be the prefix of a with
|o’| = |a/|. Then we have || € Pnay (M, o, 3). However, there is no run r”
such that viewr(r”) = 8 and Acty(r”) = o, since o is a prefix of a. So
(M, o) & tNDI,.

To see that the containments tNDI3 C tNDI, C tNDI; are strict, consider
the two examples in Figure 3. (Refer to the end of Section 3 for diagrammatic
conventions relating to machines.)

1. To show tNDI; ¢ tNDI,, we give a scheduled machine (M,o) that is in
tNDI; but not in tNDIy. Let o be a scheduler that produces schedules of
the form H(H + Sys)(H + L)*. Let Ay ={h,h'}, Ap = {l}, Agys = {7},
and the states and transitions of M are depicted in Figure 3(a). We can

observe that the L view 8 =0 ~ 0 ~ 0 occurs on the run r = sg LN 51—
s3, where we have Acty(r) = h. From this we have 1 € Pnay (M, o, 3).
However, there is no run v’ € R(M, o) with viewr (') = 8 and Acty(r') =
h'. So (M,o) is not in tNDI,. However, (M,o) is in tNDI;. To see this
we check that each of the following two possible types of infinite H action
sequence is compatible with all possible L views: 0,0 ~ 0,0 ~ 0 ~ 0((~
0)+( 0)*and 0 ~ 0~ 1((~1)+ (I 1))*.

e If the H input sequence is of the form hh ... or hh'..., schedules of the
form HSys(H + L)¥ make it compatible with all the above L views.
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e If the H input sequence is of the form h'h... or h'h' ..., schedules of
the form H Sys(H + L)“ make it compatible with the L views 0,0 ~ 0,
and 0 ~0 ~ 1((~ 1)+ (! 1))*, and schedules of the form HH (H + L)*
make it compatible with the L views 0 ~ 0 ~ 0((~ 0) + (I 0))*.

2. To show tNDI, ¢ tNDI3, we give a scheduled machine which is in tNDI,
but not in tNDI3. Let o be a scheduler that produces schedules of the form
(HSys + SysH)(H + L)“. The machine M has Ay = {h,h'}, Ar = {i},
Agys = {7}, with its states and transitions shown in Figure 3(b). The

L view 0 ~ 0 ~ 0 is generated by the run r = sg LN $1 — s4 with
Actg(r) = h and sch(r) = HSys. However, if we consider the sequence

B, the only run r’ with sch(r’) = HSys and Actg(r') = h' is ' = sg ,
sy —— s5. This run gives viewr (r') =0 ~ 0 ~ 1. So (M, o) is not in tNDI3.
It is also easy to observe that (M, o) is in tNDI,.

For Part (2) we show that if L is schedule-aware in (M, o), then (M,0) €
tNDI; implies (M, o) € tNDI3. Suppose L is schedule-aware in (M, o) in tNDI;.
Let r € R(M,0) and let o € A} satisfy |a] = |Acty(r)]. Take o' to be
any sequence in Ay, with prefix a. Since (M,0) € tNDI; there exists a run
r’ such that viewr(r') = viewr(r) and Acty(r’) is a prefix of /. Since L is
schedule-aware in (M, o), we have sch(r) = sch(r’), from which it follows that
|Acty (r')| = |Actg (r)], so in fact Acty (') = . This gives everything that we
require for (M, o) € tNDIs. O

Which of the three definitions introduced in this section is appropriate may
depend on the situation, and on application specific concerns such as what harm
could be done with the information that the definition of security allows L to
learn. In general, it is better to show that a system has a stronger security
property than a weaker one, suggesting the use of tNDI3. However, for systems
that do not satisfy this property, e.g., because the scheduler is itself intended
to play a role in security of the system by obscuring the schedule, and in which
information about the schedule is itself carefully protected, tNDI, may be ade-
quate. For systems that do not satisfy tNDI5, even tNDI; might suffice, since it
still provides assurance that H’s inputs are not known to L.

5.8. Nondeducibility on Strategies

Nondeducibility on inputs represents an attack model in which it is assumed
that L is the attacker and H is a trusted agent that may engage in any of its
possible behaviours. A stronger attack model is to consider situations where
H may be a Trojan horse or insider that is attempting to pass information to
L. By engaging in specific behaviour, known to L, it may be possible for the
insider to pass information to L. Wittbold and Johnson [WJ90] showed by ex-
ample that nondeducibility on inputs is too weak for this type of attack, and
proposed an alternative definition called nondeducibility on strategies. In asyn-
chronous systems, nondeducibility on strategies turns out to be equivalent to
nondeducibility on inputs [FG95, vdMZ10]. However, Wittbold and Johnson’s
example concerns synchronous systems with simultaneous actions. It is therefore
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of concern to check how this notion behaves on scheduled synchronous systems.
The following example resembles Wittbold and Johnson’s.

Example 5.7. Let Ay = {h,h'} and Ay = {¢}. Define a scheduled machine
(M, o) with M = {{so, $1, S2, S3, 84}, {50}, —, O, 0bs). The transition relation of
the machine M is depicted in Figure 4(a). The observation function is defined
as

o 0bsp(sg) = obsp(s1) = obsp(ss) = obsp(ss) =0 and obsg(s2) =1,
o 0bsr(so) = obsp(s1) = obsp(s2) = obs(s3) =0 and obsp(s4) = 1.

Let o be the deterministic scheduler corresponding to the schedule LHLHLH .. ..
This scheduled machine is secure with respect to the notions tNDI;, tNDIs and
tNDI3, which are equivalent in this case because the scheduler is deterministic
and H-oblivious (thus L is schedule-aware). The views of L can be described in
the pattern 000 ~ (0(€0 ~ 0)* + 1(£1 ~ 1)*), but it is sufficient to examine only
the L views of length 2. Fach of these is compatible with all choices of H action
in the second step. For example, 000 ~ 0 is compatible with the H action h, if
the run passes through sg, s1 and s3, and it is compatible with the H action h’,
if the run passes through sg, s2 and s3.

However, such a scheduled machine should not be deemed as secure against
an attacker at H that is attempting to deliberately pass information to L, as H
can act in such a way as to control L observations. Suppose that H wishes to
transmit the bit 0 to L. It can do so by the following behaviour:

e if H’s view is 0 ~ 0, it performs h,
e if H’s view is 0 ~ 1, it performs h'.

In this way, H ensures that L’s third observation is 0, so that H has transmitted
the bit 0 to L. By means of a similar pattern of behavior, if H wishes to transmit
the value 1, it can ensure that L’s third observation is 1. (|

In response to the issues illustrated in this example, Wittbold and Johnson
propose a definition of security that takes into account that L, rather considering
all H behaviours possible, may know a priori that H is engaging in some specific
pattern of behaviour. This rule is formally captured using the notion of strategy.
In our framework, strategies can be formulated as follows.

Definition 5.8. An H strategy in a scheduled machine (M,c) is a function
7w Viewsg(M,0) — Ag. A runr = so Aos 22 L I g, ds consistent
with 7 if dom(a;) = H implies a; = w(view g (ri—1)) for all i. Write R(M, o, 7)
for the set of runs in R(M, o) that are consistent with .

Intuitively, an H strategy is a rule describing how the agent H chooses its
next action as a function of its view, and a run is consistent with a strategy
if at each stage in the construction of the run, the next H action executed is
chosen according to this rule. There are some subtle differences between these
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definitions and the definitions of strategies that have been used in the literature
for the synchronous, simultaneous-action context [WJ90], or in the asynchronous
system context [FG95, vdMZ10]. One is that in both these settings, it is always
the case or, respectively, always possible, that the action selected by the strategy
will be executed. On the other hand, in our setting, because of scheduling, it
is possible that the action selected by the strategy on a given view will not be
executed in any run giving that view. Moreover, in our framework, because of
scheduler non-determinism and incompleteness of H observations, even when
H has been scheduled, it need not always be the case that H knows that it has
been scheduled. We therefore need to define 7 on any view where it is possible
that H has been scheduled. Intuitively, given a view [, the action m(3) is the
action that H would perform if it were in fact scheduled after a run in which it
makes view 8.7

Using the notion of strategy, we may now formulate a definition of secu-
rity in scheduled machines that is similar to Wittbold and Johnson’s notion of
nondeducibility on strategies in their simultaneous action setting.

Definition 5.9. (M,o0) € tNDS;y if for every r € R(M,o) and H strategy ,
there exists 1’ € R(M,o,m) such that viewr,(r) = viewr(r').

Intuitively, this definition says that for all strategies 7 that H might choose
to run, there is no change to the set of possible L views, which is always the
same as the set of possible L views when H does not constrain its behaviour in
any way. Thus, there is no way that a Trojan horse at H could pass information
to L by constraining H behaviour to a particular strategy.

As above, it is also of interest to consider the security of a scheduled machine
when L may learn the schedule producing a particular run. This leads to the
following stronger definition.

Definition 5.10. (M,0) € tNDSy if for every r € R(M,o) and H strategy
m, there exists v’ € R(M,o,m) such that viewr (r) = viewr(r') and sch(r) =
sch(r').

The following result gives some relationships between these notions and those
of the previous section.

Proposition 5.11.
1. tNDSy C tNDS;.
2. If L is schedule-aware in (M, o), then (M, o) € tNDS;y iff (M, o) € tNDSs.
3. tNDS; C tNDI; and tNDS, C tNDIs.

Proof:

7One could refine our definitions by restricting the domain of 7 to views that could actually
occur when executing 7 in a given scheduled machine, but this would have no effect on our
results, so we prefer to work with the simpler over-defined functions.
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e For Part (1), tNDS; C tNDS; is trivial by definition. To show that the con-
tainment is strict, Figure 4(b) is an example in tNDS; but not in tNDIo,
so it is also not in tNDSy by the result tNDSy C tNDI3 C tNDI, (Proposi-
tion 5.11(3) and Proposition 5.6(1)).

e For Part (2), we show (M,o) € tNDS; implies (M,0) € tNDSy if L is
schedule-aware. Suppose (M, o) € tNDS; let r € R(M, o) with viewr (r) =
(. From (M, o) € tNDS,, for any H strategy 7, thereis arun v’ € R(M, o)
compatible with 7 and wviewr (') = 8, i.e., v’ € R(M,o,n). Since L is
schedule-aware, we also have sch(r) = sch(r’). Then (M, o) € tNDSy by
definition.

e For Part (3), first we show tNDSs C tNDI3. by proving the contrapositive.
Suppose M ¢ tNDI3(o), then there exist r € R(M,o0) and e =ay...a, €
A% with || = |Actu(r)|, such that for all ' with sch(r') = sch(r) and
Actp(r') = a we have viewr, (1) # view(r). We are going to show that
M ¢ tNDSz(o). In order to do this, take an arbitrary infinite sequence
o' € AY;,. We construct an H strategy m that enforces H’s actions in
every run to strictly follow the pattern of o+ a’, as follows. Define 7 to be
the strategy such that, on an H view [ with exactly k actions of H, 7(8)
is the (k + 1)-st element of o - o’. (Since we do not assume H is schedule-
aware, H may not always know if it has been scheduled, but once it is, it
will see this action appear in its view at the next step, at which point it
can switch to offering the next action.) Then for all " € R(M, 0, 7,), if
sch(r") = sch(r), we will have Acty(r"”) = a (r and r” are of the same
length and scheduled in the same way). But from the above assumption,
viewr,(r") # viewr(r). So M ¢ tNDSz(o). The inclusion tNDS; C tNDI;
can be proved in a similar way. (|

The containment tNDS3 (o) C tNDI3(o) is strict even on deterministic schedulers.
The machine in Example 5.7 (as shown in Figure 4(a)) is not in tNDSy(o)
because H can decide L’s observation in the next state if it knows the current
state is s; or so. However, one can easily verify that every possible L view is
compatible with every possible H input sequence, so it is in tNDI3(o). Note
this is also an example to show tNDS; (o) C tNDIy (o) is strict.

The statement tNDS; C tNDI, does not hold. Consider the machine M in
Figure 4(b), controlled by a nondeterministic scheduler o producing schedules
(H + Sys)Sys(H + L)“. Any L observation is compatible with any H strategy,
because the schedules SysSys(H+ L)“ produce all possible L views independent
of any action by H. However, the scheduled machine (M, o) is not in tNDIj
because if L learns that the schedule is among HSys(H + L)“, it can determine
from the view 0 ~ 0 ~ 0 that the first H action was h. Moreover, it is not
in tNDI5 because there does not exist a run r with viewr(r) =0 ~ 0 ~ 0 and
Acty(r) = B, although |h/| € Pnag (M, 0,0 ~0 ~ 0).

Together with the witness of Figure 4(a) which is a machine in tNDIz(o) but
not in tNDS; (o), we have the following result.

Proposition 5.12. tNDS; ¢ tNDI; and tNDIs & tNDS;.
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Figure 4: (a) (M, o) in tNDI3 but not in tNDS; (b) (M, o) in tNDS; but not in tNDIs

5.4. Reuvisiting the Motivating Example

To illustrate the above definitions, we formulate the motivating example
from Section 2.

Define the signature (A, D,dom) by D = {H, L, Sys}, A = {7, mg, mp,€n, €L},
and dom(7) = Sys, dom(z,) = u for x € {m,e}. Here m, denotes that u is
trying to push a message into the buffer, and €, denotes u is skipping. Based
on the signature, we present the system as a machine M = (S, {so}, —, O, obs),
where

e S = Buffer x Outt™:1} where Buffer = {(), (mz), (mg), (1)}, and Out =
{ack, fail, retry, L},

o so=({),fL), where f, ={H— L, L+— 1},
e O = Buffer x Out,
e 0bs(L, (b, f)) = (O, f(L)) and obs(H, (b, f)) = (b, f(H)), and

e »C S x A x S is the transition relation.

The first component b of the state (b, f) is a buffer state, where () is the empty
buffer; the second component f is used to express output values returned by
agent operations. For agent u, the value f(u) represents the message received
by that agent: ack means that the agent’s attempt to write to the buffer was
successful, fail means that it failed because the buffer contains an agent message,
retry means that the buffer contained Sys data but has now been cleared, and
the agent should retry the write, and L is a null message. Agent L observes
only an output message; the state of the buffer is masked and always looks to
it like (). Agent H can observe the buffer state as well as its output message.
The transition relation contains the following transition types:

e Idling: (b, f) =% (b,{H +— L,L+s 1}) for u € {H,L} and b € Buffer,
(agent u performs a skip: the state of the buffer is unchanged and no
output is returned)
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e Push-in: (), f) =% ((mu), {u > ack, @ — 1}) for u € {H,L},
(the buffer is empty, and agent u successfully writes a message to the
buffer)

Buffer-full: ((m,), f) =% ({my), {u > fail, @+ L}) for u,v € {H, L},
(the buffer contains an agent message, and agent v makes an unsuccessful
attempt to write a message to the buffer)

m.

Request-ready: ((1), f) — ((),{u — retry,u+— L})

(the buffer contains Sys data, and agent u makes an unsuccessful attempt
to write a message to the buffer: the buffer is cleared as a result and the
agent receives the “retry” message)

T

Pop-out: ({my), f) — ((),{H — L,L— 1}) for u e {H, L},
(the buffer contains an agent message: Sys clears the buffer and transmits
the data)

System-possess: (), f) —= ((r), {H — L, L L}),
(the system occupies the buffer when neither H nor L is using it)

System-release: (1), f) — ((),{H — L, L+ L}),
(the buffer contains Sys data, and Sys chooses to empty it)

System-hold: ((7), f) — ((1),{H — L, L — 1}),
(the buffer contains Sys data, and Sys chooses to keep this data in the
buffer).

Here w denotes L when u = H, and denotes H when v = L. The following cases
illustrate how this machine behaves with respect to the security properties we
have proposed so far.

1. For the (round-robin) scheduler o corresponding to the schedule (H LSys)“,
the scheduled machine (M, o) is not in tNDI;, hence not secure for any of
the security properties we have discussed. To see this, suppose L’s first
action is to try to push in a message, then

e if H’s first action is ez, then we have a (deterministic) trace so —%
(s f1) =5 ((me), {H = L, L — ack})

e if H’s first action is my, then we have a trace so —== ((mg), f1) —%
((mg),{H— L,L— fail}).
Thus, the L view “L ~ Lmygack” is incompatible with every infinite H
action sequence starting with mg; similarly the L view “1L ~ Lmypfail” is
incompatible with every infinite H action sequence starting with eg.

2. For the scheduler o corresponding to the schedule (H H SysSysSysLLSysSysSys)~
the scheduled machine (M, o) is in tNDSy (hence also tNDS;). To see this,
note that the fact that there are three Sys steps between the two agents
H and L means that it is an invariant that at each of the first moments of
a block of two L or H steps, the buffer could have value either () or (r),
independent of the previous H actions or L view. This holds initially, and
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(a) from buffer (), the transitions System-possess, System-hold, System-
release result in buffer () and the transitions System-possess, System-
hold, System-hold result in buffer (), and

(b) from buffer (m,), the transitions Pop-out, System-possess, System-
release result in buffer () and the transitions Pop-out, System-hold,
System-hold result in buffer (7).

In each case, the resulting fragment of the L view corresponding to these

three steps is ~ L ~ L ~ 1. The fragment of the L view for any two H

steps is always ~ L ~ 1, and the fragment of the L view for any two L

steps depends only on the state of the bufffer, which is independent at that

time of H actions, as just noted. Thus, whatever strategy H follows, there
is no impact on the set of possible L views.

3. The scheduler o corresponding to the schedule (HH SysSysLLSysSys)*
makes the system insecure. Considering the case when H skips its first
round and pushes-in a message in its second round, it enforces a run sy —%
(05 f1) =% ((mar), {H = ack, L= L}) = (), f) — ({r), fL). Thus,
when L is next scheduled and tries to push-in a message, it will observe
“retry’ instead of “ack”. That is, the infinite H action sequence egmy . ..
is incompatible with the L view “L ~ 1L ~ 1L ~ 1 ~ Imypack’, and the
scheduled machine is not in tNDI;.

4. For an example with a non-deterministic scheduler (not discussed in Sec-
tion 2), if o generates the set of schedules (LSys(H + Sys)Sys)¥, then
(M, o) is in tNDS; but not in tNDIs. To see that it is not in tNDI5, note
that the L view Lmpack ~ L ~ L ~ Lmyackis compatible with H having
performed the single action mpg, but not compatible with it having per-
formed eg. However, this scheduled machine is in tNDS; since H can be
skipped for arbitrarily long periods of time and Sys alone can produce all
possible L views without H’s participation.®

6. Bisimulation-based Definitions

Restrictiveness (RES) is a security property introduced by McCullough [McCullough88].
In state-observed systems, it can be characterised [vdMZ07] by the existence of
an unwinding relation [GM84], which is a binary relation on the set of sys-
tem states. In asynchronous systems, the unwinding relation is essentially a
bisimulation relation treating L’s inputs as external actions, with H actions not
causing changes distinguishable by L. The conditions are as follows:

(OC) If s ~ s’ then obsy(s) = obsr(s').

8We are not concerned in this paper with denial of service attacks, but it is interesting to
note that where there is a single Sys step between L and H, agent L can launch a “denial-of-
service” attack by keeping the buffer empty, so that after the transition System-possess, the
buffer is occupied by a system message “7” and an attempt by H to write to the buffer will

fail. (We thank one of the reviewers for this observation.)
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(SC) If s ~ &' and s — t for a € Ap, then there exists a state ' such
that s/ =t and t ~ t; and if s ~ s’ and s’ = ¢/ for a € Ay, then there
exists a state ¢ such that s —— ¢t and t ~ ¢

(LR,) For all states s,t and actions a € Ay, if s % ¢ then s ~ t.

Intuitively, an unwinding relation requires that H actions do not cause
changes distinguishable by L. We would like to formulate a similar notion
in scheduled systems. Since we allow that L is aware that an H action has been
scheduled, the condition LR, is too strong. We reformulate the definition so
as to permit L to distinguish that H (or Sys) has performed an action, but
mask which action has been performed. We have two different variants of LR,
corresponding to the assumptions that L may or may not know the schedule.

Definition 6.1. Given a SOLTS M = (S, Sy, —, O, obs),

1. An insensitive synchronous unwinding relation is a relation ~ C § x S
including (s, sp) for all sg € Sy, satisfying OC, SC and LR, where LR is
defined as: for all states s, s with s = s’ and actions a,b € Ag U Agys, if

s —% t and s' —2 then there exists s' — ' such that t ~ v if s LA
and s — then there exists s — t such that t ~t'.

2. A sensitive synchronous unwinding relation is a relation ~ C S x S in-
cluding (so, so) for all sg € Sp, satisfying OC, SC, LRy and LRgys, where
LRy (LRsgys) is defined as: for all states s,s’ with s =~ s’ and actions

a,b € Ap(Asgys), if s — t then there exists s' ¥ such that t ~ t';if

s' 2ot then there exists s —— t such that t ~ t'.

We will generally apply these notions to SOLTS of the form M || A where
M is a machine and A is a scheduler SOLTS. Say that a state s is reachable
if there exists an initial state sy and a sequence of actions a € A* such that
s0 — s. The existence of an (in)sensitive unwinding on a SOLTS may depend
on the behaviour of the SOLTS on unreachable states. On the other hand, it
seems unreasonable that the security of the system should be affected by the
behaviour of the system on unreachable states. Thus, we henceforth assume
that every state is reachable. Note that given the set of states S of the machine
M and @ of the scheduler SOLTS A, it is possible that not all states in S x @
are reachable in the combined SOLTS M || A even if all states in S and Q
are reachable in M and A, respectively. In this case we restrict the combined
SOLTS M || A to the reachable subset of S x Q.

The following lemma states a connection between unwinding and scheduling.

Lemma 6.2. Let M be a machine and A be a scheduler SOLTS, then

1. if there is a sensitive synchronous unwinding relation = on M || A such
that (s,q) =~ (t,q"), then sched(q) = sched(q’).

2. if there is an insensitive synchronous unwinding relation ~ on M || A such
that (s,q) = (t,q'), then either sched(q) = sched(q') = L, or sched(q) # L
and sched(q') # L.
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Proof: Trivial by definition. O

As is usual for bisimulation-like relations, we can obtain a largest (in)sensitive
synchronous unwinding relations on a combined SOLTS M || A, by taking the
union of all (in)sensitive synchronous unwinding relations, if they do exist.

Lemma 6.3. Let = be the largest (in)sensitive synchronous unwinding relation
on M || A, then = is an equivalence relation.

Proof: (sketch) For symmetricity, if ~ is an (in)sensitive synchronous unwind-
ing relation, then one can show that ~~! is also an (in)sensitive synchronous
unwinding relation, thus both are included in the largest relation ~. For tran-
sitivity, if ~; and ~9 are (in)sensitive synchronous unwinding relations, then so
is ~q - ~g, therefore (~; - ~9) Ca2. For reflexivity, we show that (s, q) = (s, q),
for all reachable states (s, q). By reachability, there exists a run from an initial
state (so,qo) to (s,q). Then by (so,q0) = (S0,90), and by induction on the
length of the run, one can find a state (s',q’) reachable by the same sequence
of actions with (s,q) =~ (s',¢"). Then (s,q) =~ (s,q) follows the fact that = is
symmetric and transitive. O

Another property is that the distinction between sensitive and insensitive
unwinding no longer exists for scheduler SOLTS representing deterministic H-
oblivious schedulers.

Lemma 6.4. Let A be a scheduler SOLTS that represents a deterministic H -
oblivious scheduler o and a machine M, then there exists an insensitive syn-
chronous unwinding relation on M || A iff there exists a sensitive synchronous
unwinding relation on M || A.

Proof: For the “only if” part, suppose there is an insensitive unwinding relation
~on M || A. Define a relation ~, by (s1,¢1) = (s2,q2) if (s1,¢1) ~ (s2,¢2) and
sched(q1) = sched(q2) and there exist sequences of actions «, o' € A* satisfying
pr(a) = pg(a’) and an initial state (sg, qo), such that (so, o) — (s1,¢1) and

(807 qo) i) (827 QQ)
We show that =~ is a sensitive unwinding relation. The property OC for
~ is immediate from the fact that ~ satisfies OC. Suppose we have states

(s1,q1) = (s2,92), witnessed by (so,q0) —— (s1,¢1) and (s0,¢0) —— (s2,¢2)
with pp(a) = pg(a’) and sched(q1) = sched(gz).

e For one case of LR, suppose sched(q1) = sched(qz) = H, and let a1, a9 €
Ap and (s1,q1) == (s3,3). Since (s1,q1) ~ (s2,qa), there exists (s2,¢2) —
(84,q4) such that (s3,q3) ~ (84,q4). We also have pg(a-a1) = pg(a’ -
az2) by pr(e) = pu(a’) and pp(ar) = Ly = pu(az). Thus, by H-
obliviousness, o(a - a1) = o(¢’ - az), and by determinism it follows that
sched(qs) = sched(qs). Thus, we have all that we need for (s3,gq3) ~

(54, Q4)-

e The other case of sched(q1) = sched(qz) = Sys for LR, and the case
of sched(q1) = sched(gz) = L for SC, can be proved following the same
pattern of reasoning as the above case.
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Figure 5: Insensitive unwinding is implementation dependent

e For all initial states (so,qo), we have (so,q0) ~ (S0,90), then (so,qo) ~
(s0,qo) by taking the two sequences both as e.

The “if” part is by the fact that every sensitive unwinding is also an insensitive
unwinding relation. (|

One major difference between RES and NDI/NDS is that the definition of
RES requires an explicit representation of states and transitions, which is more
discriminative than the notion of sets of runs required for NDI/NDS. In order
to formulate a version of RES for a scheduled machine (M, o) we need to apply
the notion of unwinding relation to the SOLTS (M || .A) where A represents o.
An apparent problem is that whereas unwinding, like bisimilarity, is sensitive
to the branching structure of A, different scheduler SOLTS representing the
scheduler ¢ may have a different branching structure.

Figure 5 is an example which shows that there exists a machine M and
a scheduler o such that for different implementations A of o, the composed
SOLTS M | A may have different results with respect to the existence of an
insensitive synchronous unwinding relation. The two scheduler SOLTS A; and
As give the schedules H(H + Sys)(H + L)“, (we omit the states with heights
greater than 2 since the first two steps suffice for our purpose) with each state
labelled by the name of the scheduled agent. The states of the machine M are
labelled by L observations. One may easily observe that there is an insensitive
synchronous unwinding relation on M || A, in particular we have (so,qo) ~
(s0,90), (51,q1) ~ (S2,q2) and (s1, q2) = (s2, q1); however, there is no insensitive
synchronous unwinding relation on M || As. The reason is that 4y resolves the
nondeterministic choice between H and Sys at the second level into states ¢
and ¢o. However, in the implementation Ay, H and Sys are split apart at the
beginning into states ¢ and ¢}, which leaves the second level fewer choices to
‘respond’ to transitions in the machine M when it is combined to M to build
up an unwinding relation.

An example showing that sensitive synchronous unwinding is also implemen-
tation dependent is depicted in Figure 6. Here the two scheduler SOLTS A;, As
give the schedules HLL(HH + LL)(LH)“, and one may observe there is a sensi-
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Figure 6: Sensitive unwinding is implementation dependent

tive synchronous unwinding relation on M || A;: for the upper schedule, we have
(50, 42) ~ (50, 2), (5,0) ~ (), (51, %) ~ (51, 6%) and (3, %) ~ (55, qL); for
the lower schedule, we have (sg,q1) = (s0,q1), (s,¢}) =~ (t, 1), (s1,4)) = (s3,4¢)
and (s2,¢)) =~ (s4,¢}). However, there is no sensitive synchronous unwinding
relation on M || Az, where (s,¢5) # (t,¢5). To see this, note that the trees
of height 2 originating in the states (s1,4¢%), (s2,4%), (s3,4%), (s4,¢%) are all
non-bisimilar, since they have sets of leaves labelled {2,4}, {1,3}, {2,3} and
{1,4}, respectively. Intuitively, the reasoning that explains why M || As has
no sensitive unwinding relation is different from the example for the insensitive
case we have presented above: A, is more flexible than A;, but here it is the
extra choices that impede the construction of an unwinding relation in M || As.

The dependence on scheduler implementation suggests that in order to ob-
tain an implementation-independent, bisimulation-based definition of security,
we should quantify over scheduler implementations. We could do this either by
a universal or by an existential quantification over scheduler implementations.
We define both variants:

Definition 6.5. 1. (M, o) € tRES] (tRES]) if there exists an insensitive syn-
chronous unwinding relation on the SOLTS M | A for all (some) H-
oblivious scheduler SOLTS A representing o.
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2. (M,o) € tRESY(tRES3) if there exists a sensitive synchronous unwinding
relation on the SOLTS M || A for all (some) H-oblivious scheduler SOLTS

A representing o.

Whether a universal or existential quantification is preferred depends on
one’s attitude to bisimulation based definitions of security. One attitude is
that the property most of interest is given by a trace-based definition, but
bisimulation-based definitions provide a useful proof technique. In this case, an
existential quantification is appropriate. On the other hand, if one adheres to
an understanding in which existence of an unwinding relation is what makes
a system secure, then it is necessary to quantify universally over scheduler
implementations in order to obtain an implementation-independent notion of
security.

The properties tRES? (for @ =V,3) are the strongest of the security prop-
erties we have discussed so far, with the following relations holding.

Proposition 6.6.
1. tRESY C tRES? C tNDS; fori=1,2.
2. tRESY C tRESY for Q =V, 3.
3. (M,o) € tRESS iff (M, o) € tRES? for deterministic o and Q =V, 3.

Proof:
e For part 1, tRESY C tRES? is trivial by definition.

e To show tRES; C tNDSs, we proceed as follows. Suppose the machine
M is of the form (S, Sy, —, obs) and there is an H-oblivious scheduler
SOLTS A = (Q, Qo, —, obs) representing o, such that there is a sensitive
unwinding relation ~ on M || A. We show M € tNDSs(o) by showing for
all r € R(M || A) and H-strategy 7, there exists ' € R(M || A) com-
patible with 7, such that viewp (r) = viewr(r') and sch(r) = sch(r’). Let

r = (50,q0) — (51,q1) —2 ... = (5,,,¢,). We prove by induction that

an

there is a run r/ of M || A of the form of (so, go) — (s}, q}) ... — (s, q.,)
which is compatible with 7, and moreover, satisfies (s;, ¢;) = (s}, q}), and
viewr,(r;) = viewp(r;) for all i« € [0...n]. Then sch(r;) = sch(r}), by
Lemma 6.2(1), which gives sched(q;) = sched(q;) for all i. That is, every
prefix of r’ is compatible with 7 while preserving the schedule, so that the
result immediately follows.

The base case is by Definition 6.5, which gives that the empty run
ro = (80,qo) trivially satisfies the conditions that (so,qo) =~ (s0,qo) and
viewr,(ro) = viewr,(rg). Suppose (s;,¢;) =~ (s, q}), then from Lemma 6.2
we have sched(q;) = sched(q;). We show the requirements for the next
transition.

— If sched(q;) = L, by (si,q) = (s},q;) and SC, there is a transi-
. a;
tion (s}, q;) == (S§+1,(J§+1) such that (siy1,qiy1) ~ (5§+1aq;+1)-
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Then, we have obsr((si+1,¢i+1)) = 0bsp((sj,1,¢i,1)), so together
with the fact view (r;) = viewr (r}) from the induction hypothesis,
we have viewr, (riy1) = viewr (r; - ait1- (Sit1, ¢it1)) = viewrn(rl a1 -
(Si41> @it1))-

— If sched(q;) = H, by (s;,¢;) =~ (s,,q;) and LRy, there is a transition
(s, 4;) - (S§+17QQ+1) and (sit1,qi+1) =~ (5§+1aq£+1)a where a’ =
w(r}) € Ag. Then from the induction hypothesis, viewr (ri+1) =
viewp,(ri) ~ 0bsp((siy1,git1)) = viewp (r; - @’ (si41, qi11))-

— The case sched(g;) = Sys can be treated similarly, using LRgys.

e The proof for tRES] C tNDS; is similar to that above, except that the two
cases LRy and LRgys are replaced by a single case LR for actions in both
AH and Asys.

e For tRESQQ - tRESlQ for @ € {V,3}, it suffices to show that for all ma-
chines M and scheduler SOLTS A, every sensitive synchronous unwinding
relation is also an insensitive synchronous unwinding relation. Let =~ be a
sensitive unwinding relation, then = satisfies OC and SC, and LRy and
LRsys. We need to show = satisfies LR as well. From Lemma 6.2(1),
for any (s1,q1) = (s2,q2), we have sched(q1) = sched(qz). If ¢1, g2 both
schedule L, then LR is vacuously satisfied; if they both schedule H or both
schedule Sys, let s; —— and sy .. Then we have dom(a) = dom(b).
Now LR is satisfied by LRy if dom(a) = dom(b) = H, and by LRgys if
dom(a) = dom(b) = Sys.

e For part 3, let (M,0) € tRES({?, we show (M, o) € tRESQQ. If Q =3 (ie,
(M, o) € tREST), and suppose A represents ¢ and there exists an insensi-
tive synchronous unwinding relation on M || A, then by Lemma 6.4 there
exists a sensitive synchronous unwinding relation on M | A. Therefore
(M,0) € tRES;. If Q =V (i.e., (M,0) € tRES}), we apply the above
reasoning on all H-oblivious implementations of o, to get (M, o) € tRESY.
That (M,0) € tRESS implies (M,0) € tRESY is by tRESS C tRES? for
Q e {v,3}. O

The containments of Proposition 6.6 are all proper, which we justify as
follows.

Proposition 6.7. tRES? Z tRESY
This follows from the failure of implementation independence shown above.
Proposition 6.8. tNDS; Z tRES?

Consider the machine M in Figure 7 where Ay = {h,h'}, A = {I}, and let
the deterministic scheduler o generate the schedule (HL)¥. We show first that
(M,o) € tNDSy but (M,o) ¢ tRES;. For the latter, we need to show that
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Figure 7: (M, o) in tNDS; and tNDS2, but not in tRES] or tRES3

there does not exist a sensitive synchronous unwinding on M | A for any H-
oblivious scheduler SOLT'S A representing . We argue that there does not exist
a sensitive synchronous unwinding on the particular SOLTS M || A%,. It turns
out that this is sufficient: since ¢ is deterministic, it follows using Corollary 4.6
and Corollary 4.10 from Part IT of the paper that there is no sensitive unwinding
on M || A, for every H-oblivious A representing o.

Since the structure of A% is linear, the initial part of M || A%, is isomorphic
to that depicted in Figure 7, where (instead of the usual convention in which we
omit self-loops) we interpret the lack of a transition labelled by an action a from
a state as meaning there is no transition labelled by that action a. We show
that there are no sensitive unwinding relations on M || A% by contradiction.
Suppose that “~” were a sensitive synchronous unwinding. Since the initial
state (at level 0) must be ~-related to itself, by LRy the two states at level 1
must be ~-related, and they both schedule L. By SC, the top state at level 2
must be ~-related to one of the other two at level 2. We let it be ~-related to
the middle state at level 2 (the case of the bottom state is symmetric). Both
states schedule H. Then by LRy, the two states at level 3 must be ~-related,
because if the top state of level 2 makes a transition to the bottom state of
level 3, the only state reachable by the middle state of level 2 is the top state of
level 3. But, by OC, two states at level 3 cannot be ~-related, since they have
different L observations, which gives a contradiction.

For (M, o) € tNDSy, we may observe there is no H strategy to pass informa-
tion to L regardless of H and L’s observational power. However H chooses its
first two actions, L is always able to obtain both its possible views 0 ~ 010 ~ 0
and 0 ~ 070 ~ 1. This completes the proof that the containment tRES; C tNDSy
is strict.

Since o is deterministic and H-oblivious, (M,c) is L schedule-aware by
Lemma 5.2. Then (M,o) € tNDS; iff (M,o) € tNDSy by Proposition 5.11(2),
and (M, o) € tRES] iff (M, o) € tRES] by Proposition 6.6(3). Therefore, this
is also an example showing that tRES7 C tNDS; is strict, i.e., we have (M, o) €
tNDS;, but there exist no insensitive unwinding relations on M || A for every
H-oblivious A representing o.

Proposition 6.9. tRES] Z tRES]

Consider the scheduled machine (M, o) in Figure 5, where o produces schedules
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Figure 8: A machine showing tREsg is strictly stronger than tRESY

in the form of H(H + Sys)(H + L)*. We showed above that (M, o) € tREST.
We show there exist no sensitive unwinding on M || A for all scheduler SOLTS
A representing o. Let A represent 0. Suppose there were a sensitive unwinding
relation ~ on M || A. For (so,qo) an initial state of M || A, we would have

(s0,q0) ~ (S0,90) and sched(qo) = H. Since h,h’ € Ay, and (so,qo) LN

’

(s1,q1), there would exist (s, o) A, (s2,q2) and (s1,q1) ~ (S2,¢2). Since ~ is
sensitive, we have sched(q1) = sched(qz). We have the following two cases to
show that this is impossible.

e Suppose sched(q1) = sched(q2) = H, and consider the pair h,h' € Ay

and a transition (s1,q1) LN (s3,q7). By LRy, there exists (sz2,q2) I,
(s4,45), with (s3,q}) ~ (s4,q5). But this contradicts OC since obsg(s3) #
obsr,(s4).

e Suppose sched(q1) = sched(qz) = Sys and (s2,q2) — (s3,¢5), similar to

the above, for all (s1,q1) LN (84,q1), it cannot be (s4,¢}) ~ (83,45).

As A is arbitrarily chosen, this shows (M, o) € tRES3.
Proposition 6.10. tRES} ¢ tRESY

We take the machine M as depicted in Figure 8, and combine it with a sched-
uler o that produces schedules in the form HLL(H + Sys)L“. We show that
(M, o) € tRES]. A number of scheduler SOLTS that implement o are depicted
in Figure 9, which enlist all possible ways (modulo bisimilarity) on resolving the
nondeterministic part (i.e., the choice on H 4 Sys) in o. One may find that in
M, t; and ts are isomorphic, to and ¢4 are isomorphic. The subtrees rooted at
to and t5 need to be treated specially.

e In M || A1, we have an insensitive unwinding relation ~ satisfying (so, go) ~
(s0,q0) and (so,q1) ~ (s0,q1). For the left part of A;, starting from
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Figure 9: Implementations of a scheduler that produces schedules HLL(H* + Sys“)

(s0,q0) H takes transitions from h and h', we have (s1,q2) ~ (s2,¢2).

If (s1,02) = (to, as), we have (s3,42) — (t3,41), and (fo,q1) ~ (t3, 04),
which further derives (19, gg) ~ (73, ¢s) with both states give L observation
0 in the next step, as the schedule HLLH ... is known from the beginning.
For the right part of Ay, starting from (so, ¢1) and H takes transitions from

h and '/, we have (s1,q3) ~ (82,q3). Then if (s1,¢q3) LN (to, ¢5), we have
l . .

(527(]3) - (t4,Q5) and (t05q5) ~ (t4aq5)7 which derives (T05q7) ~ (T4aq7)

with both states give L observation 1 in the next step as the schedule

HLLSys is known from the beginning. The other part of the relation ~

can be derived similarly.

e In M || A4, we have an insensitive unwinding relation ~ satisfying (so, ¢j) ~
(s0,90), (s1,44) ~ (s2,4¢}). The essential part of the relation is (¢, ¢}) ~

(t57q/2)7 since lf (t07q/2) L’ (r07q/3)7 we have (%7%) L) (7"57%); a'nd lf
(to, d5) — (ro,d,), we have (t5,q,) —— (rs5,q5). Note in this case we
need to have a state scheduled to H to be related to a state scheduled to
Sys, as the nondeterminism on H + Sys is settled only in the last step.

Similarly one can also show that there exist insensitive unwinding relations on
M || A2 and M || As, which we leave as an exercise to the interested reader.
In this way we have shown (M, o) € tRES]. There are no sensitive unwinding
relations on M || A4. Suppose there were a sensitive unwinding relation ~
satisfying (so,q)) =~ (s0,q)), then by taking H actions h,h/, we would have

(s1,44) = (s2,41). If (s1,4}) LN (to, g5), there are no states reachable by [ from
(s2,q)) that can be m-related to (to, g5).

We further show that the existence of insensitive unwinding relations in a
machine with some implementation of a scheduler, i.e., (M, o) € tREST, is still
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insufficient for (M, o) to be secure for all trace-based properties except for tNDI;.
This is stated as follows.

Proposition 6.11. tRES7 ¢ tNDI,.

We take the machine M and sheduler ¢ as depicted in Figure 5, where two
implementations of o are given as scheduler SOLTS A; and As. First, we know
(M, o) is in tRES], as there exists an insensitive unwinding relation on M || A,
(though no insensitive unwinding relation exists on M || A3). We show that
(M, o) is not in tNDIy. Consider the L view 8 =0 ~ 0 ~ 0, the set of possible
numbers of H actions compatible with § is Pnag (M, o, 8) = {1,2}. We choose
the action sequence « that contains a single action h. For every run r that
satisfies viewy, (r) = 3,

e if the machine is scheduled by HH ..., then |Act(r)| = 2, then Act(r)
cannot be just a which has length 1;

e if the machine is scheduled by HSys..., then Act(r) can only be of a
single action h’ which is not «.

Note that we also have tRES] ¢ tNDI3 and tRES] ¢ tNDSs, by the existing
results tNDSg C tNDI3 C tNDI, (Proposition 5.6(1) and Proposition 5.11(3)).

In the literature, unwinding relations have been proposed as a proof tech-
nique for information flow security properties [GM84, Rushby92, Mantel00,
BFPRO03, Oheim04]. Existence of an unwinding relation has been shown to
be equivalent to noninterference in deterministic systems [Rushby92] (for what
are called transitive policies in that paper;- these include the policy L < H we
consider in this paper). However, in general, the existence of an unwinding is a
strictly stronger notion than trace-based information flow properties, as shown
in the above example. Interestingly, this phenomenon can also be seen in our
motivating example.

Non-existence of unwinding proof for the motivating example. Taking the mo-
tivating example as shown in Figure 1 and defined in Section 5.4, given a
scheduler o producing the infinite schedule (HH SysSysSysLLSysSysSys)®,
we show that the scheduled machine (M, ) is not secure with respect to tRES3
(or tRES]), although it satisfies tNDSy (as was argued in Section 5.4). As o is
deterministic, by Corollary 4.10 from Part II of the paper, it suffices to show
that there exist no sensitive unwinding relations on the machine controlled by
A for some H-oblivious scheduler SOLTS A that represents o. (Also note
(M, o) € tRES3 iff (M,0) € tRES] for deterministic o, by Proposition 6.6(3).)
We consider the specific case of the following ten-state scheduler SOLTS that
represents o. Define A = ({qo,q1,.--99}, {90}, —, {L}, obs) where

o sched(qy) = sched(q1) = H, sched(qs) = sched(qs) = L, and sched(q) =
SyS for all q S {q27 43,44, 47,48, qg}u

® 4i = q(i+1) mod 10 for all @ € Agchea(q,)-
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Suppose that there exists a sensitive unwinding relation ~ on M || A. We pro-
duce a contradiction. The first two rounds of H leave 4 possible states of the
combined SOLTS M | A: (({(mm), f1),q2) (from mpg,en) , (({(mu),{H —
ack,L — 1}),q2) (from eg,mpg), ((myg),{H — failL — 1}),q2) (from
mpgmp), and (((), f1),q2) (from egep). Since all H-transitions are determin-
istic, and the initial states are ~-related, all these states must be ~-related, by
LRy. In each of the next three rounds, where i € {3,4,5}, we have two possi-
ble states: (((), f1),¢:) and (({(1), f1), ). Using LRgys, and the conclusion at
level 2, we deduce that (({), f1),qs) has to be ~-related to (({7), f1),¢s5), and
then using SC on the L action my that (((mr),{L — ack, H — 1}),qs) and
(((),{L — retry, H — L}),q5) are ~-related. But these states have different L
observations, contradicting OC. Therefore it is impossible to have an unwinding
relation on M | A.

7. Related Work

Our focus has been on the interaction of schedulers with notions of infor-
mation flow security. There appears to be relatively little literature on this
topic.

Rushby’s separability. One related set of papers is Rushby’s work on sep-
arability [Rushby81, Rushby00], which aims to define a security property for
operating systems security kernels. A separation kernel provides each agent the
abstraction of a local abstract machine, which is unaffected by the behaviour of
other agents. Rushby’s definitions assume that agent’s views are defined in an
asynchronous fashion, but his machine model is based on a notion of “colours”
that amounts to scheduling of the processes. The information flow policy for
separability is stronger than that we have considered (since it prohibits infor-
mation flow in both directions). It would be interesting to revisit his work in
the light of our results in this paper.

Language based approaches. Language based information flow analysis, pio-
neered by Denning & Denning [DD77], is the subject of a large body of literature
which has been surveyed in [SMO03] (up to year 2003). By contrast to our focus
on reactive systems and timing, most of this work deals with a single input and
output, and is concerned with storage channels instead of timing channels (for
the classification of covert channels we refer to [Lampson71]). Agat [Agat00]
is the first to propose a bisimulation based definition of information flow that
takes into account time spent on program execution in terms of the number of
executable instructions. He proposes to close timing channels by padding pro-
grams with dummy computations, the transformation being automated using a
type based mechanism.

Sheduling of concurrent threads has been considered in the context of language-
based security. Volpano et al. [VS99] studied probabilistic information flow of
multi-process programs in the presence of a uniform scheduler. Another work
in which schedulers are explicitly considered is that of Sabelfeld et al. [SS00],
who present an elegant formulation of language based security properties with
dynamic thread handling by schedulers, with a probabilistic bisimulation-based
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definition of security. Their schedulers make decisions either deterministically
or probabilistically, but they consider only a single input and output, and treat
timing as unobservable to Low (but observable to the scheduler). Their def-
inition of security is independent of all schedulers, compared with our focus
on independence on implementation for a known scheduler. Russo et al, in a
sequence of papers (a recent one is [RS06]) have studied a similar setting for
non-probabilistic bisimulation-based definitions of security. Their scheduler is
also defined in a programming language syntax, so that the interaction between
threads and the scheduler is made explicit. Their noninterferent schedulers
also rely on a bisimulation-based relation, which is comparable to our definition
of oblivious scheduler SOLTS. More recently, Mantel and Sudbrock defined a
probabilistic trace-based scheduler-independent security property in a language-
based setting [Mantel10]. They also design a sound type system to enforce that
property.

Boudol and Castellani [BC02] applied a type system to rule out illegal flows
of information in both sequential and concurrent settings with scheduling. In
addition to typing constraints from the previous works (e.g., of [DD77]), they
require that while loops guarded by High variables are not followed by Low as-
signments, so that termination of that loop will not be detectable by observing
the result of the subsequent Low assignment. Another similar but independent
work, using a uniform probabilistic scheduler, is [Smith01]. An extended and
mechanized version is in [BN04]. A follow up work [ABCO07] discusses noninter-
ference for a class of synchronous programs called reactive programs, which in-
corporate features such as broadcasting, suspension and preemption. They have
two different types of parallel composition: a global asynchronous composition,
and a local synchronous composition with a deterministic cooperative schedul-
ing discipline. They also identify a new type of illegal flow called suspension
leak. Their security properties are all bisimulation-based and time-insensitive.

Compared with language based approaches on information flow with schedul-
ing, our work proceeds on a different level, in which we define both system and
scheduler in a language of automata with discrete-timed transitions. There-
fore, our definitions do not naturally come with type systems. Another limit
of our work is that it does not support dynamic process creation or dynamic
policies, due to our static approach to system modeling. We focus on both trace-
based and bisimulation-based definitions, in a time-sensitive way. Our model
does not deal with probability, which is a modelling aspect that is orthogonal
to nondeterminism (a good discussion of their relationship and combination is
[Segala95]). Further research could be done by extending our automata model
to a synchronous version of probabilistic automata [Segala95] with observations.
Process algebra. A number of recent works from the process algebra commu-
nity also consider synchronous notions of process. Focardi et al. extended the
asynchronous definitions of security of [FG95] from the CCS-like setting of the
process algebra SPA into a timed version in the framework called tSPA, based on
a discrete timed weak bisimulation [FGMO03]. They consider bisimulation based
definitions of security that are based on NDS-like intuitions. [HR06] develop a
set of failure-divergence based and low determinism based definitions [Roscoe95]
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Figure 10: The relationship between synchronous scheduler-based security properties

in a version of timed CSP. The underlying model of timed CCS and timed CSP
seems to be more general than ours, in the sense that every SOLTS can be
cast into a timed LTS with every action followed by a single tick. However,
the SOLTS model is technically more suitable to express the effect of a system

being controlled by a scheduler, via a lock-step synchronization with a scheduler
SOLTS.

8. Conclusion and Future Work

In this paper we have introduced a class of security properties on a syn-
chronous state machine model with a discrete-time semantics and a definition
of scheduler. The security properties extend nondeducibility [Sutherland86],
nondeducibility on strategies [WJ90] and restrictiveness [McCullough88] in a
synchronous setting with scheduling. Our security definitions work with an
abstract notion of scheduler as well as a concrete notion of scheduler implemen-
tation. We have identified which of the definitions of security are independent of
the implementation of the scheduler. Except for one case, we have given a com-
plete characterization of the relationships between the scheduler-implementation
independent definitions of security we have introduced: the results are summa-
rized in Figure 10, in which all implications as shown by the solid arrows are
proper. The missing case corresponds to the dashed arrow, indicating that
tRES] implies tRES;. We establish this result in Part II of this series, since the
proof uses results on refinement that are developed there.

Which of our notions of security are appropriate for a particular applica-
tion depends on the circumstances. One of the factors is whether a passive

37



or an active attacker is of concern: the notions tNDI; deal with a passive at-
tacker model, and the notions tNDS; deal with an active attacker model. A
further distinction within each of these cases is whether the system should still
be secure if the schedule were to become known to the low level agent L. The
bisimulation-based definitions based on tRES; are even stronger than these def-
initions, but, for independence of scheduler implementation, need to be defined
using a quantification over scheduler implementations.

In principle, it is desirable to prove as strong a security property as possible
for a given system. Thus, even if a weaker property such as tNDI; suffices
for the requirements of an application, it may be more convenient (and more
informative) to prove that the system satisfies a stronger property such as tRESZ.
However, as our examples show, a stronger (and more easily proved) property
may not always hold, preventing the application of such an approach to proving
that a system is secure. This requires that an adequate, hopefully automatable,
proof methodology exists for each of the definitions of interest. A first step
in this direction is given in [CMZ10], which studies the complexity of several
synchronous notions of security similar to those we have introduced here, though
in a slightly different semantic model — it remains to relate the two frameworks
to determine the impact of these results on the present definitions.
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