Access Control and Information Flow in Transactional
Memory*

Ariel Cohen!, Ron van der MeydenQ, and Lenore D. Zuck?®

! New York University, arielc@cs.nyu.edu
2 University of New South Wales, meyden@cse.unsw.edu.au
3 University of Illinois at Chicago, lenore@cs.uic.edu

Abstract. The paper considers the addition of access control to a number of
transactional memory implementations, and studies its impact on the informa-
tion flow security of such systems. Even after the imposition of access control,
the Unbounded Transactional Memory due to Ananian et al, and most instances
of a general scheme for transactional conflict detection and arbitration due to
Scott, are shown to be insecure. This result applies even for a very simple policy
prohibiting information flow from a high to a low security domain. The source
of the insecurity is identified as the ability of agents to cause aborts of other
agents’ transactions. A generic implementation is defined, parameterized by a
“may-abort” relation that defines which agents may cause aborts of other agents’
transactions. This implementation is shown to be secure with respect to an in-
transitive information flow policy consistent with the access control table and
“may-abort” relation. Using this result, Transactional Memory Coherence and
Consistency, an implementation due to Hammond et al, is shown to be secure
with respect to intransitive information flow policies. Moreover, it is shown how
to modify Scott’s arbitration policies using the may-abort relation, yielding a class
of secure implementations closely related to Scott’s scheme.

1 Introduction

Multicore architectures have become ubiquitous in the design of microprocessor chips,
and they require developers to produce concurrent programs in order to gain a full ad-
vantage of the multiple number of processors. Parallel programming, however, is very
challenging. It requires programmers to carefully coordinate and synchronize objects
that access shared data in order to ensure that programs do not produce inconsistent, in-
correct or nondeterministic results. Locks, semaphores, mutexes, and similar constructs
are difficult to compose, and their incorrect application may introduce undesirable ef-
fects such as deadlocks, priority inversion, and convoying.

Transactional Memory (TM) avoids these pitfalls, and simplifies parallel program-
ming by transferring the burden of concurrency management from the programmers to

* This paper to appear in Workshop on Formal Aspects of Security and Trust, Malaga, Spain, Oct
9-10, 2008. ©Springer. The research of the first and third co-authors was sponsored in part by
ONR grant N00014-99-1-0131 and NSF Award CNS-0420477. The work of the second author
was supported by ARC Discovery grant DP0451529.

the system designers, thus enabling programmers to safely compose scalable applica-
tions. Consequently, transactional memory is considered to be a promising alternative
method for coordinating objects and numerous new implementations have been pro-
posed recently (see [12] for an excellent survey).

A transaction is a sequence of operations that are executed atomically — either all
complete successfully (and the transaction commits), or none completes (and the trans-
action aborts). Moreover, committed transactions should be serializable — there should
be a permutation of the operations of the committed transactions where the operations
of each transaction are consecutive and in their original order. Transactional memory
allows transactions to run concurrently as long as atomicity and serializability are pre-
served.

Shared memory systems are often decomposed into security domains, with access
control mechanisms used to restrict actions, such as reading and writing memory loca-
tions not associated to these domains. This can be for reasons of structural decomposi-
tion as well as to enforce an information flow security policy. The latter has been a par-
ticular concern in military security applications. An intransitive noninterference policy
can be viewed as a specification of the permitted causal influences in such architectures.

A great deal of research has focused on construction of multi-level secure systems,
but, in practice, such systems continue to be plagued with known insecurities. An al-
ternative that has been advocated is to build a multilevel secure system as a distributed
system comprised of single-level systems [14, 15]. Multicore processors offer the po-
tential for such architectures for secure systems to be realised on a single chip. However,
appropriate controls on features such as transactional memory will be required to realise
this possibility. To our knowledge, the literature on transactional memory has not yet
turned to consideration of how access control should be managed in such systems.

In this paper we develop a model of access control in transactional memories, in
which transactional memory systems can be seen as extensions of Rushby’s [16] access
control model that add operations for opening, closing and aborting transactions. We
then study the extent to which the theory of information flow in access control sys-
tems carries over to the extension. A standard memory system with an access control
table can be associated with a “minimal” information flow policy (which is, in gen-
eral, intransitive). It can be established that a system satisfies the associated minimal
information flow policy. We study whether this is also the case for transactional memo-
ries, where we focus on different approaches to transactional memory implementation.
Specifically, we consider Transactional Memory Coherence and Consistency (TCC) [9],
Unbounded Transactional Memory (UTM) [2], and a general scheme for conflict de-
tection and arbitration [17]. Some of these implementations turn out to be secure with
respect to the policy associated to arbitrary access control tables, others turn out to be
insecure even for the very simple information flow policy involving two agents H and
L with information flow from H to L prohibited.

Finally, we identify the source of the insecurity to be the ability of one agent’s activ-
ity to cause another agent’s transaction to abort and propose a fix to the classical access
control policy that avoids this type of insecurity. We define a generic transactional im-
plementation that incorporates this idea. This result is then used to prove the security of

TCC as well as a modification of Scott’s arbitration rules so as to obtain secure variants
for all instances of Scott’s scheme.

A Simple Example To demonstrate the ideas of this paper, consider Unbounded Trans-
actional Memory (UTM) that eagerly updates the main memory with new values while
maintaining copies of old values in a transaction log. A conflict between pending trans-
actions occurs when one tries to read a block that was written by another, or write a
block that was read or written by another. The arbitration policy is to abort the younger
transaction, i.e., the one that started while the other was already pending.

Suppose a single memory block, x, and two security domains, H (high) and L (low),
where H can only read x and L can both read and write x. As commonly assumed, the
permitted information streams are from each domain into itself and from L to H. Let
« be a trace of the system where H opens a transaction, then L opens a transaction,
and then H reads z. Now, assume L attempts to write . According to UTM, since
this implies a conflict and L’s pending transaction is younger than H’s, L’s transaction
would be aborted. From this, L. would be able to infer that H has an older pending
transaction that read x. Consequently, in this case, UTM allows information flow from
H into L, contrary to policy.

The violation of the security policy occurred because of L’s ability to infer infor-
mation about H from its failure to perform an action successfully, and not, as is usual
the case in memory systems, from its ability to read a value written by H. This leads
us to the observation that, to avoid such forbidden information flow, one should alter
the arbitration policy as to avoid aborting transactions of lower security clients in lieu
of actions performed by their higher security peers. As we show in the sequel, in this
particular case it suffices to abort the older H if aborting the younger L. would lead to
security violation, and to follow the usual arbitration policy in all other cases.

Overview The rest of the paper is organized as follows: Section 2 describes the formal
model and recalls the definitions that we use from the theory of information flow se-
curity. Section 3 gives a general description of transactional memory system, enhances
transactional memory systems with an access control table and proves several imple-
mentation of them to be insecure. Section 4 presents a generic secure protocol, and
shows security of some transactional memory systems that implement the generic pro-
tocol. Section 5 shows how to fix the systems shown insecure in Section 3 so as to be
secure. Section 6 reviews the data base literature related to our results. Finally, Section 7
provides some conclusions and discusses future work.

2 Model and Access Control

Several different abstract system models have been used in the literature on noninter-
ference. In this paper, we use an action-observed model [16], where the observations
are outputs received on performing an action. In later sections we refine this model in
order to capture specific detail of interest in transactional memory systems.

Let D be a set of security domains, or agents, and let O be a set of outputs, or
observations. An action-observed security system (AOSS) is a deterministic machine
of the form (S, sg, A, step, out, dom), where

S is a set of states (typically, the set of all assignments to some set of variables V),
sg € S is the initial state,

A is a set of actions,

dom: A — D associates each action to an element of the set of security domains
D,

step: S x A — S is a deterministic transition function, and

6. out: Sx A — (O is a function such that out(s, a) is the output received by domain
dom(a) when action a is performed in state s.

il e

d

We write s - « for the state reached by performing the sequence of actions o € A*
from state s, defined inductively by s - ¢ = s for € the empty sequence, and s - aa =
step(s- a,a) fora € A* anda € A.

A non-interference policy captures when “actions of agent p; are permitted to in-
terfere with agent ps,” or “information is permitted to flow from domain p; to domain
p2.” See Section 6 for a brief survey on the history of non-interference. Formally, a
noninterference policy is a binary relation — over D, with p »— ¢ intuitively meaning
that “actions of agent p are permitted to interfere with agent ¢.” Since a domain should
be allowed to interfere with, or have information about, itself, — is always assumed to
be reflexive.

The simplest nontrivial noninterference policy (and the one most studied in the lit-
erature) is the one mentioned in Section 1, that comprised of two security domains L
(low security) and H (high security), with information permitted to flow from L to
H but not the other way around. Formally, this policy is captured by the (transitive)
relation —= {(L,L), (H,H), (L,H)}.

As mentioned in Section 1, access control systems can naturally be associated to
intransitive noninterference policies (we give the construction at the end of this sec-
tion). Such policies can be given a number of different semantic interpretations. We use
here the notion of TA-Security [13] (which avoids some unintuitive information flows
allowed in [16]; see [13] for a discussion).

Formally, given sets L and I, let H(L, I) be the smallest set H containing L and
such thatif z,y € H and ¢ € I then (z,y,¢) € H. Intuitively, the elements of H(L, I)
are binary trees with L-labeled leaves and I-labeled interior nodes. Given a policy —,
define, for each agent p € D, the function ta,: A* — H({c}, A) inductively by
tay(e) = ¢, and, fora € A*and a € A:

— (tap(a)v tadom(a) (04), 0«) dom(a) — D
taplaa) = {tap(a) otherwise

Informally, the definition builds an operational model of the maximal permitted flow
of information, where an action adds to the maximal permitted information of domains
with which it is permitted to interfere — the fact that the action occurs, as well as all
information available to its domain at the time it occurs.

An AOSS is TA-secure with respect to — if for all a,a’ € A*, and p € D, if
tay(a) = tay(a’) then out(sp - @, a) = out(sp - &', a) for every a € A such that
dom(a) = p. That is, a system is secure if the output of an action returns no more
information than the maximal information permitted to be known to its agent.

A simple example of an AOSS is a standard memory equipped with a read/write
access control table. Let Loc be a set of memory locations, Val a set of values that
these locations may store, and let R: D — P(Loc) and W: D — P(Loc) represent
the locations that each agent is permitted to read and write, respectively. Consider a
system in which the set of states is the set of all assignments s: Loc — Val, and there
are two types of actions: read, (x) (a read request by agent p € D on location z € Loc)
write,(x,v) (a request by agent p € D to write value v in location z € Loc.) These
actions have the expected semantics: read,, (x) returns the value of z unless & R(p),
in which case it returns err. Similarly, write,(z, v) updates = by v (and returns ack)
unless & W(p) (in which case it returns err).

We remark that, given the access control structure 7 = (R, W) on such a standard
memory, we may define a policy —7 by p —7 qiff p = gor W(p) "R(q) # 0. (Gen-
erally, > is not guaranteed to be transitive.) Intuitively, if p >~ ¢ then information
flow from p to g cannot be prevented, since there is some location that p may write and
q may read. Conversely, it can be shown [13] that this relation captures precisely the
information flow policies enforced by the access control structure, in the sense that the
memory system is TA-secure with respect to a policy — iff »»7C>—. In the sequel we
examine the extent to which this result generalizes to transactional memories.

3 Transactional Memories

Transactional memory systems extend standard memory systems by allowing only for
atomic and serializable sequences of operations. Transactional memories vary in their
atomicity and serializability policies and in the implementation details by which they
guarantee these policies. Consequently, they vary in the data structures they maintain
(i.e., set of states) and the algorithms they employ (i.e., “step” function). See [4] for a
treatment of issues, which we ignore here.

Assume a set of clients that direct transactional requests to a memory system that
assigns a value from a set Val to every location x in a set Loc of locations. For every
client p, let the set of actions a with dom(a) = p (also referred to as p-actions) be:

— <, — An open transaction request.

- read,(z) — A request to read from address = € Loc.

write,(x,v) — A request to write the value v € Val to address = € Loc.
— >, — A close transaction request.

— ¥, — An abort transaction request.

Most current transactional memory implementations assume that each client can
read from, and write to, every memory location. Here we take the view that clients are
restricted in the locations they may access. Hence, we associate each client p with two
subsets of Loc, R(p) and W(p), that indicate which locations p can read from and write
to.

The memory provides a response to each action: ack acknowledges that a non-read
has been carried out successfully, a value v € Val is returned in response to a successful
read, err signals that the action is invalid, and aborted signals that the transaction
within which the action occurs must be aborted. An action is invalid when either it is

a local violation of the transactional sequence, (for example, when a client issues a W
and its previous action is also an W), or when it attempts to access memory locations
that are forbidden. Determining when a transaction is to be aborted depends, however,
on the history of the transactional accesses and the transactional policies enforced.

A conflict occurs when concurrent transactions access the same location and at least
one writes to it. When a conflict occurs, at least one of the participating transactions
should be aborted. An implementation has an eager conflict detection if it detects con-
flicts as soon as they occur, and a lazy conflict detection if it delays the detection until
one of the transactions requests to commit. Arbitration policies determine which trans-
action should abort.

Under eager version management the memory is updated with every acknowledged
write action (which implies that aborts may require a roll-backs), and under lazy ver-
sion management memory updates are delayed until the write-ing transaction com-
mits (which entails no roll-backs). Note that eager version management may not be
combined with lazy conflict detection.

In [17], Scott studied various notions of conflicts. Let < denote the precedence re-
lation on events of a given trace, e < €’ meaning that e occurred before €’ (in the trace).
Let T}, and T}, be concurrent (interleaved) transactions of agents p and g, respectively.
The best known of Scott’s conflicts are (1) lazy invalidation where T}, and T}, conflict if
a write of one transaction may invalidate a read of the other, i.e., if for some memory ad-
dress x, we have read, (z), write,(z,) <»,~<», (Here the read and write can occur
in either order); (2) eager W-R where T}, and T, conflict if they have a lazy invalidation
conflict, or if for some memory address , we have write,(x,_) < read,(z) <»,,
and (3) eager invalidation where T, and T, conflict if they have an eager W-R conflict,
or if for some memory address x, we have read,(z) < writep(z,-) <p. Scott also
studies two arbitration policies. An eagerly aggressive policy aborts the transaction that
opened first, and a lazily aggressive commits a transaction if only if it does not conflict
with previously committed transactions.

Example 1 Unbounded Transactional Memory (UTM), proposed in [2], is a hardware
transactional memory (HTM) that eagerly updates the main memory with new values
while maintaining copies of old values in a transaction log. The description of UTM is
outlined in Section 1.

To cast a transactional memory as a AOSS, we assume that the set D of security do-
mains includes the set of clients, the set O of outputs includes ValU{err, ack, aborted},
and the set V' of variables includes the set Loc of memory locations.

Given a sequence of actions a = a; ...a, and a state s, we define the trace of
from s to be the sequence trace(w, s) = (a1, 01), (az,02),...,(an, o), Where 0; =
out(s-(ay...a;—1),a;) fori = 1...n. The trace indicates the sequence of outputs that
are obtained for the sequence of actions o when initiated at s. We call a pair (a,0) an
event. We say that p € D has a pending transaction at « if for some ¢ € [1..n], (a;,0;) =
(dp, ack), and (a;, 0;) is neither (>, ack) nor (W,, ack) forall j € [i + 1..n], ie., p
has a open transaction which has neither aborted nor committed at cv. Similarly, p has
a pending aborted transaction at « if it has a pending transaction and for the maximal
£ € [1..n] such that ay is a p-action, o, = aborted.

Some properties of the output function out are relevant for our discussion. As de-
scribed above, out returns err when an action violates a reasonable transaction se-
quence or attempts to access forbidden memory locations. More formally, for a se-
quence of actions « and a p-action a, out(sg - @, a) = err iff one of the following
holds:

a is <, and p has a pending transaction in ¢;

a is not 4, and p has no pending transaction in «;
ais read,(z) and z ¢ R(p);

4. aiswritey(z) and z € W(p);

el e

(Note that an err output depends solely on local history of agents; If one assumes agents
attempt only syntactically “legal” actions, err can be removed.)

An aborted output depends on the implementation details. For simplicity’s sake, we
require that once an action generates an aborted output, all subsequent actions of the
same transaction which do not attempt to abort it, also generate an aborted output. That
is, to simplify the exposition, it is assumed that if p has an open aborted transaction in
o and a is a p-action which is not W,,, then out(sq - @, a) = aborted. The other cases
for which out returns aborted are implementation dependent.

When the transactional memory receives an action, it first checks whether it is syn-
tactically valid, returning err if it is not. It then checks whether an aborted output is
due. For all other cases, it outputs ack, or some value v € Val if the action is a read
action, which, again, depends on the transactional memory implementation. (For exam-
ple, in UTM, the value is the last value written, while in other implementations it may be
the last value written by a committed transaction). We assume that actions that return
err because of an access violation do not update states. That is, that if a = read,(z)
and z & R(p), or if a = write,(z) and x & W(p), then for every state s, s - a = s.

Consider a transactional memory, and let 7 = (R, W) be its access control table.
As we did above, for a standard memory, we may define the policy »—7 on D to be
the minimal policy consistent with 7. More precisely, we have p —7 ¢ iff p = g or
W(p)NR(q) # 0. In the case of standard memories, this relation captures precisely the
possible flows of information in the system. This proves no longer to be the case when
we add the transactional memory structure. In fact, UTM from Example 1, as well as five
out of the six combinations of [17]’s conflict and arbitration policies lead to insecure
transactional memories, even after we impose access control:

Theorem 1. The following transactional memory protocols are not TA-secure with re-
spect to —7:

1. UTM as defined in Example 1;

2. Protocols with eagerly aggressive arbitration and conflict detection which is lazy
invalidation, eager W-R, or eager invalidation,

3. Protocols with lazily aggressive arbitration and conflict detection that is either ea-
ger W-R or eager invalidation.

Consequently, the only combination of [17]’s conflict and arbitration policies that
Theorem 1 does not cover is that of lazy invalidation conflict and a lazily aggressive
arbitration. This is the focus of the next section.

4 A Secure Protocol

While standard memories equipped with an access control table 7 are TA-secure with
respect to — (and, consequently with any policy »— that contains —), the results of
Section 3 show that, once transactional features are added to a memory, this is no longer
the case, since aborts provide a covert channel. All security breaches of Section 3 stem
from allowing the output of a one client’s action to depend on another’s past events it
should have no access to. Here we propose a remedy to this situation, by restricting
the output function so it depends only on the parts of the history that can safely impact
the issuer of the action. Our key idea is to equip transactional memories not just with
an access control table, but also with an additional control mechanism, that provides
a way to constrain this covert channel. After describing the restriction, we present a
generic protocol that uses the restriction, which we show to be secure. We also show
that a well known protocol, TCC, is TA-secure by showing it to be an implementation
of the generic protocol. Since TCC employs a lazy invalidation conflict detection and a
lazily aggressive arbitration, it shows that the only combination of [17]’s conflicts and
arbitrations that is not covered by Theorem 1 has a TA-secure implementation.

Let ~—,,4 (may abort) be a reflexive binary relation on D. Intuitively, if p /.4 ¢,
then in the event of a conflict between a transaction of p and a transaction of ¢, it is p’s
transaction that should be aborted, else we would have p activity causing an abort of an
q transaction, which the relation prohibits.

The Generic Protocol We introduce a protocol that uses the relation »—,,,, to impose
the desired properties of out. The protocol is “full information” in the sense that it
stores, for each client, all the information of actions of clients that may cause it to
abort, in the order in which the actions occur. Security of this protocol implies that any
implementation of it that allows for less information to be stored is also secure. We refer
to this protocol as the generic protocol. It is general enough to allow for detection and
arbitration of Scott-like transactional memory mechanisms. We show that this generic
protocol is secure with respect to a minimal information flow policy derived from the
access control and abort restrictions.

The generic protocol is presented as an AOSS. We follow the general model of
Section 3, and include, for every client p € D, an event sequence Cache,, consisting
of sequences of events of the form (a, 0) where o # err and a is a g-event for some ¢
such that ¢ =,,,, p- Thus, the set V' of the system’s variables consists of:

e For each x € Loc a variable mem|x] of type Val, representing the persistent mem-
ory. Initially, mem|[x] = vy for all z € Loc, where vy € Val is some default initial
value.

e For every p € D, a sequence Cache,, initially empty. At each point in time,
Cache,, consists of actions (and their responses) of p as well as those of clients
that may abort it.

To give operational meaning to the may-abort relation, we construct the implemen-
tation so that a client’s transactions can be aborted based only on information locally
available in the client’s cache, and restrict the flow of information into the client’s cache
to comply with the relation »—,,,.

We furthermore paramaterize the implementation by means of a cache policy whereby
each client manages its local cache. This policy, C, is represented by a pair of functions
Cp = (doomed,, cleany,) for each p € D, where doomed,, is a boolean function that
takes Cache, and an p-action a and returns true iff p’s pending transaction should be
aborted if a is performed. The function clean defines how each client updates its cache
when aborting or committing a transaction. It takes Cache,, and returns a subsequence
of it that includes no p-events.

The function doomed is assumed to be monotonic: if doomed,(C, a) = true, then
so is doomed,,(C; (a, aborted), b) for any p-action b other than w,,. That is, appending
further events after a transaction becomes doomed cannot change the fact that it is
doomed.

Based on an access control table 7 = (R, W) over the set of locations Loc, a may-
abort relation —,,, and a cache policy C, we construct a transactional memory system
TM (T, ma,C). The states of the system are based on the variables described above.
Fig. 1 describes the steps and output of the generic implementation. For readability, we
included only the actions whose output is not err (recall that an err output is a result
only of actions that the issuing clients can determine as erroneous). The first column
is the action, say a. Then second column describes conditions under which a is taken.
They are to be read as in a case-statement: the line corresponding to the first condition
that holds is to be used. Thus, each can be interpreted as a predicate over states. The
third column is out(s, a) — the output returned when action a is taken from state s
that satisfies the associated predicate. The fourth column describes the update to the
variables between the current state s and its successor s’ = step(s,a). We use the
following two abbreviations: For a set of clients @) C D, let

Update(Q) := /\ Cacheq := Cachey; (a,out(s,a))
q€Q

Thus, Update(Q) is the result of appending the action and its output to all clients
in @. For all clients p € D, Apply(Cache,, mem) is executed by taking, for each
x € Loc, the most recent occurrence of (write,(x,v), ack) in Cache,, and executing
mem|[z] := v. If no such event exists, that mem[z] remains intact. We restrict the set of
system states to those reachable from the initial state by means of a sequence of these
actions.

The following theorem implies that the only way that information may flow between
two clients in the generic implementation is by direct reading of written variables and
by aborts of one of the client’s transactions.

Theorem 2. Given an access control table T, a may-abort relation — 4, and a cache
policy C, the system TM (T ,—uq,C) is TA-secure with respect to the policy —

U —ma-

An immediate corollary of Theorem 2 is that TM (7, —,4,C) is TA-secure with
respect to any policy — that contains both =7 and 4.

Theorem 2 can be similarly proved for protocols that record less information than
the generic protocol above. For example, if p performs read or write actions on locations
not observable by ¢, then such operations need not be recorded in ¢’s cache. Other

laction (a) [case (use first that applies) loutput [updates ‘

(<, [lack [update({qg:p —maq}) |
readp(x) doomedy(Cacheyp, ready(x)) aborted|Update({q : p —ma q})
Cacheyp has write,(x, v) not v Update {q : p —ma q})
proceeded by writep(x, —)
Cachey, contains (read,(z),v) |v Update({q : p ™ ma q})
otherwise mem|x] (Update({q : p —ma q})
write,(z,v)|doomed,(Cache,,write,(x,v))|aborted|Update({q : p —ma q})
otherwise ack Update({q : p —ma q})
g ack |Update({g:p —ma q});
Cache, := clean,(Cache,)
>, doomed, (Cachep, »p) aborted|Update({q : p —ma q})
otherwise ack Apply(Cachey, mem);
Cache, := clean,(Cache,)

Fig. 1. Steps of generic implementation

variants (that still maintain the soundness of Theorem 2, with some modifications to its
proof and system definitions) are protocols where the clean functions do not necessarily
wipe out the most recent transaction of a client.

Consider now the case of Scott’s scheme with a lazy invalidation and lazily ag-
gressive arbitration: a conflict occurs when a transaction that writes to some memory
location commits while there is another transaction that had read from this memory
location, and it is arbitrated by aborting the reading transaction. Note that [17] is im-
plicitly confined to lazy version management, which implies lazy conflict detection. We
denote such a transactional memory system by M7,,.,. That is, given a set of locations
Loc, M,y is the transactional memory system over the locations Loc in which the
states are just sequences of actions, the initial state is the empty sequence €, and the
step function is defined by concatenation: step(«, a) = aa. The observations in this
system are uniquely defined once we specify that the system is a transactional memory
system with lazy invalidation conflict, lazily aggressive arbitration, and lazy version
management: out(c, a) is the unique output value implied by this specification when
the sequence « is followed by action a. (We assume here that the output of any read in
a transaction, but the first one, is handled by the local cache rather than by access to the
main memory.)

An example of a My, system is the Transactional Coherence and Consistency
(Tcc) system of [9]. There, each client executes its transaction speculatively in its
cache, and at commit, updates the memory and broadcasts all the write locations of
the entire transaction to the other clients, notifying them about those locations that have
been updated. When a client receives the broadcast, it aborts its current transaction if
the broadcast indicates that some memory location read in the current transaction had
been updated by the transaction of the broadcasting client.

Theorem 3. For each access control table T, the systems Mq.,(T) and TCC(T) are
TA-secure with respect to the policy —.

Thus, the one case of Scott’s schema where we did not show insecurity is in fact
secure.

5 Securing the Insecure Implementations

The may-abort relation of Section 4 can also be used to enforce security on transactional
memory systems that are not inherently secure, for example, the five schemata that are
shown insecure in Theorem 1.

Recall the conflicts studied here (see Section 1). According to the definition of the
relation »—7 (Section 3), if p 7 ¢ then there is a potential for a conflict between
pending transactions of client p and client g. Since in the case of a conflict one of the
transactions must be aborted, it is only reasonable to assume that p — 7 ¢ implies that
at least one of p ~—,,,4 q Or ¢ ™, p holds.

The arbitration policies determine, in a case of a conflict, which of the conflicting
transactions should abort. As we saw, however, some such aborts may lead to security
violations. We propose to remedy the situation by altering the arbitration rule, taking
into account the —,,, relation. The policies are identical to Scott’s when the client
selected for abort may be aborted by the other according to the ., relation; it makes
opposite decision in other cases.

Assume that pending transactions 7}, and T}, conflict, and T}, attempts to close. The
proposed arbitration policy is:

eagerly aggressive. Let r € {p, ¢} be the client whose transaction opened first, and let
7 be the other client. If 7 »—,,,, r, then abort T}., and otherwise abort T5. That is,
if the client whose transaction opened later may abort the one whose transaction
opened earlier (and is about to close), then abort the latter’s transaction. Otherwise,
abort the transaction that opened later (which is consistent with traditional arbitra-
tion).

lazily aggressive. If p —,, ¢, then abort T,. Otherwise, abort 7},.

‘We now show that, with these revised arbitration rules, all six combinations of con-
flict and arbitration policy lead to secure implementations. Given an access control ta-
ble 7, a Scott conflict rule CONF, and a modified arbitration rule ARB with respect to
the may-abort policy >4, let M (7, CONF, ARB, =,) be the transactional memory
system that applies the access control policy 7" and makes abort decisions by resolving
conflicts generated by CONF according to arbitration rule ARB Wit »—,,,4.

Theorem 4. Suppose that T is an access control table and — ,, is a may-abort rela-
tion such that if p =1 q then p =4 q O @ —mq P-
Then the system M (T, CONF, ARB, —) is TA-secure with respect to the policy

—7 Ur—ma.

6 Related Work

The notion of noninterference was proposed by Goguen and Meseguer [7] in order to
provide an abstract characterization of information flow. The original theory was for

transitive security policies (where, if information is permitted to flow from A to B and
from B to C, it is permitted to flow from A to C). Intransitive noninterference policies,
for which the semantics of [7] is insufficient, are gaining renewed significance in the
context of the MILS (Multiple Independent Levels of Security and Safety) approach
to high-assurance systems design [1, 18]. This approach envisages the utilization of
recent advances in, e.g., the efficiency of separation kernels, to increase the degree of
componentization of systems, enabling secure systems to be built from a mix of small,
trusted and more complex, untrusted components [15], with global security properties
assured from the separation property and a verification effort focused on the trusted
components. An intransitive noninterference policy can be viewed as a specification of
the permitted causal influences in such an architecture. As we have noted, access control
structures in shared memory systems are also associated with implicit noninterference
policies, that are generally intransitive.

Haigh and Young [8], generalized the work of [7] to intransitive policies. Their the-
ory was refined by Rushby [16], who also presented results showing that for a certain
class of access control systems, if the read/write constraints in the system are compat-
ible with an information flow policy then the system is in fact information flow secure
with respect to that policy (which is, in general, intransitive). The definitions and the-
ory of intransitive noninterference have recently been clarified by van der Meyden [13],
whose definitions we follow here.

A significant body of literature exists on multilevel secure databases, in which the
issue of transaction processing has been addressed. The area is surveyed in [3]. Covert
channels that are similar to those identified in this paper are known for many of the
traditional database transaction processing protocols. Closest to the transactional mem-
ory protocols we have considered are the multi-version (corresponding to lazy version
management) optimistic schedulers (which, like transactional memory, do not delay
requests, but execute them speculatively). Keefe et al [11] discuss a multi-version opti-
mistic protocol with the following rule for aborts: “A transaction attempting to commit
is aborted if its read set conflicts with the write set of another transaction that committed
after it started.” They show that this protocol, is secure for ’class 2-SS” transactions,
which are transactions that may write to variables of a higher security level, but in-
volve only a single subject, i.e. agent. With respect to Scott’s scheme, this amounts to
lazy invalidation, but the arbitration rule differs from Scott’s rules. Note that it causes
unnecessary aborts when the reads all occur after the commitment of the closed trans-
action. Downing et al. [5] discuss another optimistic protocol that seems to be more
closely related to TCC(7).

There are some differences to our work, however. The database literature has con-
centrated on transaction scheduling on uniprocessor systems whereas the motivation for
our study of transactional memory is multi-processor systems. The literature on multi-
level database transactions assumes a partially ordered set of security levels, which
corresponds to a transitive security policy. In this respect our work is more general in
that we deal with intransitive policies, and note that these arise naturally from access
control tables and the may-abort relation.

On the other hand, the database literature has considered several issues that we have
not attempted to address. These include transactions involving multiple agents, and

transactions for a single agent operating at multiple security levels - we have treated
just transactions operating with respect to a single security classification. Distributed
transaction processing issues such as atomic commitment protocols have also been stud-
ied from the perspective of information flow security. We have assumed here that each
transaction executes on a single processor. It would also be interesting to consider such
questions in the context of transactional memory.

7 Conclusion and Future Work

Mechanisms for shared use of resources in concurrent systems, such as locks and
caches, are well-known to be potential sources of covert communication channels. Our
results show that transactional memory, while it may help to reduce the requirement for
mechanisms such as locks, may well open up new covert channels.

We first extended Rushby’s access control model to transactional memory by adding
operations for opening, closing and aborting transactions, and obtained a model of ac-
cess control for transactional memories. We then studied the theory of information flow
as applied to this model. Several well-known implementations were shown to be inse-
cure. UTM was found to be insecure even for the very simple information flow policy in-
volving two agents H and L with information flow from H to L prohibited. We also ex-
amined various combinations of conflict and arbitration functions that were introduced
by Scott. Similarly to UTM, five out six combinations that were explored were found to
be insecure for the very simple information flow policy that involves two agents.

The first straightforward conclusion from these results is that just extending im-
plementations with an access control table is not sufficient for obtaining a secure sys-
tem, and further methods and restrictions must be applied. It is worth pointing out that
through our research we reviewed many implementations that do not even provide basic
means for preventing restricting information flow between clients. Some implementa-
tions, e.g., DSTM [10], allow clients to directly abort transactions of other clients, or to
modify their local data without any additional mechanism that prevents them from abus-
ing it to signal (and thus pass information) the other clients. We therefore suggest that
the issue of security should be considered at the early stages of design of transactional
memory.

We have proposed the specific mechanism of adding a “may-abort” relation to the
implementation. Based on this idea, we defined a generic implementation that is pa-
rameterized by an access control table and a may-abort relation as well as a cache man-
agement policy. We showed that all instances of this generic implementation are secure
with respect to a policy derived from the access control table and may-abort policy.
Using this result, we proved the security of the well known implementation TCC, which
employs lazy version management and lazy conflict detection and executes transactions
speculatively in the clients’ caches. We were also able to propose a modification of
Scott’s arbitration policies that ensures security of all instances of Scott’s scheme, by
conditioning aborts to comply with the may-abort policy.

The most natural next step is to consider additional implementations from the per-
spective of our results. We note that UTM, since it employs eager version management,
is not an instance of the generic implementation, which is based on lazy-version man-

agement. It would be of interest to also develop a generic secure implementation that
covers variants of implementations based on earger version management. Another di-
rection is to explore other sources that may potentially lead to insecurity in transactional
memory, e.g., overflow in HTM.

The field of transactional memory is very open and relatively little formal work has
been done. We have studied a particular formal model here, but others are conceivable.
In particular, one could take a very different view as to what constitutes the interface
of a transactional memory that should be studied from the point of view of informa-
tion flow. For example, whereas we have considered aborts to be observable and left
it open that an aborted transaction might be abandoned (rather than retried), one could
consider a level of abstraction at which aborted transactions are automatically retried
by the transactional memory system and the outcome of transactions is only visible at
the interface once the transaction has successfully committed. Given our asynchronous
semantics, the information flow violations that we have identified would probably not
occur at this level of abstraction, though they would still be reflected as observable
latencies on a timed model. Whatever one’s opinion of such matters, our work demon-
strates that information flow errors are an issue in transactional memories, and gives
insight into how they might be resolved.

Finally, we note that the formal notions of security we have applied are based on
an asynchronous model of computation, and do not take timing channels into account.
With caches being a key implementation detail of transactional memory, temporally
sensitive notions of information flow also need to be considered.

References

1. J. Alves-Foss, W.S. Harrison, P. Oman, and C. Taylor. The MILS architecture for high-
assurance embedded systems. International Journal of Embedded Systems, 2(3/4):239—-47,
Feb 2006.

2. C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie.
Unbounded transactional memory. In Proceedings of the Eleventh International Symposium
on High-Performance Computer Architecture, pages 316-327. Feb 2005.

3. V. Atluri, S. Jajodia, and B. George. Multi-level secure transaction processing. Kluwer,
2000.

4. A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck. Verifying correctness of
transactional memories. In Proceedings of FMCAD 2007, 11 2007.

5. A.R. Downing and T.F. Greenberg, I.B.and Lunt. Issues in distributed database security. In
Proceedings of Fifth Annual Computer Security Applications Conference, pages 196 — 203,
12 1989.

6. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT-Press, 1995.

7. J.A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11-20, Oakland, 1982.

8. J.T. Haigh and W.D. Young. Extending the noninterference version of MLS for SAT. IEEE
Trans. on Software Engineering, SE-13(2):141-150, Feb 1987.

9. Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun.

10.

11.

12.

13.

14.

16.

17.

18.

Transactional memory coherence and consistency. In Proceedings of the 31st Annual In-
ternational Symposium on Computer Architecture, page 102. IEEE Computer Society, Jun
2004.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software trans-
actional memory for dynamic-sized data structures. In PODC ’03: Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages 92-101, New York,
NY, USA, 2003. ACM Press.

T.K. Keefe, W.T. Tsai, and J. Srivastava. Database concurrency control in multilevel secure
database management systems. /[EEE Trans. Knowledge and Data Engineering, 5(6):1039—
1055, 12 1993.

James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool Publishers,
2007.

R. van der Meyden. What, indeed, is intransitive noninterference? In European Symposium
on Research in Computer Security, volume 4734 of LNCS, pages 235-250. Springer, Sep
2007.

Norman E. Proctor and Peter G. Neumann. Architectural implications of covert channels. In
Proc. 15th National Computer Security Conference, pages 28-43, 1992.

. J.M. Rushby and R. Randell. A distributed secure system. [EEE Computer, 16(7):55-67,

1983.

John Rushby. Noninterference, transitivity, and channel-control security policies. Technical
report, SRI international, dec 1992.

M.L. Scott. Sequential specification of transactional memory semantics. In Proc. TRANSACT
the First ACM SIGPLAN Workshop on Languages, Compiler, and Hardware Suppport for
Transactional Computing, Ottawa, 2006.

W.M. Vanfleet, R'W. Beckworth, B. Calloni, J.A. Luke, C. Taylor, and G. Uchenick.
MILS:architecture for high assurance embedded computing. Crosstalk: The Journal of De-
fence Engineering, pages 12-16, Aug 2005.

