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Abstract

In the clock semantics for epistemic logic, two situations are indistinguishable
for an agent when it makes the same observation and the time in the situations is the
same. The paper characterizes the complexity of model checking branching time
logics of knowledge in finite state systems with respect to the clock semantics.

1 Introduction
Epistemic logic has been shown to provide a useful formalism for reasoning about
systems in which the representation of agents’ states of uncertainty is a critical factor
[6]. The range of problems to which epistemic logic has been applied encompasses
distributed and multiagent systems, computer security, diagnosis and recoverability.
These applications have motivated the development of verification techniques based on
logics that combine temporal and epistemic features.

In particular, model checking combinations of temporal and epistemic logics has
been a topic of recent interest. In model checking, the verification problem is treated
as the problem of checking that a formula is satisfied in a given model. For suitably
restricted representations of models and specification languages this problem can be
shown to be decidable. Model checkers implement this decidable problem using a
variety of sophisticated heuristics and symbolic implementation techniques.

Operators in the logic of knowledge can be given a number of different semantics,
depending on the basic information from which an agent derives what it knows. For
example, we can treat agent’s knowledge as those facts that it can derive from just
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Logic Bound Combined Model Formula
Complexity Complexity Complexity

LTLKclkn upper PSPACE PSPACE PSPACE
(from [5]) lower PSPACE PH PSPACE

CTL∗Kclkn upper PSPACE PSPACE PSPACE
(this paper) lower PSPACE PH PSPACE

CTLKclkn upper PSPACE PSPACE LOGSPACE
(this paper) lower PSPACE PH LOGSPACE

CTL−Kclkn upper PNP PNP LOGSPACE
(this paper) lower PNP[log] PNP[log] LOGSPACE

Table 1: Complexity Results

its current observation. This semantics is basis of much of the literature on model
checking temporal and epistemic logics. However, the model checking problem can
also be shown to be decidable for stronger interpretations of knowledge. In this paper,
we consider the model checking problem for an interpretation of knowledge in which
an agent’s knowledge is taken to be what it can derive from its current observation
plus the current clock value. We call this the clock semantics for knowledge. The
significance of the clock semantics is that many systems are built with clocks, and they
are used in protocols, e.g., for timeouts. The observational semantics is too weak to
capture information present in clock values.

The model checking problem with respect to the clock semantics has previously
been shown to be decidable for linear time temporal logics extended by knowledge
operators by Engelhardt et al [5]. In this paper we consider the effect of taking the tem-
poral basis for the specification language to be instead a branching time temporal logic.
We show that this combination also leads to a decidable model checking problem, and
characterise its complexity for a number of different fragments of a logic CTL∗Kclkn
that combines the linear time operators, branching operators and epistemic operators.

The main results of the paper are presented in Table 1, which gives the complexity
(both upper and lower bounds) of each of the model checking problems we consider.
For purposes of comparison, we include in this table the known results for the com-
plexity of the linear time epistemic logic with respect to clock semantics (LTLKclkn ).

It turns out that the addition of branching operators to the combination LTLKclkn
of linear time temporal logic and epistemic logic (giving the logic CTL∗Kclkn ) does not
increase the computational complexity of model checking, which remains PSPACE-
complete. More interestingly, the model checking problem for the fragment CTLKclkn
based in the branching time logic CTL has the same complexity as for the linear time
case (LTLKclkn ), viz., PSPACE-complete. Prima facie, this result is a little surprising
since the complexities of model checking linear time temporal logic and branching time
logic in the absence of epistemic operators are known to be different, viz., PTIME for
the branching time temporal logic CTL and PSPACE-complete for linear time temporal
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logic LTL.
However, our general result masks some subtleties, and a more careful analysis

reveals differences between the linear time and branching time cases. In particular, a
difference is apparent if one considers the complexity of model checking as a function
of the size of the model, or as a function of the size of the formula. Formula complexity
is the complexity of model checking a varying formula when the model is held fixed:
this gives a measure of the complexity of the model checking as a function of the size
of the formula. Alternately, model complexity is the complexity of the model checking
problem when a formula is held fixed and the model is varied: this gives a measure of
the complexity of the model checking problem as a function of the size of the model.
We find that the complexity difference between CTL and LTL continues to be reflected
when one adds epistemic operators in the case of formula complexity, where CTLKclkn
is LOGSPACE-complete and LTLKclkn is PSPACE-complete (which is the same as the
formula complexities for CTL and LTL respectively.) However, with respect to model
complexity there is no change.

We also explore the impact of a further restriction on the set of branching time
operators, taking these to be just EF (at some future time in some branch) and EX (at
some successor), giving the logic CTL−Kclkn . Here, we show that the complexity of
model checking falls down to a low level of the polynomial hierarchy, viz PNP.

The structure of the paper is as follows. In section 2, we define the syntax and
semantics of the logics that we study, as well as the model checking problems that
we consider. Section 3 proves the main complexity results of the paper. Section 4
discusses related work; in particular, we argue that some previous work on bounded
model checking CTLKclkn is incorrect.

2 Syntax and Semantics
We work with logics that combine temporal logics and the logic of knowledge and
common knowledge for n agents. All the logics that we consider are fragments of the
logic CTL∗Kclkn . Let Prop be a set of atomic propositions and Ags = {1, . . . , n} be a set
of n agents. The syntax of the logic CTL∗Kclkn is given by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | Fφ | φ1Uφ2 | Gφ |
Eφ | Aφ |

Kiφ | CGφ

where p ∈ Prop and i ∈ Ags and G ∈ P(Ags) \ {∅}. The first line gives basic propo-
sitional logic plus linear time temporal operators that refer to the future. Intuitively,
Xφ says that φ holds at the next time, Fφ says that φ holds at some future time, φ1Uφ2
says that φ1 holds until φ2 does, and Gφ says that φ holds at all times in the future.
The operators in the second line are from branching time temporal logic and refer to
possible alternate futures: Aφ says that φ holds in all possible futures and Eφ says that
φ holds in some possible future. The final line gives epistemic operators: Kiφ says that
agent i knows φ and CGφ says that φ is common knowledge to the group of agents G.
If we take just the first line of this grammar we have the linear time temporal logic
LTL, and adding the second line gives the branching temporal logic CTL∗. The logic
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LTLKclkn is the fragment obtained by taking just the first and the third lines of the
grammar. The branching time temporal logic CTL is obtained from CTL∗ by placing a
restriction on the permitted combinations of linear and branching time temporal opera-
tors: we replace these in the grammar by the restricted cases QXφ, QφiUφ2, QFφ and
QGφ, where Q is either A or E. Adding the epistemic operators to CTL gives the logic
CTLKclkn . The fragment CTL−Kclkn is obtained by combining the epistemic operators
with the branching temporal operators EX and EF. Dually, this logic contains AX and
AG, so can express the important class of epistemic safety properties.

To give semantics to all these logics it suffices to give semantics to CTL∗Kclkn . We
do this using a variant of interpreted systems [6], specialised to the clock semantics.
Let S be a set, which we call the set of global states. A run over S is a function
r : N → S . A point is a pair (r,m) where r is a run and n ∈ N. Given a set R of runs,
we define Points(R) to be the set of all points of runs r ∈ R. An interpreted system for
n agents is a tuple I = (R,∼1, . . . ,∼n, π), where R is a set of runs over S , each ∼i is
an equivalence relation on Points(R) (called agent i’s indistinguishability relation) and
π : S → P(Prop) is an interpretation function. We say that a run r′ is equivalent to a
run r up to time m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m.

We can define a general semantics of CTL∗Kclkn by means of a relation I, (r,m) |=
φ, where I is an intepreted system, (r,m) is a point of I and φ is a formula. This
relation is defined inductively as follows:

• I, (r,m) |= p if p ∈ π(r(m)),

• I, (r,m) |= ¬φ if not I, (r,m) |= φ

• I, (r,m) |= φ1 ∨ φ2 if I, (r,m) |= φ1 or I, (r,m) |= φ2

• I, (r,m) |= Eφ if there exists a run r′ ∈ R equivalent to r up to time m such that
I, (r′,m) |= φ

• I, (r,m) |= Aφ if for all runs r′ ∈ R equivalent to r up to time m, we have
I, (r′,m) |= φ

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ

• I, (r,m) |= φ1Uφ2 if there exists m′ ≥ m such that I, (r,m′) |= φ2, and I, (r, k) |=
φ1 for m ≤ k < m′.

• I, (r,m) |= Gφ if I, (r, k) |= φ for all k ≥ m

• I, (r,m) |= Kiφ if for all points (r′,m′) of I such that (r,m) ∼i (r′,m′), we have
I, (r′,m′) |= φ

• I, (r,m) |= CGφ if for all sequences of points (r,m) = (r0,m0), (r1,m1), . . . (rk,mk)
of I, such that for each j = 0 . . . k − 1, there exists i ∈ G such that (r j,m j) ∼i

(r j+1,m j+1), we have I, (rk,m) |= φ.

For the knowledge operators, this semantics is essentially the same as the usual inter-
preted systems semantics. For the temporal operators, it corresponds to a semantics
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for branching time known as the bundle semantics [2, 21]. To specialise this gen-
eral semantics to the clock semantics, we suppose that we have have for each agent
i an observation function Oi : S → O, for some set O, such that Oi(s) represents
agent i’s observation in state s. Say that the equivalence relations ∼i in the system
are derived from the observation functions Oi when (r,m) ∼i (r′,m′) iff m = m′ and
Oi(r(m)) = Oi(r′(m′)). A system is a clock system if there exist observation functions
from which its indistinguishability relations ∼i are derived. Intuitively, in such systems,
an agent’s knowledge is determined from its current observation plus the clock value.

For model checking we require the decidability of the problem of checking that a
formula holds in a model. In order to do so, we require a finite state representation
for the model. Interpreted systems are unsuitable for this, since they are based on
infinite runs. We therefore treat interpreted systems as generated from an alternate
finite representation. Define a (finite) model to be a tuple M = (S , I,⇒,O, π) where S
is a (finite) set of states, I ⊆ S is the set of initial states,⇒⊆ S × S is a serial temporal
transition relation, O = {Oi}i∈Ags is a family of observation functions Oi : S → O, and
π : S → P(Prop) is a propositional interpretation. We write E for the set of all finite
models

Given a model M with states S , we may construct clock system I(M) = (R,∼1
, . . . ,∼n, π) over global states S , as follows. The component π in I(M) is identical to
that in M. The set of runs is defined as follows. We say that a fullpath from a state
s is an infinite sequence of states s0s1... such that s0 = s and si ⇒ si+1 for all i ≥ 0.
We use Path(s) to denote the set of all fullpaths from state s. A run of the system is a
fullpath s0s1 . . . with s0 ∈ I. We define R to be the set of runs of M. Finally, we take
the indistinguishability relations ∼i to be the relations derived from the observation
functions Oi in the environment.

A formula φ is said to hold in a model M, written M |= φ, if I(M), (r, 0) |= φ for
all r ∈ R. The model checking problem we study is defined as follows: given a finite
model M and a formula φ, determine if M |= φ. We are interested in this problem for a
range of different languagesL, and as a function of its parameters as well as in general.
More precisely, the combined complexity of model checking L is the complexity of the
set {(M, φ) ∈ E × L | M |= φ}. The model complexity of a fixed formula φ is the
complexity of the set {M ∈ E | M |= φ}. This gives a measure of the complexity of
model checking as a function of the size of the model. The formula complexity of L
for a fixed model M is the complexity of the set {φ ∈ L | M |= φ}. This captures the
contribution to the complexity of model checking that derives from the formula.

3 Complexity
We now consider the complexity of the model checking problems introduced in the
previous section, for the language CTL∗Kclkn and several of its sublanguages. For pur-
poses of comparison, we first recall a number of known results for model checking
temporal and epistemic logics.
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Previous Results
Our logics build on the temporal logics LTL, CTL and CTL∗, whose model checking
complexities are already well understood. In the case of CTL∗, the combined com-
plexity is known to be PSPACE-complete [3, 4]. Indeed, this is already the case for
the linear time logic LTL [1]. On the other hand, the logic CTL has a combined com-
plexity in PTIME [3, 13]. A fortiori, the model and formula complexities of CTL are
also in PTIME. For both LTL and CTL∗, the model complexity is PTIME [22, 8, 13],
and the formula complexity is PSPACE-complete [13]. Thus, the complexity of model
checking linear time temporal logic derives primarily from the contribution made by
the formula. Since the formula we wish to check is typically small (but the model may
be large) this result explains the feasibility in practice of LTL model checking even in
the face of its PSPACE-hardness in the sense of combined complexity.

Given these results, we easily obtain that the combined complexity and the formula
complexity of LTLKclkn are at least PSPACE hard. It is shown in [5] that, in fact, the
addition of epistemic operators (interpreted with respect to clock semantics) does not
necessarily add to the complexity of LTL. Both the combined and formula complexities
of LTLKclkn turn out to be in PSPACE (hence PSPACE-complete, since the fragment
LTL is already PSPACE-hard). A difference is found in the case of model complexity,
however. It is shown that whereas LTL has PTIME model complexity, for each level
Π

p
k of the polynomial hierarchy, there exists a formula φ ∈LTLKclkn such that {M ∈

E | M |= φ} is Π
p
k -hard. An exact characterization of the model complexity of LTLKclkn

remains an open problem. However, it is possibly a very hard problem: note that
whereas QBF is PSPACE complete, and the QBF formulas starting with ∀ and having
k-alternations correspond to Π

p
k , it is not known whether the polynomial hierarchy is

equal to PSPACE. It appears that the gap between the upper and lower bounds for
model complexity of LTLKclkn may be related to this problem.

CTL∗Kclkn

We now show that we can derive complexity bounds for CTL∗Kclkn from the known
results for LTLKclkn . Given a model M and a CTL∗Kclkn formula φ, we will show that
the model checking problem M |= φ is equivalent to another model checking problem
M′ |= φ′, where φ′ is a LTLKclkn+1 formula and M′ and φ′ are of polynomial size w.r.t.
M and φ, respectively. With this equivalence, we can move all the complexity results
for LTLKclkn to CTL∗Kclkn . To obtain model M′, we add an agent > to the model M
and define its observations by O>(s) = s for each state s ∈ S . We take φ′ to be the
formula obtained from φ by replacing all A operators with K> and all E operators with
¬K>¬. The correctness of the equivalence claim now follows by an induction using
the argument in the following result:

Lemma 1 For all points (r,m) of I(M), and φ ∈CTL∗Kclkn we have I(M), (r,m) |= Aφ
iff I(M′), (r,m) |= K>φ.

Proof: The direction from right to left is trivial. It is easily seen that the the semantics
of I(M), (r,m) |= Aφ refers to a subset of the points (r′,m′) referred to by the semantics
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of I(M), (r,m) |= K>φ. (Note that in both cases the fact that we are using clock se-
mantics means that m = m′.) Conversely, suppose that I(M), (r,m) |= Aφ. Considering
I(M′), (r,m) |= K>φ, let (r′,m′) be a point such that (r,m) ∼> (r′,m′). Then m = m′

and r(m) = O>(r(m)) = O>(r′(m′)) = r′(m′) = r′(m). It follows that the sequence
r′′ = r(0)r(1) . . . r(m)r′[m + 1..∞] is a run. Since the operators in φ refer only to the
future, an easy induction shows that I(M′), (r′′,m) |= φ iff I(M′), (r′,m) |= φ. Note
that r′′ is equivalent to time m to r. Hence, by assumption that I(M), (r,m) |= Aφ,
we obtain that I(M), (r′′,m) |= φ, hence I(M′), (r′′,m) |= φ, from which it follows
using the above observation that I(M′), (r′,m) |= φ. This completes the proof that
I(M′), (r,m) |= K>φ. �

This transformation immediately enables us to derive upper bounds of PSPACE for the
combined, model and formula complexity of CTL∗Kclkn . Since LTLKclkn is a sublan-
guage of CTL∗Kclkn , lower bounds of PSPACE, Π

p
k (for any k, by some formula) and

PSPACE respectively also follow directly.

CTLKclkn

The combined complexity and model complexity upper bounds for CTL∗Kclkn are also
upper bounds for CTLKclkn , because CTLKclkn is a sublanguage of CTL∗Kclkn .

The logic CTL has formula complexity of LOGSPACE [13], which is lower than
the PSPACE-complete formula complexity of LTL, as noted above. We now show that
this difference remains reflected in the extended logic CTLKclkn . We present an algo-
rithm that shows that this logic has LOGSPACE formula complexity, lower than the
PSPACE-complete formula complexity for the extended logic CTL∗Kclkn and matching
the LOGSPACE formula complexity for CTL model checking.

Given a fixed model M = (S , I,⇒,∼1, ...,∼n, π), we construct another model M′ =

(S × P(S ), I′,⇒′,∼′1, ...,∼
′
n, π
′), with states of the form (s, P) where s ∈ S and P ⊆ S ,

such that

1. (s, P) ∈ I′ iff s ∈ I and P = I,

2. (s, P)⇒′ (t,Q) iff s⇒ t and Q = {t ∈ S |∃s ∈ P(s⇒ t)},

3. (s, P) ∼′i (t,Q) iff P = Q and s ∼i t,

4. π′(s, P) = π(s).

Though M′ might be exponentially larger than M, it is also a fixed structure. Now
M |= φ is equivalent to M′ |= φ for observational semantics defined as follows.

1. M′, (s, P) |= p iff p ∈ π′(s, P).

2. M′, (s, P) |= ¬φ iff not M′, (s, P) |= φ.

3. M′, (s, P) |= EXφ iff there exists (t,Q) such that M′, (t,Q) |= φ and (s, P) ⇒′

(t,Q).
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4. M′, (s, P) |= E[φ1Uφ2] iff there exists a path (s, P) = (s0, P0) ⇒′ (s1, P1) ⇒′

...⇒′ (sm, Pm) such that M′, (sm, Pm) |= φ2 and M′, (si, Pi) |= φ1 for 0 ≤ i ≤ m−1.

5. M′, (s, P) |= EGφ iff there exists an infinite path (s, P) = (s0, P0)⇒′ (s1, P1)⇒′

..., such that M′, (si, Pi) |= φ1 for all i ≥ 0.

6. M′, (s, P) |= Kiφ iff M′, (t,Q) |= φ for all (t,Q) with (s, P) ∼′i (t,Q).

7. M′, (s, P) |= CGφ iff for all sequences (s, P) = (s0, P0), (s1, P1), ..., (sm, Pm) with
m ≥ 0 and (si, Pi) ∼ j (si+1, Pi+1) for j ∈ G and 0 ≤ i ≤ m − 1, we have
M′, (sm, Pm) |= φ.

By [13], for CTL, M |= φ can be checked in space O(|M| · log|φ|). With respect
to the observational semantics, the addition of epistemic operators to CTL does not
increase the complexity of model checking, since we may easily reduce the epistemic
transitions to a special type of temporal transition. Therefore, the formula complexity
of CTLKclkn is in LOGSPACE.

Lower bounds for model checking CTLKclkn can be obtained from the proof of
lower bounds for LTLKclkn in [5] by noting that the proofs of these lower bounds use
structures of the following special form.

Definition 1 Let M = (S , I,⇒,∼1, ...,∼n, π) be a model. Say that M is a lasso-bundle
if for any s ∈ S , there exists a unique state s′ such that s ⇒ s′. M is a lasso-structure
if M is a lasso-bundle and I is a singleton set.

For lasso-structures, the semantics of LTL and CTL are known to coincide [9, 17].
An LTL formula can be evaluated in a lasso-bundled model by a CTL model checker
by prefixing each temporal operator by an A/E path quantifier which results in a CTL
formula. The reverse also holds.

We show that a similar result applies to LTLKclkn and CTLKclkn . Define a trans-
formation function f mapping a normalized LTLKclkn formula (in which all negative
operators occur in front of atomic propositions) into a CTLKclkn formula.

1. f (p) = p

2. f (¬φ) = ¬ f (φ)

3. f (φ1 ∨ φ2) = f (φ1) ∨ f (φ2)

4. f (Xφ) = AX f (φ), f (Fφ) = AF f (φ), f (Gφ) = AG f (φ)

5. f (φ1Uφ2) = A[ f (φ1)U f (φ2)]

6. f (Yφ) = Y f (φ), where Y ∈ {Ki,CG}.

The transformation prefixes each temporal operator with a universal operator A.
The following proposition concludes that this transformation preserves the satisfiability
of formulae under lasso-bundled models.

Proposition 1 For any lasso-bundled model M and any LTLKclkn formula φ, and run r
of I(M), we have I(M), (r, n) |= φ⇔ I(M), (r,m) |= f (φ).
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Proof: By a straightforward induction on the construction of φ. Note that it follows
from the fact that M is lasso-bundled that if r′ is a run equivalent to r up to time
n then in fact r′ = r. This implies that I(M), (r,m) |= φ iff I(M), (r,m) |= Aφ iff
I(M), (r,m) |= Eφ. �

The lower bounds of LTLKclkn logic are proved in [5] by a reduction from the
satisfiability problem of QBF. For any alternation depth k, a LTLKclkn formula φk is
constructed, such that for each QBF formula Ψ of alternation depth k, a lasso-bundled
model MΨ can be constructed, such that Ψ is satisfiable iff I(MΨ) |= φk. Now by Propo-
sition 1, φk can be further reduced to a CTLKclkn formula f (φk), and Ψ is satisfiable iff
I(MΨ) |= f (φk). Therefore, we can move the lower bounds of combined complexity
and model complexity for LTLKclkn to CTLKclkn . In particular, we conclude that the
combined complexity is PSPACE-hard, and for each k there exists a formula whose
model complexity is Π

p
k -hard. The lower bound for formula complexity can be deemed

as LOGSPACE, since every problem in LOGSPACE is complete under log-space re-
ductions.

CTL−Kclkn

We reduce the problem of model checking CTL−Kclkn to a fragment of Presburger
Arithmetic, called extended Min-Max Arithmetic (MMA) in [7]. We use the nota-
tion [i, j] = {i, i + 1, ..., j} and [ j] = [1, j]. An extended MMA dag-formula α based in
a finite partial order (X,≤) is a collection of definitions of variables (αi)i∈X , where the
definition for each αi is one of the following, with i > j, k and ∼∈ {≤,≥} and m, n ∈ N
in each case: (1) ≡ m mod n with n > 0 and m ∈ Z/nZ, (2) ∼ n, (3) ¬α j, (4) α j ∧ αk,
(5) ∼ max (α j, n), (6) m ∼ max (α j, n), (7) α j � a, with � ∈ {+,−} and a ∈ N written in
unary. The semantics of αi in the context of an extended MMA formula α, written as
[[αi]], is the set of natural numbers satisfying the definition of αi, e.g., [[∼ max (α j, n)]] =

{k ∈ N|k ∼ max ([[α j]] ∩ [0, n])}, and [[m ∼ max (α j, n)]] is either N or ∅ depending on
whether m ∼ max [[α j]] ∩ [0, n]), and [[α j � a]] = {k | k = n � a ≥ 0, n ∈ [[α j]]}. The
following two lemmas are from [7].

Lemma 2 Given an extended MMA dag-formula α = (αi)i∈X , there exist numbers Li

and Ti, computable in PTIME, such that, if n1, n2 > Ti and n1 ≡ n2 mod Li then
n1 ∈ [[αi]]⇔ n2 ∈ [[αi]].

Lemma 3 Given n ∈ N and an extended MMA dag-formula α, whether n ∈ [[αi]] can
be decided with complexity 4P

2 = PNP.

Another result we use is Chrobak’s normal form for nondeterministic finite au-
tomata [18]:

Lemma 4 Given a model M, we may compute in polynomial time a collection of arith-
metic progressions R(s, t) = {ai + biN | i = 1..k} such that ∪R(s, t) = {n ∈ N | s ⇒n t},
|R(s, t)| ≤ |S |2 and ai = O(|S |2) and bi = O(|S |).
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We write M(ψ) for {(s, n) ∈ S × N | ∃r(I(M), (r, n) |= ψ and r(n) = s)}. (Note that
I(M), (r, n) |= ψ and r(n) = s implies I(M), (r′, n) |= ψ for all runs r′ with r′(n) = s.)
Let sub f (φ) be the set of subformulas of φ, and let T denote tautology.

Lemma 5 Given a formula φ ∈ CTL−Kclkn and a model M, let X = S × (sub f (φ) ∪
{T}), equipped with the partial order defined by (s1, ψ1) ≥ (s2, ψ2) iff s1 = s2 and
ψ2 ∈ sub f (ψ1) ∪ {T}. There exists an extended MMA-dag (αx)x∈X , computable in time
polynomial in |M| + |φ| such that for all (s, ψ) ∈ X, we have [[α(s,ψ)]] = {n ∈ N | (s, n) ∈
M(ψ)}.

Proof: We define α(s,ψ) by induction on ≥. First, note that by Lemma 4, for each
pair s, t ∈ S , we may write the set {n | s ⇒n t} as a polynomial size union R(s, t) of
arithmetic progressions a + bN. Thus, we may take

α(t,T) =
∧
s∈I

∧
a+bN∈R(s,t)

≡ a mod b

for the base case. In the inductive case, we proceed as follows:

1. ψ = p: here we take α(s,p) = α(s,T) if p ∈ π(s), else we take α(s,p) = F (where
F = (> 1) ∧ (< 1) so that [[F]] = ∅).

2. ψ = ψ1 ∧ ψ2: here α(s,ψ) = α(s,ψ1) ∧ α(s,ψ2)

3. ψ = ¬ψ1: here α(s,ψ) = α(s,T) ∧ ¬α(s,ψ1)

4. ψ = Kiψ1: here
α(s,ψ) = α(s,T) ∧

∧
t∈S ,s∼it

(α(t,T) ⇒ α(t,ψ1))

5. ψ = CGψ1: here we take

α(s,ψ) = α(s,T) ∧
∧
t∈S

(γ(s, t,G, |S |)⇒ α(t,ψ1))

where γ(s, t,G, k) is an extended MMA-dag formula expressing times at which
t is reachable from s in k steps through the relation ∪i∈G ∼i. This can be rep-
resented efficiently by the following induction: in the base cases, γ(s, t,G, 0) =

α(s,T) if s = t and F otherwise, γ(s, t,G, 1) = α(s,T)∧α(t,T) if s ∼i t for some i ∈ G,
otherwise γ(s, t,G, 1) = F. Inductively, for k ≥ 2, we define

γ(s, t,G, k) =
∨
s′∈S

(γ(s, s′,G, dk/2e) ∧ γ(s′, t,G, bk/2c)).

6. ψ = EXψ1: here α(s,ψ) = α(s,T) ∧
∨

s⇒t(α(t,ψ1) − 1).

7. ψ = EFψ1: we break this case down into several possibilities. Suppose that
(s, n) ∈ M(EFψ1). Then there exist t ∈ S and n′ ∈ N such that s ⇒n′−n t and
(t, n′) ∈ M(ψ1).
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It follows using Lemma 4 that there exists a+bN ∈ R(s, t) such that n′−n ∈ a+bN.
If b = 0, then plainly we have n ∈ α(t,ψ1) − a.

Consider the case where b , 0, so n′−n ≡ a mod b. Moreover, inductively, there
exist, by Lemma 2, numbers T and L such that n1, n2 > T and n1 ≡ n2 mod L
implies n1 ∈ [[α(t,ψ1)]] iff n2 ∈ [[α(t,ψ1)]]. We consider the different possible values
of c, the residue of n′ mod b. There are two possibilities for a given c: either
there exist an infinite number of n′ ≡ c mod b such that (n′, t) ∈ M(ψ1), or there
exist a finite number such values.

We first note that in the case of an infinite number of such values, there must
exist such a value in the range T < n′ ≤ T + L, by the periodicity condition
on α(t,ψ1). Writing β(t, ψi) = α(t,ψ1) ∧ (≡ c mod(gcd(b, L))), and in f (t, ψ1, b, c) =

T < max(β(t, ψi), t + L), we find that in f (t, ψ1, b, c) expresses that there exist
an infinite number of values of n′ ≡ c mod b such that (n′, t) ∈ M(ψ1). (Note
that if (m, t) ∈ M(ψ1) and m ≡ c mod(gcd(b, L)), then by the Chinese Remainder
theorem, the simultaneous equation x ≡ c mod b and x ≡ m mod L has a solution,
which may be taken to be greater than T , so that by periodicity of α(t,ψ1) we have
(x, t) ∈ M(ψ1) and x ≡ c mod b.) Thus, we may represent the case of n with an
infinite number of n′ ≡ c mod b using the formula

χ∞(t, ψ1, b, c) = in f (t, ψ1, b, c) ∧ (≡ c − a mod b) .

In the case of a finite number of such values, note that if [[in f (t, ψ1, b, c)]] = ∅

then for all n′ ∈ [[α(t,ψ1)]] with n′ ≡ c mod b we have n′ < T . (If there exists
such a value n′ larger than T then by L-periodicity we can find one in the range
[T,T + L] with n′ ≡ c mod gcd(b, L).) Thus, in this case we can express the
possible values of n by the expression

χ<∞(t, ψ1, b, c) = ¬in f (t, ψ1, b, c)∧ ≤ max((α(t,ψ1) ≡ c mod b), t) .

Putting the pieces together, we may define α(s,ψ) to be∨
t∈S

(
(
∨

a+bN∈R(s,t), b=0 α(t,ψ1) − a)
∨

∨
a+bN∈R(s,t),0≤c<b χ∞(t, ψ1, b, c) ∨ χ<∞(t, ψ1, b, c)

)
.

�

Combining this result with Lemma 3, we obtain the upper bound of PNP for the
combined complexity of model checking CTL−Kclkn .

By way of lower bound, we show that the model complexity (hence also the com-
bined complexity) of model checking CTL−Kclkn is hard for PNP[log], i.e., the complex-
ity class corresponding to PTIME computations with a logarithmic number of queries
to an NP oracle.

(The same lower bound also holds for model complexity, by a slightly more elabo-
rate proof that we leave for a longer version of this paper.) This is equivalent to the class
of PTIME computations with independent queries to an NP oracle, i.e., the construc-
tion of an oracle query may not depend on the outcome of any other oracle query. The
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following problem ODD-SAT is known to be complete for this class: given boolean
formulas φ1, . . . φn, determine if there exists an odd i such that φ1, . . . φi are satisfiable
and φi+1, . . . φn are not satisfiable.

x0

x1

xn'

......

y
1,1

xn',n

y1,n

xn',1

....

...

y
1,1

y1,n

xn',1

xn',n

c c c

sc,i,1

A

sc,i,zsc,i,2

p p p

(index guess) (index guess 
and formula)

(clauses)

(literal instances i=1..3)

(propositions)

C

i

B

B

Theorem 1 Model complexity for CTL−Kclkn is PNP[log] hard.

Proof: By encoding of the problem INDEX-ODD: given a list F = F1, . . . , Fn of
boolean formulas in 3-CNF, does there exist an odd index k such that F1, . . . , Fk are all
satisfiable and Fk+1, . . . , Fn are all unsatisfiable? This problem is PNP[log]-complete [7].
Without loss of generality, we may assume that the Fi are given as a set of monotone 3-
clauses, and divide each into the set F+

i of positive clauses and F−i of negative clauses.
We may also assume without loss of generality that distinct formulas do not share
propositional constants. Hence, they also do not share any clauses. We write F for the
union of the Fi, F+ for the union of the F+

i and F− for the union of the F−i .
We construct a system MF with agents A, B,C, 1, 2, 3. A depiction of the structure

of the runs of the system is given in Figure 3. The system has atomic propositions
start, clause, pos, propn, t, val and the following states:

1. a state x0, taken to be initial, and satisfying the proposition start. No other state
satisfies start. This state has temporal successors x1, x3, . . . xn′ , where n′ is the
largest odd number less than or equal to n. Further, each state xi has temporal
successors yi, j where 1 ≤ j ≤ n. Intuitively, yi, j represents that we are checking
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satisfaction of formula j and guessing that i is the maximal odd index for which
F1, . . . , Fi are satisfiable and Fi+1, . . . , Fn are unsatisfiable. Accordingly, we take
yi, j |= sat iff j ≤ i.

2. For each clause c ∈ F a state c, such that c |= clause. No other states satisfy
clause. Further, c |= pos iff c ∈ F+. Values of pos on other states are irrelevant.
We take state c to be initial, and the only transition from c to be c→ c.

3. For each atomic proposition p occurring in F, a state p, such that p |= propn. No
other states satisfy propn. We take state p to be initial, and the only transition
from p to be p→ p.

4. For each clause c ∈ F and i = 1..3, choose a distinct prime qc,i. For each
k = 1 . . . qc,i, we have a state sc,i,k. We take sc,i,1 to be initial, and the only
transitions involving these states are sc,i,1 → sc,i,2 → . . . sc,i,qc,i → sc,i,1. All these
states satisfy val, and no other state satisfies val. We let sc,i,k |= t iff k = 1.

Note that since the first k primes can be found in 2 . . . , k2, the model MF has O(|F|2)
states.

Intuitively, the set of states MF(N) occurring at a particular time N represents an
assignment of truth values to each of the instances of an atomic proposition occurring
in a clause. Note that for each clause c and position i = 1...3, exactly one state of the
form sc,i,k occurs in M(N). We take the assignment of the proposition instance to be
true if t holds at that state. Since the cycle lengths on the cycles on the sc,i,k are co-
prime, all selections of one state from each cycle (hence all truth assignments to each
proposition instance) are attained at some time N.

Note that assignments defined in this way allow for a proposition to be assigned
to be true in one clause and false in another. We use a formula to enforce consistency
of the assignments. Let the observations for agent C be defined so that for atomic
proposition p, we have p ∼C sc,i,k iff p is the proposition in literal i of clause c. Let
agent B be unable to distinguish any states. Then we may express that the assignments
made to the propositions are consistent at all instances by the formula

consis = KB(propn⇒ (KC(val⇒ t) ∨ KC(val⇒ ¬t)

which expresses that for each proposition, either all its occurrences in a clause are
assigned true or they are all assigned false.

To check for satisfaction of the clauses, we introduce agents i = 1, 2, 3 correspond-
ing to literal positions within the clause. We define the equivalence relations for these
agents to be the smallest equivalence relations such that c ∼i sc,i,k for all c ∈ F, i = 1..3
and k = 1 . . . qc,i. Note that clause c always occurs in MF(N), together with, for each
i = 1..3, at most one state of the form sc,i,k. Thus, clause c is represented as being
satisfied in MF at time N if the formula satisfied defined as

satisfied = (pos ∧ K1(val ∧ t) ∧ K2(val ∧ t) ∧ K3(val ∧ t)) ∨
(¬pos ∧ K1(val ∧ ¬t) ∧ K2(val ∧ ¬t) ∧ K3(val ∧ ¬t)).

holds at a point at time N where the state is c.
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Logic Combined Model Formula
Complexity Complexity Complexity

LTL PSPACE-complete NLOGSPACE-complete PSPACE-complete
CTL∗ PSPACE-complete NLOGSPACE-complete PSPACE-complete
CTL PTIME-complete NLOGSPACE-complete LOGSPACE
CTL− PTIME-complete NLOGSPACE-complete LOGSPACE

Table 2: Complexity Results for Temporal Logics

To express that all clauses are satisfied, we define the equivalence relation ∼A to be
the smallest equivalence relation such that yi, j ∼A c for all i = 1 . . . n′, j = 1, . . . n and
c ∈ F j. That is, ∼A connects states yi, j at which we are checking formula F j with the
clauses c in F j. Thus we may express that all clauses in formula F j are satisfied by the
formula

KA(clause→ satis f ied),

evaluated at a point at time N where the state is yi, j

To expresss that there is a (consistent) satisfying assignment for F j, evaluating at a
state yi, j, we may use formula

EF(consis ∧ KA(clause→ satisfied)),

evaluated at a point at time 3 where the state is yi, j. Note that the EF operator takes
us to the same state yi, j at a different timeN (hence a different guess for the consistent
assignment to the propositions, and the KA operator then checks that all clauses in F j

are satisfied.
Finally, to express that for some odd k, exactly the first k of the formulas F1, . . . , Fn

is satisfiable, we may use the formula

start ⇒ EX AX(sat ⇔ EF(consis ∧ KA(clause→ satis f ied))

Intuitively, the first EX guesses an odd index i, and the AX then checks that all formulas
up to index i are satisfiable and the remainder are unsatisfiable. This formula is valid
in MF iff F ∈ INDEX − ODD. �

This lower bound does not quite match the upper bound. We do not know at present
whether either can be improved.

4 Related Work
The model checking complexities for temporal logics are collected in Table 2, which
is taken from [13].

When combined with epistemic logic under the observational semantics, the model
checking complexities do not increase, e.g., for CTLKobs

n , PTIME-completeness is
shown in [6] and [10], for upper bound and lower bound, respectively.

When combined with epistemic logic under the perfect recall semantics, many sub-
tleties are introduced. Linear time temporal epistemic logics on synchronous systems
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Figure 1: A model

or asynchronous systems are analyzed in [19] and [20], and [16, 15, 14] explore branch-
ing time temporal epistemic logics.

For epistemic logic under clock semantics, [5] provides complexity results for its
combination with LTL. The present paper complements this work by considering in-
stead several branching time logics. A bounded model checking (BMC) algorithm for
the universal fragment of CTL∗Kclkn logic, abbreviated as ACTL∗Kclkn , is presented in
[11, 12]. However, it appears to be incorrect. A flaw of their algorithm occurs on for-
mulas of the form AFKiφ, which in negated dual form EG¬Ki¬ψ requires finding a
witness run on which ¬Ki¬ψ holds at all times. For bounded model checking temporal
logics, runs can be represented as lassos s0 ⇒ s1 ⇒ . . . sk ⇒ sl where 0 ≤ l ≤ k and
k ≤ |S |. To satisfy the formula EG¬Ki¬ψ would then require that we satisfy ¬Ki¬ψ at
each point in the run. For the observational semantics for knowledge, this can be done
by finding for each time m with 0 ≤ m ≤ k another lasso t0 ⇒ t1 ⇒ . . . tk′ ⇒ tl′ with
sm ∼i tm′ for some m′ with ψ holding at the state tm′ . However, the clock semantics re-
quires that the states sm and tm′ occur at the same time. The approach to this in [11, 12]
is to check that the witness state tm′ can occur at the same time as the state sm.

However, this is not sufficient, rather, we require such a witness for each time n
such that sk can occur at time n in the original lasso. An example is shown in Figure 1.
The model M = (S , I,⇒,∼a, π), where S = {s1, s2, s3}, I = {s1, s2}, ⇒ is shown in
Figure 1, ∼a is the least equivalence relation with s1 ∼a s2 and π(s2) = {p}, π(s1) =

π(s3) = ∅. For the ACTL∗Kclkn formula φ = AFKa¬p, the algorithm of [11, 12] would
conclude that M 6|= φ by finding a ‘counterexample’ lasso of length 1, where the dual
¬φ ≡ EG¬Ka¬p is resolved on loop s1 ⇒ s1, and the fact that ¬Ka¬p must hold at
s1 is witnessed by the fact that p holds at state s2 ∼ s1 on the lasso s2 ⇒ s3 ⇒ s2.
However, though ¬Ka¬p is satisfiable on the lasso s1 ⇒ s1 at time 0, it is not satisfiable
at time 1 since state s2 is not possible at time 1.

By comparison, the algorithms discussed above for CTLKclkn and LTLKclkn use
set-level loops. More specifically, the state-level lasso s1 ⇒ s1 should be lifted to a
set-level lasso (s1, {s1, s2}) ⇒ (s1, {s1, s3}) ⇒ (s1, {s1, s2}), where the second element
in a pair is the set of possible states at a given time. Now ¬Ka¬p is not satisfiable on
(s1, {s1, s3}) because state s2 is not possible at that time. Therefore, the loop s1 ⇒ s1
does not provide a valid counterexample for formula φ. Indeed, it can be easily checked
that M |= φ.

While we believe that lasso-like structures can be used to provide counter-examples
for bounded model checking of ACTL∗Kclkn , the fact that the model complexity of
CTLKclkn is hard for the polynomial hierachy (compared with the NLOGSPACE-complete
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model complexities of LTL and CTL) strongly suggests that the claim in [11, 12] that
lassos of length at most |M| suffice cannot be upheld. Rather, the apparent necessity of
set-level lassos suggests that the bound should be of the order of 2|M|. We leave a more
detailed investigation of this issue for further work.
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