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Abstract. Noninterference is a notion of information flow security, orig-
inally defined for transitive information flow policies. A number of dif-
ferent definitions of noninterference have been proposed for intransitive
policies. These definitions are stated with respect to several different
semantic models, including state machines with observations on states,
state machines with outputs associated to actions, and process algebras.
The paper studies the relationship between these definitions and models.
Several mappings are defined that transform one semantic model into
another, and the correspondences between the definitions under these
mappings are precisely characterized. In particular, the paper consid-
ers definitions of intransitive noninterference due to Haigh and Young
(1987), Roscoe and Goldsmith (1999) and van der Meyden (2007).

1 Introduction

A key concern of research on formal verification of computer security has been
various notions of information flow, referred to by the general term noninterfer-
ence [GM82]. Much of this area has been concerned with a very simple infor-
mation flow security policy involving just two security domains High and Low,
with information permitted to flow from Low to High, but not vice versa. A
richer class of policies deals with partially ordered sets of security domains, with
information permitted to flow upwards in the partial order but not down. A fea-
ture of this class of policies is that the relation describing permitted information
flows is transitive.

It has been argued that there are also applications where the relation describ-
ing permitted information flows is not transitive. An example of this is systems
involving High and Low security domains, as in the simplest policy, together
with a downgrader. Here, one would like to specify that information may flow
from High to the downgrader, and from the downgrader to Low, but not directly
from High to Low. In other words, any information flow from High to Low must
be mediated by the downgrader. This constraint makes the relation on domains
that represents the security policy intransitive.
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The classical definition of noninterference [GM82], proposed originally for
policies assumed to be transitive, has been felt to be inadequate for intransitive
policies. A variant definition of noninterference designed for intransitive polices
was first proposed by Haigh and Young [HY87], and further propounded by
Rushby [Rus92] in a paper that corrected and extended Haigh and Young’s
results.

There have been several criticisms of this variant definition, however. Roscoe
and Goldsmith [RG99] criticized it on the basis of the failure of their attempt
to use it to formalise reasoning about the downgrader policy. This lead them to
propose an alternative definition grounded in the idea of Low-determinism. More
recently, the definition was criticized on different grounds in [vdM07], where
it is argued that it permits information flows that are counter to an informal
understanding of the policy. A number of different definitions are proposed in
[vdM07] that resolve this problem, and it is shown that these definitions lead to
a more satisfactory treatment of unwinding [GM84,Rus92], a proof technique for
non-interference, and access control systems [Rus92], a general class of systems
that may be shown to be secure by this technique. The relationship between
these variant definitions and those of Roscoe and Goldsmith was left open in
this work.

In this paper we conduct a careful comparison of these alternative definitions.
One of the obstacles to this is that they are cast in terms of different semantic
models. Rushby considers the definitions of Haigh and Young for two different
state machine models with notions of action and observation, with observations
associated in one model to states and in the other model to actions (akin to the
Moore-Mealy distinction on finite state automata). The definitions of [vdM07]
are stated using the state-observed version of Rushby’s model. On the other
hand, Roscoe and Goldsmith work in the process algebra CSP. They actually
have two different definitions of security: one deals only with actions, the other
is intended for systems in which observations (or in their nomenclature, ‘signal
events’) are of concern.

We address this diversity by defining mappings between these different se-
mantic models, and then studying how the definitions of intransitive noninter-
ference are related under these mappings. There turns out to be a close corre-
spondence between the variants of the range of definitions with respect to the
state-observed and action-observed versions of state machines. We give a trans-
lation from the action-observed to the state-observed model that preserves all
the definitions of Goguen and Meseguer, Haigh and Young and van der Meyden.
Moreover, we show that results concerning unwinding and access control systems
can be transferred from one domain to the other by means of this translation.

The relationship to the Roscoe and Goldsmith definitions is more complex.
On one way of translating state-observed state machines to CSP, one of Roscoe
and Goldsmith’s definitions corresponds precisely to the classsical definition of
noninterference intended for transitive systems (but applied to intransitive sys-
tems.) However, this notion does not take observations into account. It turns out
that RG’s second definition cannot be applied to the processes produced by this



first translation. We can, however, construct another translation from action
observed state machines to CSP that does allow the application of RG’s sec-
ond definition — in this case we find that RG’s definition corresponds a weaker
notion than under the first translation.

The structure of the paper is as follows. The state-observed systems model is
defined in Section 2, as well as the associated notions of noninterference due to
Goguen and Mesguer, Haigh and Young and van der Meyden. Section 3 defines
the action-observed state machine model, and presents a similar set of definitions
of noninterference on this model. Section 4 shows how action-observed systems
may be mapped to the state-observed model, and shows that the definitions
of noninterference on the two models correspond precisely under this mapping.
Moreover, it is shown in Section 5 that the related notions of (weak) unwinding
and the closely related notion of access control interpretability, are also pre-
served under the mapping from state- to action-observed machines. This enables
a transfer of some results of van der Meyden [vdM07] from one domain to the
other. Finally, Section 6 considers mappings from state- and action-observed
systems to a process algebraic model and characterizes Roscoe and Goldsmith’s
definitions under these mappings. Some remaining questions for future work are
presented in Section 7.

2 State-Observed Systems

We begin by recalling the classical definitions of noninterference for transitive
and intransitive policies [GM82,HY87,Rus92], and several new definitions pro-
posed by van der Meyden [vdM07]. The present section considers these defi-
nitions on state observed machines; in the following section we treat similar
definitions in action observed machines.

The state-observed machine model [Rus92] for these definitions consists of
deterministic machines of the form 〈S, s0, A, step, obs, dom〉, where S is a set of
states, s0 ∈ S is the initial state, A is a set of actions, dom : A → D associates
each action to an element of the set D of security domains, step : S × A → S

is a deterministic transition function, and obs : S × D → O maps states to
an observation in some set O, for each security domain. We may also refer
to security domains more succinctly as “agents”. We write s · α for the state
reached by performing the sequence of actions α ∈ Actions∗ from state s, defined
inductively by s · ǫ = s, and s · αa = step(s · α, a) for α ∈ A∗ and a ∈ A. Here ǫ

denotes the empty sequence.
Noninterference policies, the class of security policies we consider for these

machines, are relations ֌⊆ D × D. Intuitively, u ֌ v means that “actions of
domain u are permitted to interfere with domain v”, or “information is permitted
to flow from domain u to domain v”. Since a domain should be allowed to
interfere with, or have information about, itself, this relation is assumed to be
reflexive.

Transitive noninterference policies have been given a formal semantics using
a definition based on a “purge” function. Given a set E ⊆ D of domains and a



sequence α ∈ A∗, we write α ↿ E for the subsequence of all actions a in α with
dom(a) ∈ E. Given a policy ֌, we define the function purge : A∗ × D → A∗ by

purge(α, u) = α ↿ {v ∈ D | v ֌ u}.

For clarity, we may use subscripting of agent arguments of functions, writing,
e.g., purge(α, u) as purgeu(α), and obsu(s) for obs(s, u).

Definition 1. A system M is P-secure with respect to a policy ֌ if for all
sequences α, α′ ∈ A∗ such that purgeu(α) = purgeu(α′), we have obsu(s0 ·α) =
obsu(s0 · α′).

This can be understood as saying that agent u’s observation depends only on
the sequence of interfering actions that have been performed. By idempotence
of purgeu, this definition is equivalent to the classical formulation, according
to which the system M is secure when for all α ∈ A∗ and domains u ∈ D, we
have obsu(s0 ·α) = obsu(s0 ·purgeu(α)). This formulation can be understood as
saying that each agent’s observations are as if only interfering actions had been
performed. We note that we will apply P-security to intransitive policies as well
as the transitive policies for which it was originally intended.

Haigh and Young [HY87] generalised the definition of the purge function to
intransitive policies as follows. Intuitively, the intransitive purge of a sequence
of actions with respect to a domain u is the largest subsequence of actions that
could form part of a causal chain of effects (permitted by the policy) ending
with an effect on domain u. More formally, the definition makes use of a function
sources : A∗ × D ⇒ P(D) defined inductively by sources(ǫ, u) = {u} and

sources(aα, u) = sources(α, u) ∪ {dom(a) | ∃v ∈ sources(α, u)(dom(a) ֌ v)}

for a ∈ A and α ∈ A∗. Intuitively, sources(α, u) is the set of domains v such
that there exists a sequence of permitted interferences from v to u within α. The
intransitive purge function ipurge : A∗×D → A∗ is then defined inductively by
ipurge(ǫ, u) = ǫ and

ipurge(aα, u) =

{

a · ipurge(α, u) if dom(a) ∈ sources(aα, u)
ipurge(α, u) otherwise

for a ∈ A and α ∈ A∗. An alternative, equivalent formulation that we will find
useful is the following: given a set X ⊆ D, define ipurgeX(α) inductively by
ipurgeX(ǫ) = ǫ and

ipurgeX(αa) =

{

ipurgeX∪{dom(a)}(α) · a if ∃u ∈ X(dom(a) ֌ u)

ipurgeX(α) otherwise

Then ipurgeu(α) is identical to ipurge{u}(α).
Haigh and Young’s [HY87] definition of security can then be formulated by

using the intransitive purge function in place of the purge function:



Definition 2. M is IP-secure with respect to a policy ֌ if for all u ∈ D and
all sequences α, α′ ∈ A∗ with ipurgeu(α) = ipurgeu(α′), we have obsu(s0 ·α) =
obsu(s0 · α

′).

It can be seen that ipurgeu(α) = purgeu(α) when ֌ is transitive, so IP-
security is in fact a generalisation of the definition of security for transitive
policies.

These definitions are critiqued in [vdM07], where several alternatives are pro-
posed. All are based on a concrete model of the maximal amount of information
that an agent may have after some sequence of actions has been performed,
and state that an agent’s observation may not give it more than this maximal
amount of information. The definitions differ in the modelling of the maximal in-
formation, but all take the view that an agent increases its information either by
performing an action or by receiving information transmitted by another agent.

In the first model of the maximal information, what is transmitted when an
agent performs an action is information about the actions performed by other
agents. The following definition expresses this in a weaker way than the ipurge
function.

Given sets X and A, let the set T (X, A) be the smallest set containing X

and such that if x, y ∈ T and z ∈ A then (x, y, z) ∈ T . Intuitively, the elements
of T (X, A) are are binary trees with leaves labelled from X and interior nodes
labelled from A.

Given a policy ֌, define, for each agent u ∈ D, the function tau : A∗ →
T ({ǫ}, A) inductively by tau(ǫ) = ǫ, and, for α ∈ A∗ and a ∈ A,

1. if dom(a) 6֌ u, then tau(αa) = tau(α),
2. if dom(a) ֌ u, then tau(αa) = (tau(α), tadom(a)(α), a).

Intuitively, tau(α) captures the maximal information that agent u may, consis-
tently with the policy ֌, have about the past actions of other agents. (The
nomenclature is intended to be suggestive of transmission of information about
actions. ) Initially, an agent has no information about what actions have been
performed. The recursive clause describes how the maximal information tau(α)
permitted to u after the performance of α changes when the next action a is
performed. If a may not interfere with u, then there is no change, otherwise, u’s
maximal permitted information is increased by adding the maximal information
permitted to dom(a) at the time a is performed (represented by tadom(a)(α)),
as well the fact that a has been performed. Thus, this definition captures the
intuition that an agent may only transmit information that it is permitted to
have, and then only to agents with which it is permitted to interfere.

Definition 3. A system M is TA-secure with respect to a policy ֌ if for all
agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have obsu(s0 · α) =
obsu(s0 · α′).

Intuitively, this says that each agent’s observations provide the agent with no
more than the maximal amount of information that may have been transmitted
to it, as expressed by the functions ta.



The second of van der Meyden’s definitions uses the following notion of view.
The definition uses an absorbtive concatenation function ◦, defined over a set X

by, for s ∈ X∗ and x ∈ X , by s◦x = s if x is equal to the final element of s (if any),
and s◦x = s ·x (ordinary concatenation) otherwise. Define the view of domain u

with respect to a sequence α ∈ A∗ using the function1 views
u : A∗ → O(A ∪O)∗

(where O is the set of observations in the system), defined by

views
u(ǫ) = obsu(s0), and

views
u(αa) =

{

views
u(α) a obsu(s0 · α) if dom(a) = u,

views
u(α) ◦ obsu(s0 · α) otherwise

That is, views
u(α) is the sequence of all observations and actions of domain u in

the run generated by α, compressed by the elimination of stuttering observations.
Intuitively, views

u(α) is the complete record of information available to agent u

in the run generated by the sequence of actions α. The absorbtive concatenation
is intended to capture that the system is asynchronous, with agents not having
access to a global clock. Thus, two periods of different length during which a
particular observation obtains are not distinguishable to the agent.

Given a policy ֌, for each domain u ∈ D, define the function tos
u : A∗ →

T (O(A ∪ O)∗, A) by tos
u(ǫ) = obsu(s0) and

tos
u(αa) =

{

tos
u(α) if dom(a) 6֌ u,

(tos
u(α), viewdom(a)(α), a) otherwise.

Intuitively, this definition takes the model of the maximal information that an
action a may transmit after the sequence α to be the fact that a has occurred,
together with the information that dom(a) actually has, as represented by its
view viewdom(a)(α). By contrast, TA-security uses in place of this the maximal
information that dom(a) may have. (The nomenclature ‘to’ is intended to be
suggestive of transmission of information about observations.)

We will also consider a slight variant of this definition. Given a policy ֌,
for each domain u ∈ D, define the function itos

u : A∗ → T (O(A ∪ O)∗, A) by
itos

u(ǫ) = obsu(s0) and

itos
u(αa) =







itos
u(α) if dom(a) 6֌ u,

(itos
u(α), viewdom(a)(α), a) if dom(a) = u,

(itos
u(α), viewdom(a)(αa), a) otherwise.

This definition is just like that of tos, with the difference that the informa-
tion that may be transmitted to u by an action a such that dom(a) ֌ u but
dom(a) 6= u, includes the observation obsdom(a)(s0 ·αa) obtained in domain dom(a)
immediately after the occurrence of action a. Intuitively, the definition of secu-
rity based on this notion will allow that the action a transmits not just the
information observable to dom(a) at the time that it is invoked, but also the new

1 We superscript some definitions for state-observed systems in this section by s in
order to distinguish them from variants for action-observed systems, to be defined
in the following section.



information that it computes and makes observable in dom(a). This information
is not included in the value itos

dom(a)(α) itself, since the definition of security
will state that the the new observation may depend only on this value. The
nomenclature in this case is intended to be suggestive of immediate transmission
of information about observations.

We may now base the definition of security on either the function tos or itos

rather than ta.

Definition 4. The system M is TO-secure with respect to ֌ if for all domains
u ∈ D and all α, α′ ∈ A∗ with tos

u(α) = tos
u(α′), we have obsu(s0 · α) =

obsu(s0 · α′).
The system M is ITO-secure with respect to ֌ if for all domains u ∈ D and

all α, α′ ∈ A∗ with itos
u(α) = itos

u(α′), we have obsu(s0 · α) = obsu(s0 · α′).

The following result shows how these definitions are related:

Theorem 1 ([vdM07]). For state-observed systems, with respect to a given pol-
icy ֌, P-security implies TO-security implies ITO-security implies TA-security
implies IP-security.

Examples showing that all these notions are distinct are presented in [vdM07].

3 Action Observed Systems

The definitions of the previous section are concerned with a state-observed ma-
chine model. Rushby [Rus92] also deals with a variant of the machine model in
which observation are associated to actions rather than states. In this section
we describe a formulation of our definitions in this model, and show how these
variants are related to the state-observed versions.

An action-observed machine is a tuple 〈S, s0, A, step, out, dom〉, where all
the components are as in the state observed system model, except that the
observation function obs is replaced by a function out : S ×A → O. Intuitively,
if s is a state and a is an action, then out(s, a) is the observation made in domain
dom(a) when action a is performed.

The notions of P-security and IP-security are defined by Rushby for action-
observed machines by

1. M is P-secure with respect to a policy ֌ if for all α, α′ ∈ A∗, u ∈ D and
a ∈ A with dom(a) = u, if purgeu(α) = purgeu(α′) then out(s0 · α, a) =
out(s0 · α′, a).

2. M is IP-secure with respect to a policy ֌ if for all α, α′ ∈ A∗, u ∈ D and
a ∈ A with dom(a) = u, if ipurgeu(α) = ipurgeu(α′) then out(s0 · α, a) =
out(s0 · α′, a).

We can also adapt TO-security, ITO-security and TA-security to the ac-
tion observed system model. First, the notion of view is adapted to the action-
observed system model by defining viewa

u : A∗ → (A∪O)∗ for u ∈ D inductively



by viewa
u(ǫ) = ǫ, and

viewa
u(αa) =

{

viewa
u(α) · a · out(s0 · α, a) if dom(a) = u

viewa
u(α) otherwise.

That is, the view of an agent is just the sequence of actions that the agent has
performed, together with the outputs obtained from those actions.

We may also define for the action-observed model variants toa
u, itoa

u : A∗ →
T ((A ∪ O)∗, A) of the functions tos

u and itos
u used in the definitions of TO-

security and ITO-security.. We define toa
u by toa

u(ǫ) = ǫ and

toa
u(αa) =







toa
u(α) if dom(a) 6֌ u,

(toa
u(α), viewa

dom(a)(αa), a) if dom(a) = u,

(toa
u(α), viewa

dom(a)(α), a) if u 6= dom(a) ֌ u.

Similarly, itoa
u is defined by a

u
(ǫ) = ǫ and

itoa
u(αa) =

{

itoa
u(α) if dom(a) 6֌ u,

(itoa
u(α), viewa

dom(a)(αa), a) otherwise.

We can then formulate the definitions of security of Section 2 on action-
observed machines M by

1. M is TA-secure with respect to ֌ if for all α, α′ ∈ A∗, u ∈ D and a ∈ A

with dom(a) = u, if tau(α) = tau(α′) then out(s0 · α, a) = out(s0 · α′, a).
2. M is TO-secure with respect to ֌ if for all α, α′ ∈ A∗, u ∈ D and a ∈ A

with dom(a) = u, if toa
u(α) = toa

u(α′) then out(s0 · α, a) = out(s0 · α′, a).
3. M is ITO-secure with respect to ֌ if for all α, α′ ∈ A∗, u ∈ D and a ∈ A

with dom(a) = u, if itoa
u(α) = itoa

u(α′) then out(s0 · α, a) = out(s0 · α′, a).

There is a subtle difference in the definition of toa
u to what one might have

expected, based on the definition of tos
u. Note that whereas there was a single

case for tos
u(αa) when dom(a) ֌ u, the definition of toa

u breaks this into two
cases, depending on whether dom(a) = u. In case dom(a) = u, agent u is treated
as receiving the information viewa

dom(a)(αa) as a result of performing the action,

whereas other agents with which domain dom(a) may interfere are treated as
receiving the information viewa

dom(a)(α). That is, agent dom(a) is considered to
have received the output resulting from performing action a, but this output is
not included in the information considered by toa to have been transmitted to
other agents.2

The reason for this difference with the definition of tos
u is that whereas tos

u(α)
is used in the definition of TO-security to state what agent u’s observation of
state s0 · α may depend upon, toa

u(α) is used to state what the output of a

2 There is some obvious redundancy in the definition, and we could use just out(s0 ·
α, a) in place of viewa

dom(a)(αa) in the case dom(a) = u, but we keep the definition in
the present form to facilitate comparison.



further action a in state s0 · α may depend upon. Thus, we include all outputs
from u’s actions in the sequence αa in the case dom(a) = u.

As in the state-observed case, the definition of ITO-security is intended to
allow that new observable information computed by an action a is transmitted to
other agents with which dom(a) may interfere. This is captured by transmitting
viewa

dom(a)(αa) to such agents.
These definitions of security are related exactly like their variants for the

state observed model.

Theorem 2. For the action-observed definitions, with respect to a given pol-
icy ֌, P-security implies TO-security implies ITO-security implies TA-security
implies IP-security. These implications are all strict.

We defer the proof of the implications to the next section. For strictness of
the implications we have the following examples.

l/0,d/0,t/0

h/0 d/1

l/0,h/0,t/0 l/0,h/0,d/1 l/1,h/0,d/1,t/1

t/1

Fig. 1. TO-secure but not P-secure.

To see that TO-security does not imply P-security, consider the system M

in Figure 1, where there are domains H, D, L with sets of actions {h}, {d, t}
and {l}, respectively. Let the policy be given by H ֌ D ֌ L. Intuitively, d

tests whether action h has occurred, and t transmits to L the fact that h has
occurred, once this fact is known to D. The action l tests whether this fact has
been transmitted to L. This system is TO-secure. Since all outputs to H are 0,
there is nothing to check for H . In case of D, we check the contrapositive of the
definition. Note that if we have out(s0 ·α, d) = 0 and out(s0 · α′, d) = 1, then α

does not contain h but α′ does contain h. But since H ֌ D, it then follows that
toa

D(α′) contains an h but toa
D(α′) does not. Similarly, if out(s0 · α, t) = 0 and

out(s0 ·α′, t) = 1, then α′ contains a h followed by a d, but α does not. In either
case, it follows that toa

D(α′) 6= toa
D(α′). Similarly, for L, if out(s0 ·α, l) = 0 and

out(s0 · α′, l) = 1, then α′ contains an h, a later d which gives output 1, and a
still later t, but α′ does not contain such a subsequence. In particular, it follows
that toa

L(α′) contains a view component containing a subsequence of the form
d1 . . . t, but toa

L(α′) does not. Hence toa
L(α′) 6= toa

L(α′). This completes the
argument that the system is TO-secure. To see that it is not P-secure, note that
purgeL(hdt) = dt = purgeL(dt) but out(s0 · hdt, l) = 1 and out(s0 · dt, l) = 0.



(a)

(b)

h/0 d/1

d/0, l/0

h/0 d/0

l/0, d/0 l/0, h/0 l/1, d/1, h/0

l/1, d/0, h/0l/0, h/0

Fig. 2. (a) ITO-secure but not TO-secure, (b) TA-secure, but not ITO-secure.

To see that that ITO-security does not imply TO-security, consider the sys-
tem M in Figure 2(a), where we assume that there are actions h, d, l of domains
H, D, L, respectively. Let the policy be given by H ֌ D ֌ L. Intuitively,
the action d tests whether there has been an occurrence of h, and immedi-
ately transmits this information to L if so, where it can be observed via the
action l. The system M is ITO-secure. To see this, note that out(s0 · α, l) = 1
iff α can be written as α1dα2 and out(s0 · α1, d) = 1. Since D ֌ L, this in
turn means that the occurrence of d with output 1 is apparent in itoL(α).
It follows that itoL(α) = itoL(α′) implies out(s0 · α, l) = out(s0 · α′, l). For
domains H and D, the definition of ITO-security is trivial from the fact that
there is just one possible observation. To see that M is not TO-secure, note that
toL(d) = (ǫ, ǫ, d) = (toL(h), viewa

D(h), d) = toL(hd), but out(s0 · d, l) = 0 and
out(s0 · hd, l) = 1.

To show that TA-security does not imply ITO-security, consider the system
in Figure 2(b) with actions h, d, l of domains H, D, L respectively, and the policy
H ֌ D ֌ L. In this system, action d informs L whether there has been an
occurrence of h, although this information is never known to D itself. This
system is not ito-secure, for itoL(d) = (ǫ, d0, d) = (itoL(h), viewa

D(hd), d) =
itoL(hd), but out(s0 · d, l) = 0 and out(s0 · hd, l) = 1. However, this system is
TA-secure. For, if obsL(s0 ·α) 6= obsL(s0 ·α′), then one of α, α′ contains h and a
later d, and the other does not. It follows that taL(α) 6= taL(α′). The definition
of TA-security holds trivially for the domains H and D since they have only one
possible observation.



Finally, to show that IP-security does not imply TA-security, consider an
example similar to that in [vdM07]. Consider domains H1, H2, D1, D2, L, with
actions A = {h1, h2, d1, d2, l}, respectively. Let the policy by given by Hi ֌

Di ֌ L for i = 1, 2. Let the set of states of the system be A∗, initial state ǫ,
the step function be given by step(α, a) = αa for α ∈ A∗ and a ∈ A, and let
outputs be given by out(α, l) = ipurgeL(α), and out(α, a) = ⊥ for all other
actions a. This system is trivially IP-secure. On the other hand, taL(h1h2d1d2) =
taL(h2h1d1d2) and ipurgeL(h1h2d1d2) = h1h2d1d2 6= h2h1d1d2 = ipurgeL(h2h1d1d2).
Hence out(s0 ·h1h2d1d2, l) 6= out(s0 ·h2h1d1d2, l), so the system is not TA-secure.

We have used a uniform format based on intuitions concerning maximal mes-
sage passing to give the definitions of TA-security, TO-security and ITO-security.
It will be useful in what follows to have the following simpler characterization
of ITO-security.

Define the set of observations for an agent u in a system M to be the set of
outputs obtainable by the agent, i.e., Ou = {out(s, a) | s ∈ S, a ∈ Au}. Say that
a system has disjoint observations if for all agents u 6= v, we have Ou∩Ov = ∅. A
system may always be transformed into one with disjoint observations simply by
renaming observations. It is easy to show that this does not affect the satisfaction
of any of the definitions of security.

Given a sequence α = a1 . . . an ∈ A∗, write trace(α) for the sequence
a1o1a2o2 . . . anon where ok = out(s0 · (a1 . . . ak−1), ak), for k = 1 . . . n. Given
a policy ֌, and supposing that the system has disjoint observations, for each
agent u, define the set nf(u) =

⋃

v 6֌u Av ∪ Ov. That is, this is the set of all
actions and observations of agents that may not interfere with u. Given a se-
quence σ of actions and observations, write σ \ nf(u) for the subsequence of all
actions and observations not in nf(u). This is the sequence of all actions and
observations of agents that may interfere with u.

Proposition 1. Suppose that M is a system with disjoint observations. Then
M is ITO-secure with respect to ֌ iff for all α, α′ ∈ A∗, agents u and actions
a ∈ Au, if trace(α)\nf(u) = trace(α′)\nf(u) then out(s0·α, a) = out(s0·α′, a).

Proof. We show by induction on the combined length of α and α′ that itou(α) =
itou(α′) iff trace(α) \ nf(u) = trace(α′) \ nf(u). The claim is trivial for α =
α′ = ǫ. Consider sequences αa and α′, where α, α′ ∈ A∗ and a ∈ A, and the
claim holds for sequences of shorter combined length. If dom(a) 6֌ u, then the
result follows straightforwardly from the induction hypothesis and the facts that
itou(αa) = itou(α) and trace(αa) \ nf(u) = trace(α) \ nf(u).

Suppose therefore that dom(a) ֌ u and itou(αa) = itou(α′). Then α′

cannot be ǫ, and we may assume without loss of generality that the last ac-
tion b in α′ has dom(b) ֌ u, else we may apply the previous case. It fol-
lows that b = a, and we may write α′ = βa. Hence itou(α) = itou(β) and
viewa

dom(a)(αa) = viewa
dom(a)(βa). From the former it follows by the induction

hypothesis that trace(α) \ nf(u) = trace(β) \ nf(u), and from the latter
we obtain that out(s0 · α, a) = out(s0 · β, a) – write o for this output value.
Thus trace(αa) \ nf(u) = (trace(α) \ nf(u))ao = (trace(β) \ nf(u))ao =
(trace(βa) \ nf(u)), as required.



Conversely, suppose that dom(a) ֌ u and trace(αa) \ nf(u) = trace(α′) \
nf(u). Then a must occur in α′, and we may assume that it is the last action,
else we may apply the case for dom(a) 6֌ u. So write α′ = βa. We then have
that out(s0 ·α, a) = out(s0 ·β, a) – write o for this output value – and also that
trace(α) \ nf(u) = trace(β) \ nf(u). By the induction hypothesis, itou(α) =
itou(β). Moreover,

viewa
dom(a)(αa) = trace(αa) ↿ (Adom(a) ∪ Odom(a))

= (trace(αa) \ nf(u)) ↿ (Adom(a) ∪ Odom(a))
= (trace(βa) \ nf(u)) ↿ (Adom(a) ∪ Odom(a))
= viewa

dom(a)(αa).

It follows that itou(αa) = itou(βa), as required. ⊓⊔

4 Mapping Action-Observed to State-Observed Systems

In the previous sections we have defined a spectrum of definitions of security for
state- and action-observed systems. We now consider the relationships between
these definitions on the two models under a transformation from action-observed
to state-observed systems. We show that our usage of common names for defi-
nitions on the two different models is justified, by showing that similarly named
notions of security correspond under this transformation. As a consequence of
this result, we may derive Theorem 2 from Theorem 1.

Given an action-observed machine M = 〈S, s0, A, step, out, dom〉, define the
state observed machine Fas(M) = 〈S′, s′0, A, step′, obs, dom〉 by

1. S′ = S × (D → O ∪ {⊥}),
2. s′0 = (s0, f0), where f0(d) = ⊥ for all d ∈ D,
3. step′((s, f), a)) = (step(s, a), f [dom(a) → out(s, a)]),
4. obsu((s, f)) = f(u).

Here, we write f [u 7→ x] for the function f ′ that is identical to f except that
f ′(u) = x. Intuitively, in a state (s, f), the value f(d) for a domain d represents
the observation most recently obtained in domain d, and is ⊥ if there has been
no observation in domain d.

The following result states relationships between the definitions of security
on the two types of model under this mapping.

Theorem 3. Let X be any of P, TO, ITO, TA, or IP. Then an action-observed
machine M is X-secure (with respect to the action-observed definitions) iff Fas(M)
is X-secure (with respect to the state-observed definitions).

Thus, there is a direct correspondence between similarly named definitions on
the two models, and the use of a common nomenclature is justified. Theorem 2
follows immediately from Theorem 3 and Theorem 1. For the proof of Theorem 3,
it is useful to identify a number of properties of a generalization of the notions
of security that we are considering. Let Xu : A∗ → Z, for u ∈ D, be a family



of functions mapping sequences of actions to some set Z. We say that a state-
observed system M is X-secure when for all α, α′ ∈ A∗ and u ∈ D, if Xu(α) =
Xu(α′) then obsu(s0 · α) = obsu(s0 · α′). Similarly, an action-observed system
M is X-secure when for all α, α′ ∈ A∗ and u ∈ D and a ∈ A with dom(a) = u, if
Xu(α) = Xu(α′) then out(s0 · α, a) = out(s0 · α′, a).

It can be seen that the definitions of P-security, TA-security and IP-security
in both state- and action-observed systems correspond precisely to X-security
with respect to the functions purge, ta and ipurge, respectively. In the case of
TO-security and ITO-security, the definitions of the view functions, hence the
functions to and ito, differ somewhat in the action and state observed cases, so
it is not immediate that a similar uniform characterization applies. We discuss
this case below.
Consider the following properties of the functions X :

(Consistency with ֌) If dom(a) 6֌ u then Xu(αa) = Xu(α);

(Nontriviality) If dom(a) ֌ u then Xu(αa) 6= Xu(ǫ);

(Additivity) If dom(a) ֌ u and dom(b) ֌ u and Xu(αa) = Xu(α′b) then
a = b and Xu(α) = Xu(α′);

(Locality) If dom(a) = u and Xu(α) = Xu(α′) then Xu(αa) = Xu(α′a);

These abstract properties are useful to establish a transfer of X-security between
an action-observed system M and the system Fas(M).

Lemma 1. Let M be an action-observed system.

1. If X is consistent with ֌, nontrivial and additive, and M is X-secure then
Fas(M) is X-secure.

2. If X satisfies locality and Fas(M) is X-secure then M is X-secure.

Proof. An easy induction shows that s′0 · α = (s0 · α, fα), where for each u ∈ D,
if α = βaγ, where a is the rightmost element of domain u in α, then fα(u) =
out(s0 · β, a), and fα(u) = ⊥ if there is no such a.

For part (1), assume that M is X-secure and that X is consistent with ֌,
nontrivial and additive. We show that Fas(M) is X-secure, i.e., that for all u ∈ D

and α, α′ ∈ A∗, if Xu(α) = Xu(α′) then obsu(s′0 ·α) = obsu(s′0 ·α
′). The proof is

by induction on the combined length of α and α′. The base case of α = α′ = ǫ is
trivial. Consider sequences αa and α′, where a ∈ A and Xu(αa) = Xu(α′), such
that the claim holds for sequences of shorter combined length. We have to show
that obsu(s′0 · αa) = obsu(s′0 · α′). There are two cases, depending on whether
dom(a) ֌ u.

1. Suppose dom(a) 6֌ u. Then by consistency with ֌ we have Xu(α) =
Xu(αa) = Xu(α′). Hence, by the induction hypothesis, obsu(s′0 · α) =
obsu(s′0 · α′). It also follows from dom(a) 6֌ u that dom(a) 6= u. Thus,
by construction of Fas(M), we have obsu(s′0 · αa) = obsu(s′0 · α). Thus,
obsu(s′0 · α) = obsu(s′0 · α

′), as required.



2. Suppose dom(a) ֌ u. By nontriviality, we get from Xu(αa) = Xu(α′) that
α′ is not ǫ. If the last action b in α′ does not satisfy dom(b) ֌ u, then we
can swap αa and α′ and apply the previous case. We may therefore assume
that α′ = βb for some b with dom(b) ֌ u. It now follows from additivity
that a = b and Xu(α) = Xu(β). We obtain from this by the induction
hypothesis that obsu(s′0 ·α) = obsu(s′0 ·β), and by the X-security of M that
out(s0 ·α, a) = outu(s0 ·β, a). In case dom(a) 6= u, it follows from the former
that obsu(s′0 · αa) = obsu(s′0 · α) = obsu(s′0 · β) = obsu(s′0 · βa). In case
dom(a) = u, we have from the latter that obsu(s′0 · αa) = out(s0 · α, a) =
outu(s0 · β, a) = obsu(s′0 · βa).

This completes the proof that Fas(M) is X-secure .
For part (2), suppose that Fas(M) is X-secure, and that X satisfies locality.

Let α, α′ ∈ A∗ and u ∈ D be such that Xu(α) = Xu(α′). We show that for
a ∈ A with dom(a) = u that out(s0 ·α, a) = outu(s0 ·α′, a). Since dom(a) = u, we
have by locality that Xu(αa) = Xu(α′a). Hence by X-security of Fas(M) and
construction of this system, we have out(s0 · α, a) = obsu(s′0 · αa) = obsu(s′0 ·
α′a) = out(s0 · α

′, a), as required for X-security of M . ⊓⊔

Lemma 2. The families of functions purge, ta and ipurge satisfy consistency
with ֌, nontriviality, additivity and locality.

Proof. In most cases, the proof is an easy check. We show just the case of ad-
ditivity for ipurge. Suppose that dom(a) ֌ u, dom(b) ֌ u and ipurgeu(αa) =
ipurgeu(α′b). Then ipurge{u,dom(a)}(α)a = ipurge{u,dom(b)}(α

′)b, so we must
have a = b. Consequently, dom(a) = dom(b), and we have ipurge{u,dom(a)}(α) =
ipurge{u,dom(a)}(α

′). We now use the fact that if X ⊆ Y then ipurgeX(ipurgeY (β)) =
ipurgeX(β)) to conclude that ipurgeu(α) = ipurge{u}(ipurge{u,dom(a)}(α)) =
ipurge{u}(ipurge{u,dom(a)}(α

′)) = ipurgeu(α′). ⊓⊔

Theorem 3 is immediate from Lemma 1 and Lemma 2 for the cases of X equal
to one of purge, ta and ipurge. For the cases of TO-security and ITO-security,
we show the result directly. The following lemma is helpful for the proof.

Lemma 3. Given a policy ֌, for α ∈ A∗, let viewa
u(α) and toa

u(α) and itoa
u(α)

be as defined in an action-observed system M and let views
u(α) and tos

u(α)
itos

u(α) be be as defined in the corresponding system Fas(M). Then for all α, β ∈
A∗, we have

(1) views
u(α) = ⊥viewa

u(α), and
(2) toa

u(α) = toa
u(β) implies tos

u(α) = tos
u(β), and

(3) itoa
u(α) = itoa

u(β) implies itos
u(α) = itos

u(β).

Proof. The proof for claim (1) is by induction on α. In the base case, we have
viewa

u(ǫ) = ǫ and views
u(ǫ) = ⊥, so the claim holds. Consider a sequence

α ∈ A∗ for which the claim holds, and let a ∈ A. We show that views
u(αa) =

⊥viewa
u(αa). There are two cases, depending on whether dom(a) = u.



1. If dom(a) = u, then we have views
u(αa) = views

u(α) a Ou(s′0 · αa) and
viewa

u(αa) = viewa
u(α) a out(s0 · α, a). The claim is now immediate from

the induction hypothesis and the fact that Ou(s′0 · αa) = out(s0 · α, a), by
construction of Fas(M).

2. If dom(a) 6= u, then we have views
u(αa) = views

u(α) ◦ Ou(s0 · αa). Let β

be the largest prefix of α ending in an action b with dom(b) = u, or, if no
such action exists, let β = ǫ. By construction of Fas(M), for all γ ∈ A∗

such that β ≤ γ ≤ αa we have Ou(s′0 · β) = Ou(s′0 · γ). Hence views
u(αa) =

views
u(α). By the induction hypothesis, we have views

u(α) = ⊥viewa
u(α),

and, since dom(a) 6= u, we have viewa
u(α) = viewa

u(αa). Thus, views
u(αa) =

⊥viewa
u(αa).

For part (2), we also proceed by induction. The base case of α = β = ǫ

is trivial. Consider sequences αa and β, where a ∈ A and the claim holds for
sequences of shorter combined length. Suppose that toa

u(αa) = toa
u(β). We have

to show tos
u(αa) = tos

u(β),

In case dom(a) 6֌ u, we have toa
u(αa) = toa

u(α), so toa
u(α) = toa

u(β). By the
induction hypothesis, we obtain tos

u(α) = tos
u(β). But, in this case tos

u(αa) =
tos

u(α), so we have tos
u(αa) = tos

u(β) as required.

Alternately, suppose dom(a) ֌ u. Then we cannot have β = ǫ. Let b be the
final action of β and write β = α′b. If dom(b) 6֌ u then we can swap the role of
αa and β and apply the previous case. Assume, therefore, that also dom(b) ֌ u.
Then by definition of toa, we obtain from toa

u(αa) = toa
u(α′b) that toa

u(α) =
toa

u(α′), and a = b. Moreover, we have either viewa
dom(a)(α) = viewa

dom(a)(α
′),

if dom(a) 6= u, or viewa
u(αa) = viewa

u(α′a), if dom(a) = u. In either case,
viewa

dom(a)(α) = viewa
dom(a)(α

′), so we get from part (1) that views
dom(a)(α) =

views
dom(a)(α

′). By the induction hypothesis, we have from toa
u(α) = toa

u(α′)

that tos
u(α) = tos

u(α′). Thus,

tos
u(αa) = (tos

u(α), views
dom(a)(α), a)

= (tos
u(α′), views

dom(a)(α
′), a)

= tos
u(α′a),

as required.

The argument for part (3) follows the same pattern as that for part (2).
We consider just the case of the inductive step for sequences αa and β. where
dom(a) ֌ u. Here, we may again assume that β = α′a. If we have itoa

u(αa) =
itoa

u(α′a), then it follows that itoa
u(α) = itoa

u(α′), and viewa
dom(a)(αa) =

viewa
dom(a)(α

′a). By the induction hypothesis, it follows that itos
u(α) = itos

u(α′).

By part (1), we may conclude that views
dom(a)(αa) = views

dom(a)(α
′a), which also

implies views
dom(a)(α) = views

dom(a)(α
′). Thus, in either case of dom(a) = u or

dom(a) 6= u, we have that itos
u(αa) = itos

u(α′a). ⊓⊔

We note that the converses to parts (2) and (3) of Lemma 3 do not hold in
general. Consider the system in Figure 3, where dom(l) = L and dom(h) = H



and we assume H 6֌ L. Here we have

tos
L(hl) = (tos

L(h), views
L(h), l)

= (tos
L(ǫ),⊥, l)

= (tos
L(ǫ), views

L(ǫ), l)
= tos

L(l) .

But
toa

L(hl) = (toa
L(h), viewa

L(hl), l)
= (toa

L(ǫ), l1, l)
= (ǫ, l1, l)

and
toa

L(l) = (toa
L(ǫ), viewa

L(l), l)
= (ǫ, l0, l)

so toa
L(hl) 6= toa

L(l). Similarly, itos
L(hl) = itos

L(l), but itoa
L(hl) = (ǫ, l1, l) 6=

(ǫ, l0, l) = itoa
L(l).

l/0 l/1,h/0

h/0

Fig. 3. A system showing inequivalence of toa (itoa) and tos (itos).

Lemma 4. The action-observed system M is TO-secure with respect to ֌ iff
Fas(M) is TO-secure with respect to ֌.

Proof. Throughout, we interpret toa, viewa with respect to M and ֌ and tos,
views with respect to Fas(M) and ֌.

Suppose first that M is TO-secure with respect to ֌. We claim the following:
for all α, β ∈ A∗, if tos

u(α) = tos
u(β) then (1) obsu(s′0 ·α) = obsu(s′0 ·β), and (2)

toa
u(α) = toa

u(β). The TO-security of Fas(M) with respect to ֌ then follows
immediately using part (1).

The proof of the claim is by induction on the combined length of α and β.
The base case of α = β = ǫ is trivial. Consider sequences αa, β with tos

u(αa) =
tos

u(β), where a ∈ A and the claim holds for sequences of shorter combined
length. We consider two cases, depending on whether dom(a) ֌ u.

1. Suppose dom(a) 6֌ u. Then tos
u(αa) = tos

u(α). Thus, since tos
u(αa) =

tos
u(β) we have tos

u(α) = tos
u(β). By the induction hypothesis, we have

(1) obsu(s′0 · α) = obsu(s′0 · β), and (2) toa
u(α) = toa

u(β). Now dom(a) 6֌ u

implies dom(a) 6= u, so by construction of Fas(M) we have obsu(s′0 · αa) =



obsu(s′0·α), and it follows that obsu(s′0·αa) = obsu(s′0·β). Finally, toa
u(αa) =

toa
u(α), so also toa

u(αa) = toa
u(β). This establishes (1) and (2) for the case

of sequences αa and β.
2. Suppose dom(a) ֌ u. Then tos

u(αa) = (tos
u(α), views

dom(a)(α), a). Thus, if

tos
u(αa) = tos

u(β), then β is not ǫ. Let b be the final action in β. If dom(b) 6֌
u then we may apply the previous case with the roles of αa and β swapped.
We may therefore assume that dom(b) ֌ u, and write β = α′b, so that
tos

u(β) = (tos
u(α′), views

dom(b)(α
′), b). It then follows from tos

u(αa) = tos
u(β)

that tos
u(α) = tos

u(α′), a = b and views
dom(a)(α) = views

dom(a)(α
′). From

the first of these, we obtain by the induction hypothesis that (1) obsu(s′0 ·
α) = obsu(s′0 · α′), and (2) toa

u(α) = toa
u(α′). From the last, we obtain by

Lemma 3 that viewa
dom(a)(α) = viewa

dom(a)(α
′). We now consider two subcases,

depending on whether dom(a) = u.
(a) If dom(a) = u, then we obtain from (2) and the TO-security of M

that out(s0 · α, a) = out(s0 · α′, a). It follows that (1′) obsu(s′0 · αa) =
out(s0 · α, a) = out(s0 · α

′, a) = obsu(s′0 · α
′a). Also, using (1′) and the

fact that viewa
dom(a)(α) = viewa

dom(a)(α
′), we get that viewa

dom(a)(αa) =

viewa
dom(a)(α) a out(s0·α, a) = viewa

dom(a)(α) a out(s0·α′, a) = viewa
dom(a)(α

′a).

Using this, we get (2′)

toa
u(αa) = (toa

u(α), viewa
dom(a)(αa), a)

= (toa
u(α′), viewa

dom(a)(α
′a), a)

= toa
u(α′).

(b) If dom(a) 6= u, then by (1) and construction of Fas(M), we get (1′)
obsu(s′0 · αa) = obsu(s′0 · α) = obsu(s′0 · α′) = obsu(s′0 · α′a). Also we
have (2′)

toa
u(αa) = (toa

u(α), viewa
dom(a)(α), a)

= (toa
u(α′), viewa

dom(a)(α
′), a)

= toa
u(α′a).

In either case, the statements (1′) and (2′) give what we require for the case
of sequences αa and α′a = β.

Conversely, suppose that Fas(M) is TO-secure with respect to ֌. We show
M is TO-secure with respect to ֌. Let α, β ∈ A∗ be sequences and a ∈ A such
that dom(a) = u and toa

u(α) = toa
u(β). We have to show out(s0 ·α, a) = out(s0 ·

β, a). By Lemma 3, we have tos
u(α) = tos

u(β). Since Fas(M) is TO-secure with
respect to ֌, this implies views

u(α) = views
u(β) — see [vdM07] for proof. Thus

(using the fact that dom(a) = u, we have tos
u(αa) = (tos

u(α), views
u(α), a) =

(tos
u(β), views

u(β), a) = tos
u(βa). By TO-security of Fas(M), construction of this

system, and the fact that dom(a) = u, we have out(s0 · α, a) = obsu(s′0 · αa) =
obsu(s′0 · βa) = out(s0 · β, a), as required. ⊓⊔

We have a similar result for ITO-security.

Lemma 5. The action-observed system M is ITO-secure with respect to ֌ iff
Fas(M) is ITO-secure with respect to ֌.



Proof. Throughout, we interpret action-observed notions with respect to M and
state-observed notions with respect to Fas(M).

Suppose first that Fas(M) is ITO-secure with respect to ֌. To show that
M is ITO-secure with respect to ֌, consider an agent u, sequences α, β ∈ A∗

such that itoa
u(α) = itoa

u(β), and an action a with dom(a) = u. We show that
out(s0 · α, a) = out(s0 · β, a). Now, by Lemma 3 part (3), we have itos

u(α) =
itos

u(β). By ITO-security of Fas(M), this implies that views
u(α) = views

u(β).
(The proof is a simple induction.) Since dom(a) = u, we obtain that itos

u(αa) =
(itos

u(α), views
u(α), a) = (itos

u(β), views
u(β), a) = itos

u(βa). Using ITO-security
and definition of Fas(M), it follows that out(s0 · α, a) = obsu(s′0 · αa) =
obsu(s′0 · βa) = out(s0 · β, a), as required.

Conversely, suppose that M is ITO-secure with respect to ֌. We claim
that for all α, β ∈ A∗ and agents u, if itos

u(α) = itos
u(β) then itoa

u(α) =
itoa

u(β). The ITO-security of Fas(M), i.e., the fact that itos
u(α) = itos

u(β)
implies obsu(s′0 · α) = obsu(s′0 · β) then follows from the fact that itoa

u(α) =
itoa

u(β) implies obsu(s′0 · α) = obsu(s′0 · β). For, since M is ITO-secure, we
have by a simple induction that itoa

u(α) = itoa
u(β) implies that viewa

u(α) =
viewa(β). In particular, the last output from an action in domain u (or ⊥ if there
is no such action) obtained in the sequence α is identical to the last such output
(or ⊥) obtained in the sequence β. But these values are equal to obsu(s′0 · α)
and obsu(s′0 · β), respectively, so must be identical.

To prove the claim, we proceed by induction on the combined length of α

and β. The base case is trivial. Consider sequences αa and β where the claim
holds for shorter sequences, and suppose itos

u(αa) = itos
u(β).

First, if dom(a) 6֌ u, then itos
u(α) = itos

u(αa) = itos
u(β), so itoa

u(α) =
itoa

u(β), by the inductive hypothesis. Since itoa
u(αa) = itoa

u(α), this implies
itoa

u(αa) = itoa
u(β).

In case dom(a) ֌ u, we obtain that β is not ǫ, so may write β = α′b for some
b ∈ A. If dom(b) 6֌ u we may apply the previous case, so we may assume that
dom(b) ֌ u. It now follows from itos

u(αa) = itos
u(α′a) that itos

u(α) = itos
u(α′)

and either views
dom(a)(α) = views

dom(a)(α
′) (if dom(a) = u), or views

dom(a)(αa) =

views
dom(a)(α

′a) (otherwise). Further, we have from itos
u(αa) = itos

u(α′a) by

ITO-security of Fas(M) that obsu(s′0 · αa) = obsu(s′0 · α′a). Thus, in fact we
also have views

dom(a)(αa) = views
dom(a)(α

′a) in the case where dom(a) = u. By

Lemma 3, we obtain that viewa
dom(a)(αa) = viewa

dom(a)(α
′a). Since itos

u(α) =

itos
u(α′), we have by the induction hypothesis that itoa

u(α) = itoa
u(α′). It

follows that itoa
u(αa) = itoa

u(α′a), as required. ⊓⊔

This completes the proof of Theorem 3.

5 Unwinding and Access Control

Rushby [Rus92] proves a number for results concerning IP-security: soundness
for a proof method called unwinding, and that a particular class of systems –
access control systems consistent with a policy – are IP-secure. These results



are improved in [vdM07] where it is shown that unwinding is in fact sound and
complete for the stronger notion of TA-security, and that with an intuitive change
to the definition of access control system, there is also a close correspondence
between TA-security and a system’s interpretability as an access control system.

The improved results are established in [vdM07] only for the state-observed
model, whereas Rusbhy discusses versions of his results for both state and action-
observed systems. He proves the state-observed version by reference to a modifi-
cation of the (partially automated in PVS) proofs for the action-observed version.
In this section, we show that the translation of the previous section provides a
way to transfer the improved results from state to action-observed systems.

5.1 State-Observed Unwinding

We begin by recalling the relevant definitions and results for state-observed
systems.

Suppose we have for each domain u an equivalence relation ∼u on the states of
M . If M is a state-observed system, we say the family {∼u}u∈D is an unwinding
with respect to ֌ if it satisfies the following conditions.

OC: If s ∼u t then obsu(s) = obsu(t). (Output Consistency)

SC: If s ∼u t then s · a ∼u t · a. (Step Consistency)

LR: If dom(a) 6֌ u then s ∼u s · a. (Left Respect)

Proposition 2. ([GM84] and [Rus92]) A system M is P-secure with respect to
the transitive policy ֌ iff there exists an unwinding on M with respect to ֌.

For intransitive noninterference Rushby introduces the following condition:

WSC: If s ∼u t and s ∼dom(a) t then s · a ∼u t · a. (Weak Step Consistency)

Define a weak unwinding on a system M with respect to a policy ֌ to be a
family of relations ∼u, for u ∈ D, satisfying OC,WSC and LR.

Given a system M = 〈S, s0, step, obs, dom〉 with actions A, define the “un-
folded” system ufs(M) = 〈S′, s′0, step

′, obs′, dom〉 with actions A having the
same domains as in M , by S′ = A∗, s′0 = ǫ, step′(α, a) = αa, and obs′u(α) =
obsu(s0 ·α), where s0 ·α is computed in M . Intuitively, this construction unfolds
the graph of M into an infinite tree. Then we have the following.

Theorem 4. ([vdM07]) M is TA-secure with respect to ֌ iff there exists a
weak unwinding on ufs(M) with respect to ֌.

We remark that bisimulation does not preserve existence of a weak unwinding
(see [vdM07] for an example), so it turns out that the reference to ufs(M) cannot
be replaced by M in this result.



5.2 Action-observed Unwinding

We now turn to a consideration of action-observed versions of unwinding and
access control, showing that the results of the previous subsections can be carried
across to the state-observed domain by means of the transformation of Section 4.

Let M be an action-observed system. Suppose we have for each domain u an
equivalence relation ∼u on the states of M . We say the family {∼u}u∈D is an
action-observed weak unwinding with respect to ֌ if it satisfies WSC, LR and

OCa: if s ∼u t and dom(a) = u then out(s, a) = out(t, a).

The definition of unfolding for action-observed systems is the expected: if
M = 〈S, s0, A, step, out, dom〉, then the unfolding ufa(M) = 〈S′, s′0, A, step′, out′, dom〉
where

1. S′ = A∗,
2. s′0 = ǫ,
3. step′(α, a) = αa,
4. out′(α, a) = out(s0 · α, a).

We then have the following characterization of TA-security using unwinding,
mirroring Theorem 4.

Theorem 5. Let M be an action-observed system. Then M is TA-secure iff
there exists an action-observed unwinding ∼ on ufa(M).

The proof uses the following lemmas. For the following, define the reachable
fragment of a system M = 〈S, s0, step, out, dom〉 to be the system reach(M)
obtained from M by restricting the set of states to the reachable states S′ = {s0 ·
α | α ∈ A∗} (and restricting each of the other components accordingly). Define
two systems M = 〈S, s0, step, out, dom〉 and M ′ = 〈S′, s′0, step

′, out′, dom′〉 to
be isomorphic if they have the same set of actions A, dom = dom′, and there
exists a bijection ι : S → S′ such that ι(s0) = s′0, and for all states s ∈ S and
actions a, we have ι(step(s, a)) = step′(ι(s), a) and out(s, a) = out′(ι(s), a).

Lemma 6. If M is an action-observed system, then ufs(Fas(M)) is isomorphic
to reach(Fas(ufa(M))).

Proof. For each α ∈ A∗, let fα : D → O∪{⊥} be the function such that (s0, f0) ·
α = (s0·α, fα) in Fas(M). Note that states of ufs(Fas(M)) have the form α ∈ A∗,

and observations are determined by obs
ufs(Fas(M))
u (α) = obs

Fas(M)
u ((s0, f0)·α) =

fα(u).
Since the states of ufa(M) have the form α ∈ A∗, the states of Fas(ufa(M))

have the form (α, f) where f : D → O ∪ {⊥}. In fact, we claim that for each α

there is a unique f such that (α, f) is reachable in Fas(ufa(M)), viz., f = fα.
The proof of this is by induction on the length of α. The case of α = ǫ is
trivial. Suppose now that (αa, f) is reachable in Fas(ufa(M)), where α ∈ A∗

and a ∈ A. By construction and the induction hypothesis, it can only be reached



by a path in which the final step is (α, fα) ·a = (αa, f). Hence f = fα[dom(a) 7→
outufa(M)(α, a)] = fα[dom(a) 7→ outM (s0 · α, a)] = fα.

It is now straightforward to check that the mapping ι mapping A∗ to the
states of Fas(ufa(M)), defined by ι(α) = (α, fα), is an isomorphism from ufs(Fas(M))
to reach(Fas(ufa(M))). It is plainly a bijection, and we have ι(ǫ) = (ǫ, fǫ) =
(s0, f0). For the transitions, ι(α · a) = ι(αa) = (αa, fαa) = (α, fα) · a = ι(α) · a.

For the observations, we have obs
Fas(ufa(M))
u (ι(α)) = obs

Fas(ufa(M))
u ((α, fα)) =

fα(u) = obs
ufs(Fas(M))
u (α). ⊓⊔

Say that an action-observed system M = 〈S, s0, next, out〉 is output-recording
if there exists a family of functions κu : S → O ∪ {⊥} for u ∈ D, such that

1. κu(s0) = ⊥,
2. if dom(a) = u then κu(s · a) = out(s, a),
3. if dom(a) 6= u then κu(s · a) = κ(s).

Intuitively, this says that the state records the most recent output obtained in
each domain. Note that the system ufa(M) is action-recording for each action-
observed system M .

Lemma 7. Let M be an action-observed system.

1. If there exists an action-observed weak unwinding on M then there exists a
state-observed weak unwinding on Fas(M) (hence on reach(M)).

2. If M is output-recording and there exists a state-observed weak unwinding
on Fas(M) (reach(Fas(M))) then there there exists an action-observed weak
unwinding on M (reach(M)).

Proof. Suppose that {∼a
u}u∈D is an action-observed unwinding on M . Define the

relations ∼s
u on the states of Fas(M) by (s, f) ∼s

u (t, g) if s ∼a
u t and f(u) = g(u).

We show that this gives a weak unwinding on Fas(M). It is plain that ∼s
u is an

equivalence relation.

1. OCs: Suppose that (s, f) ∼s
u (t, g). Then obsu((s, f)) = f(u) = g(u) =

obsu((t, g)) by definition.
2. WSC: Suppose (s, f) ∼s

u (t, g) and (s, f) ∼s
dom(a) (t, g). From the former we

obtain s ∼a
u t and f(u) = g(u). From the latter, we obtain s ∼a

dom(a) t. Since

∼a is a weak unwinding, we get from this that out(s, a) = out(t, a). Also,
we have by WSC that s ·a ∼a

u t ·a. By the above, f [dom(a) → out(s, a)](u) =
g[dom(a) → out(s, a)](u). This shows that (s, f) · a ∼s

u (t, g) · a.
3. LR: Suppose dom(a) 6֌ u. Then because ∼a

u is an unwinding, we have s ∼a
u

s · a. Since we must have dom(a) 6= u, we have f [dom(a) 7→ out(s, a)](u) =
f(u). Hence (s, f) ∼a

u (s · a, f [dom(a) 7→ out(s, a)]) = (s, f) · a.

For part (2), suppose that M is output recording, witnessed by the functions
κu. Let ∼s be a state-observed weak unwinding on Fas(M) (resp. reach(Fas(M))).
Define the relations ∼a

u on the states of M (resp. reach(M)), for u ∈ D, by
s ∼a

u t if (s, fs) ∼s
u (t, ft), where for a state s the function fs : D → O ∪ {⊥}



is defined by fs(u) = κu(s). Note that it follows from the properties of κ that
if s is reachable then so is (s, fs), so this is well-defined in case ∼s is an un-
winding just on reach(Fas(M)). It also follows from the properties of κ that
(s, fs) · a = (s · a, fs·a).

We show that ∼a is an action-observed unwinding on M .

1. OCa: Suppose that s ∼a
u t and let a ∈ A with dom(a) = u. By definition

of ∼a, we have (s, fs) ∼s
u (t, ft). Since ∼s is a weak unwinding, we have by

WSC that (s, fs) · a ∼s
u (t, ft) · a, i.e.

(s · a, fs[dom(a) 7→ out(s, a)]) ∼s
u (t · a, ft[dom(a) 7→ out(s, a)]),

hence, by OCs, we obtain that

fs[dom(a) 7→ out(s, a)](u) = ft[dom(a) 7→ out(s, a)](u),

i.e., out(s, a) = out(t, a).
2. WSC: Suppose that s ∼a

u t and s ∼a
dom(a) t. By definition, (s, fs) ∼s

u (t, ft)

and (s, fs) ∼s
dom(a) (t, ft). Thus, by WSC for ∼s, we have (s, fs)·a ∼s

u (t, ft)·a,

i.e., (s · a, fs·a) ∼s
u (t · a, ft·a). This means that s · a ∼a

u t · a, as required for
WSC for ∼a.

3. LR: If dom(a) 6֌ u, then by LR for ∼s, we have (s, fs) ∼s
u (s, fs) · a =

(s · a, fs·a). By definition, we obtain s ∼a
u s · a, as required for LR for ∼a.

⊓⊔

To prove Theorem 5, we may now note that the following are equivalent:

1. The action-observed system M is TA-secure;
2. The state-observed system Fas(M) is TA-secure (by Theorem 3);
3. there exists a (state-observed) unwinding on ufs(Fas(M)) (by Theorem 6);
4. there exists a (state-observed) unwinding on reach(Fas(ufa(M))) (by Lemma 6);
5. there exists an (action-observed) unwinding on ufa(M) (by Lemma 7, the

fact that ufa(M) is action-recording, and the fact that reach(ufa(M)) =
ufa(M)).

5.3 State-Observed Weak Access Control Systems

Weak access control systems are a class of systems, introduced in [vdM07], modi-
fying a definition from [Rus92], that gives semantic content to the Bell-La Padula
model. In this subsection, we recall a result from [vdM07], relating state-observed
weak access control systems to TA-security. The following subsection develops
an action-observed version of this result.

A system with structured state is a machine 〈S, s0, A, step, obs, dom〉 together
with

1. a set N of names,
2. a set V of values, and functions



3. contents : S × N → V , with contents(s, n) interpreted as the value of
object n in state s,

4. observe : D → P(N), with observe(u) interpreted as the set of objects
that domain u can observe, and

5. alter : D → P(N), with alter(u) interpreted as the set of objects whose
values domain u is permitted to alter.

For a system with structured state, when u ∈ D and s is a state, write ocu(s) for
the function mapping observe(u) to values, defined by ocu(s)(n) = contents(s, n)
for n ∈ observe(u). Intuitively, ocu(s) captures all the content of the state s that
is observable to u. Using this, we may define a binary relation ∼oc

u of observable
content equivalence on S for each domain u ∈ D, by s ∼oc

u t if ocu(s) = ocu(t).
The following conditions express that the machine operates in accordance

with the intuitive interpretations of this extra structure:

RM1. If s ∼oc

u t then obsu(s) = obsu(t) .
RM2 ′. For all actions a, states s, t and names n ∈ alter(dom(a)), if s ∼oc

dom(a)

t and contents(s, n) = contents(t, n) we have contents(s·a, n) = contents(t·
a, n).
RM3. If contents(s · a, n) 6= contents(s, n) then n ∈ alter(dom(a)).

The first of these says that an agent’s observation depends only on the values of
the objects observable to the agent. The condition RM2 ′ says that the the value
contents(s ·a, n) may depend both on contents(s, n) and ocdom(a)(s). This is a
weakening of a similar condition RM2 used by Rushby, which did not allow the
dependence on contents(s, n). The third says that if an action can change the
value of an object, then the agent of that action is in fact permitted to alter that
object. We define a system with structured states to be a weak access control
system if it satisfies conditions RM1,RM2 ′, and RM3.

Finally, we consider the condition:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u ֌ v.

Intuitively, this says that the ability to write to a value that an agent can observe
counts as a way to interfere with that agent.

We also introduce a related notion on systems without structured states,
that expresses that the system behaves as if it were an access control system.
Say that a system M with states S admits a weak access control interpretation
consistent with ֌ if there exists a set of names N , a set of values V and functions
observe : D×S → P(N) , alter : D×S → P(N) and contents : N ×S → V ,
with respect to which M is a weak access control system satisfying the condition
AOI.

The following result extends Theorem 4, and shows that there is a close
correspondence between TA-security, weak access control interpretations, and
weak unwindings.

Theorem 6. The following are equivalent



1. M is TA-secure with respect to ֌,
2. ufs(M) admits a weak access control interpretation consistent with ֌,
3. there exists a weak unwinding on ufs(M) with respect to ֌.

In some special cases, access control interpretability is also sufficient for TO-
security. Say that a system with structured states is fully observable if in all
states s we have obsu(s) = ocu(s). Note that this means that the relations ∼oc

u

and ≈obs

u coincide.

Corollary 1. If M is a fully observable weak access control system consistent
with ֌ then M is TO-secure with respect to ֌.

5.4 Action-Observed Weak Access Control Systems

We now develop an action-observed version of the result of the previous subsec-
tion on the equivalence between acccess control interpretability and TA-security.

Define an action-observed weak access control system, to be an action ob-
served system with structured state (defined exactly as for state-observed sys-
tems), that satisifies conditions RM2 ′, RM3 and the following variant of RM1:

RM1a. If s ∼oc

u t and dom(a) = u then out(s, a) = out(t, a) .

Compatibility of such a system with a policy ֌ is defined exactly as in the
state-observed case.

The following results show that it is possible to transfer an access control
interpretation of a system from action- to state-observed systems and vice-versa.

Proposition 3. Let action-observed system M have a weak access control in-
terpretation compatible with ֌. Then Fas(M) has a weak access control inter-
pretation compatible with ֌.

Proof. Let the system M , together with the set of names N and functions
(alter, observe, contents) be an weak access control system compatible with
֌. We define a set of names N ′ and functions (alter′, observe′, contents′)
that make Fas(M) a weak access control system. Specifically,

1. N ′ = N ∪D (we assume that N ∩D = ∅; if not, rename N to make this the
case).

2. alter′(u) = alter(u) ∪ {u} for all u ∈ D,
3. observe′(u) = observe(u) ∪ {u} for all u ∈ D,
4. for all states (s, f) of Fas(M)

(a) contents′((s, f), n) = contents(s, n) for n ∈ N ,
(b) contents′((s, f), u) = f(u) for u ∈ D .

We check that this is a weak access control interpretation compatible with ֌.
For RM1, suppose that (s, f) ∼oc

u (s′, f ′). Since u ∈ observe′(u), we must
have contents′((s, f), u)) = contents′((s′, f ′), u)), i.e. f(u) = f ′(u). By con-
struction of Fas(M), this means obsu((s, f)) = obsu((s′, f ′)).



For RM2 ′, suppose that m ∈ alter(u) and contents′((s, f), m) = contents′((s′, f ′), m)
and (s, f) ∼oc

dom(a) (s′, f ′). Let g = f [dom(a) 7→ out(s, a)] and g′ = f ′[dom(a) 7→

out(s′, a)], so that (s, f)·a = (s·a, g) and (s′, f ′)·a = (s′·a, g′). From (s, f) ∼oc

dom(a)

(s′, f ′) we deduce that s ∼oc

dom(a) s′ (with respect to observe). The conclu-

sion from contents′((s, f), m) = contents′((s′, f ′), m) depends on whether
m ∈ N or m = u. If m ∈ N then we have contents(s, m) = contents(s, m),
and by the fact we have a weak access control interpretation on M , we have
contents(s · a, m) = contents(s′ · a, m), which implies that contents′((s, f) ·
a, m) = contents′((s′, f ′) · a, m). If m = u then we have f(u) = f ′(u). There
are now two possibilities: either dom(a) = u or dom(a) 6= u. If dom(a) = u then
by RM1a, and the fact that s ∼oc

dom(a) s′ we have that out(s, a) = out(s′, a). Thus

contents′((s, f)·a, m) = g(u) = out(s, a) = out(s′, a) = g′(u) = contents′((s′, f ′)·
a, m). If dom(a) 6= u then contents′((s, f) · a, m) = g(u) = f(u) = f ′(u) =
g′(u) = contents′((s′, f ′) · a, m). Thus, in each case we have contents′((s, f) ·
a, m) = contents′((s′, f ′) · a, m), as required for RM2 ′.

For RM3, suppose that m 6∈ alter(dom(a)). There are two possibilities, de-
pending on whether m ∈ N or m ∈ D. If m ∈ N then we have contents(s ·
a, m) = contents(s, m) by the weak access control structure on M . This implies
contents′((s, f) · a, m) = contents′((s, f), m). Alternately, if m = u ∈ D, then
we have dom(a) 6= u, and contents′((s, f) · a, u) = f [dom(a) 7→ out(s, a)](u) =
f(u) = contents′((s, f), u), also as required.

For compatibility with ֌, suppose that observe′(u) ∩ alter′(v) 6= ∅. This
could be because u = v, so u ∈ observe′(u)∩alter′(v), but in this case u ֌ u by
reflexivity. On the other hand, if u 6= v, then we have observe′(u)∩alter′(v) =
observe(u)∩alter(v) 6= ∅, so u ֌ v by the fact that the access control struture
on M is compatible with ֌. ⊓⊔

We remark that a weak access control interpretation on a system M yields
a weak access control interpretation on reach(M), simply by restriction of all
functions to the set of reachable states.

Proposition 4. Let M be an output-recording action-observed system, such that
Fas(M) (or reach(Fas(M))) has a (state-observed) weak access control interpre-
tation compatible with ֌. Then M (respectively, reach(M)) has a weak access
control interpretation compatible with ֌.

Proof. We first note that if a state-observed system has a weak access control in-
terpetation given by the set of names N and functions (alter, observe, contents),
then there exists such an interpretation with the property that observe(u) ⊆
alter(u). This can be seen by inspecting the construction given in Proposi-
tion 11 of [vdM07], which has this property. Suppose that we have such a weak
access control interpretation on Fas(M).

Let κ : S → be the witness to the fact that M is output-recording. As in
Lemma 7, for s a state of M define fs : D → O ∪ {⊥} by fs(u) = κu(s). Then
the transition function of Fas(M) satisfies (s, f) · a = (s · a, fs·a).

We define an access control structure on M with the same set of names
N , the same functions alter and observe, but function contents′ defined by



contents′(s, n) = contents((s, fs), n). We show that this gives a weak access
control interpetation on M compatible with ֌. The compatibility is trivial from
the compatibility of the access control structure on Fas(M), since we have used
the same function observe and alter.

For RM2 ′, suppose that n ∈ alter(dom(a)), contents′(s, n) = contents′(s′, n)
and s ∼oc

u s′. Then by definition, we have contents((s, fs), n) = contents′(s, n) =
contents′(s′, n) = contents((s′, fs′), n). Similarly, (s, fs) ∼oc

u (s′, fs′). By RM2 ′

for Fas(M), we obtain that contents((s · a, fs·a), n) = contents((s, f) · a, n) =
contents((s′, f ′) · a, n) = contents((s′ · a, fs′·a), n). This yields contents′(s ·
a, n) = contents′(s′ · a, n), as required.

We now use the conclusion of the previous paragraph to obtain RM1a. Sup-
pose that s ∼oc

u s′ and let dom(a) = u. Since we have assumed that observe(u) ⊆
alter(u), it follows by RM2 ′ that s · a ∼oc

u s′ · a. By definition, this means that
(s · a, fs·a) ∼oc

u (s′ · a, fs′·a). By RM1 for Fas(M), we have obsu((s · a, fs·a)) =
obsu((s′ · a, fs′·a)). That is, out(s, a) = fs·a(u) = fs′·a(u) = out(s′, a), as re-
quired for RM1a on M .

For RM3, suppose n 6∈ alter(dom(a)). By RM3 on Fas(M), we have contents((s·
a, fs·a), n) = contents((s, fs)·a, n) = contents((s, fs), n). That is, contents′(s·
a, n) = contents′(s, n), as required.

The argument from a weak access control structure on reach(Fas(M)) to
one on reach(M) is identical: we just need to note that if s is a reachable state
of M then (s, fs) is a reachable state of Fas(M), by the properties of κu. ⊓⊔

We now obtain that the following are equivalent:

1. M is TA-secure with respect to ֌,
2. Fas(M) is TA-secure with respect to ֌, (by Theorem 5)
3. there exists a (state-observed) weak access control interpretation on ufs(Fas(M))

consitent with ֌, (by Theorem 6),
4. there exists a (state-observed) weak access control interpretation on reach(Fas(ufa(M)))

consistent with ֌, (by Lemma 6),
5. there exists an (action-observed) weak access control interpretation on ufa(M)

consistent with ֌ (by Proposition 3, Proposition 4, the fact that ufa(M) is
output-recording, and the fact that reach(ufa(M)) = ufa(M)).

Thus, we have the following result, analogous to Theorem 6.

Theorem 7. Let M be an action-observed system. The following are equivalent:

1. M is TA-secure with respect to ֌,
2. ufa(M) admits a weak access control interpretation consistent with ֌,
3. there exists a weak unwinding on ufa(M) with respect to ֌.

6 A Comparison with Roscoe and Goldsmith

As already mentioned above, Roscoe and Goldsmith [RG99] (RG) have also
proposed alternative definitions of intransitive noninterference. In this section
we compare their definitions to those discussed above.



One impediment to a direct comparison is that RG work in the context of the
process algebra CSP, which provides a rather different semantic basis for their
definitions. Amongst the differences is that CSP makes no distinction between
actions and observations. Nevertheless, RG aim to deal with a class of systems
with observation-like events, but need to handle this through a variant of their
main definition.

CSP provides an algebraic process notation based in an alphabet Σ. The
elements of Σ are called “actions” in the literature, but to distinguish them
from actions as in our state-machine model, we call them “events”. From this
basis, together with some special atomic processes such as Stop (a process which
does nothing), the algebra is built up from operations including a → P (do event
a first, then follow with the behaviour of process P ), P ⊓Q (nondeterministically
choose between doing P or Q), P ||X Q (run processes P and Q in parallel, with
events in X required to synchronise) and P \ X (run process P , but hide any
events in X).

In order to apply CSP to a security setting, RG assume the existence of a
partition Π on Σ. They suppose that ֌ is a binary relation on Π . Thus, Π

corresponds to the set of security domains and the elements of U ∈ Π correspond
to the sets of events visible in domain U . In order to define whether a process is
secure, they first introduce two operators on processes P :

1. the lazy abstraction operator L taking as an additional argument a set X of
events, defined by

LX(P ) = (P ||X ChaosX) \ X

2. the mixed abstraction operator M, taking as additional arguments sets of
events X and S, defined by

MS
X(P ) = (P ||X\S ChaosX\S) \ X

Here ChaosX is the process defined by

ChaosX = (⊓a∈X a → ChaosX) ⊓ Stop.

That is, ChaosX presents either a finite number of events from X and stops,
or presents an infinite number of events from X . The intuition for the lazy
abstraction LX(P ) is that it represents the view of a user that is able to interact
with the system P only through events X , on the assumption that the behaviour
of the other users, who may control any of the events X , is unknown. The mixed
abstraction MS

X(P ) is intended to deal with situations where the events in S

are “signal” events that are visible to, but not under the control of the users.
Here, the signal events of the other users represented by X are still hidden from
the view, but are not under the control of the process ChaosX\S , so cannot be
blocked.

There are several semantics for the CSP process notation. The semantics
most appropriate for use with the abstraction operators to give a definition of
security is the stable-failures semantics (see [Ros97] for discussion of this point).



(a → P )
a

−→ P P ⊓ Q
τ

−→ P P ⊓ Q
τ

−→ Q

P
a

−→ P ′, a 6∈ X

P ||X Q
a

−→ P ′ ||X Q

Q
a

−→ Q′, a 6∈ X

P ||X Q
a

−→ P ||X Q′

P
a

−→ P ′, Q
a

−→ Q′, a ∈ X

P ||X Q
a

−→ P ′ ||X Q′
Stop ||X Stop

τ
−→ Stop

P
a

−→ Q, a ∈ X

P \ X
τ

−→ Q \ X

P
a

−→ Q, a 6∈ X

P \ X
a

−→ Q \ X

Fig. 4. Operational semantics for CSP

This can be conveniently stated in conjunction with an operational semantics
for processes in terms of the space of labelled transition systems.

Labelled transition systems over an alphabet of events Σ are tuples of the
form L = 〈S, s0,→〉, where S is a set of states, s0 is an initial state, and →⊆
S × (Σ ∪ {τ}) × S is a transition relation on S with edges labelled from the
alphabet Σ or by a special event τ representing an internal transition of the
system. We write s

a
−→ t when (s, a, t) ∈→. A run of L is a sequence r = s0

a1−→

s1
a2−→ . . .

an−→ sn. The corresponding trace of r is the sequence a1 . . . an with any
occurrences of τ deleted. The run r is stable if there does not exist an internal
transition from sn, i.e., for no state t do we have s

τ
−→ t. A failure in an LTS L

is a pair (σ, X) where σ is a trace and X is a subset of Σ such that there exists
a stable run r of L with trace σ and final state s such that for no a ∈ X is there
a state t such that s

a
−→ t. We write traces(L) for the set of traces of L and

failures(L) for the set of failures of L. Process terms can be associated with a
labelled transition system by the rules in Figure 4. Given a process term P , the
stable failures semantics of P is the pair (traces(L), failures(L)) where L is
the LTS associated to P .

A CSP process P is deterministic if for all σ ∈ traces(P ) and all c ∈ Σ,
it is not the case that both σc ∈ traces(P ) and (σ, {c}) ∈ failures(P ). RG
similarly define a process P to be locally deterministic in a set C of events, if for
all σ ∈ traces(P ) and all c ∈ C, it is not the case that both σc ∈ traces(P )
and (σ, {c}) ∈ failures(P ). Intuitively, this says that if c is possible after a run
with trace σ, then all stable runs with trace σ can be extended by c.

RG’s definition of security is now given as follows. Given the partition Π of
Σ, a policy ֌⊆ Π × Π and an element U of Π , the set noflow(V ) is defined
to be the union of the sets of events V ∈ Π such that V 6֌ U .

Definition 5. A pair (P, Π) consisting of a process P and a partition Π of its
alphabet is L-secure with respect to ֌ if Lnoflow(U)(P ) is locally deterministic in
U for all U ∈ Π.

Intuitively, L-security says that for all domains U ∈ Π , the possibility of
events U depends only on the past observed events from Σ \ noflow(U), and



cannot be affected by the behaviour of the processes that are not permitted to
communicate directly with U (as modelled by Chaosnoflow(U)).

RG also allude to a definition based on the mixed abstraction operator, but
do not give a formal statement.3 We assume here that what is meant is the
following:

Definition 6. (P, Π) is MS-secure (where S is a set of signals), if MS
noflow(U)(P )

is locally deterministic in U for all U ∈ Π.

In order to compare our definitions on state and action-observed systems with
these definitions for CSP, we need to translate between these semantic domains.
We choose here to translate our systems models to CSP, since the latter seems
to be more general. However, as shown in [MZ06] there are several plausible
candidates for a security-preserving translation between state-based models and
process algebraic models.

We begin with a consideration of mappings from state-observed systems.
Suppose we are given a state-observed system M = 〈S, s0, A, step, obs, dom〉
with set of domains D and observations O. Given an agent u, write Ou for the
set of possible observations of agent u, i.e., Ou = {obsu(s) | s ∈ S}. As noted
above, we may assume without loss of generality that if u 6= u′ then Ou and Ou′

are disjoint.
Our first translation constructs a pair T1(M) = (L1(M), Π(M)) consisting

of an LTS L1(M) and a partition Π(M) over the alphabet A ∪ O. The LTS
L1(M) = 〈S, s0,→〉 has the same states and initial state as M , and transition

relation defined by s
x

−→ t if either x ∈ A and t = s · x or x ∈ O and s = t and
obsu(s) = x for some u ∈ D. That is, we add self-looping transitions to each
state for each of the observations that are made in these states. The partition
Π(M) consists of the the sets Eu = Au ∪ Ou for u ∈ D. Thus, both the actions
and observations of domain u are treated as events of a domain in T1(M). This
translation, in effect, makes the observations optional in T1(M), whereas they
compulsory in M — note that we have treated them so in the definition of the
functions viewu. However, exactly this approach to translation has been shown
to yield exact correspondences for a range of security definitions in [MZ06]. The
intuition for these correspondences is that a system is insecure if it is possible
for a user to obtain enough information to deduce a secret, so the possibility
of observations is all that needs to be preserved in a translation. It is therefore
appropriate to investigate the impact of this translation for the RG definitions.

We also need to translate policies ֌⊆ D×D into RG’s format. This is done
by defining T1(֌) = {(Eu, Ev) | u ֌ v}.

The following result of RG (Theorem 1 in [RG99]) gives a simpler charac-
terization of L-security that will be useful in what follows. If σ is a sequence of
events and X is a set of events, write σ \ X for the subsequence of events in σ

that are not in X .

3 They say only “Given a subset S of events of the alphabet of P that are signals, it
is clear how to define a corresponding notion using mixed abstraction”, and confine
their attention for the rest of the paper to the lazy abstraction.



Proposition 5. If P is deterministic, then (P, Π) is secure with respect to ֌ iff
for all domains U ∈ Π and σ, σ′ ∈ traces(P ), if σ\noflow(U) = σ′\noflow(U)
then for all c ∈ U , σc ∈ traces(P ) iff σ′c ∈ traces(P ).

We can then obtain the following correspondence:

Proposition 6. T1(M) is L-secure with respect to T1(֌) iff M is P-secure with
respect to ֌.

Proof. It is easily seen that L1(M) is deterministic, so we we may apply Propo-
sition 5 to T1(M). We first assume that M is not P-secure with respect to
֌, and show that T1(M) is not L-secure with respect to T1(֌). By assump-
tion, there exist α, α′ ∈ A∗ and u ∈ D such that purgeu(α) = purgeu(α′) but
obsu(s0 · α) 6= obsu(s0 · α′). Note that α and α′ are both traces of T1(M), and
α \ noflow(Eu) = purgeu(α) = purgeu(α′) = α′ \ noflow(Eu). We also have
that α obsu(s0 · α) ∈ traces(T1(M)) but not α′ obsu(s0 · α) ∈ traces(T1(M)).
Since obsu(s0 · α) ∈ Eu it follows that T1(M) is not L-secure with respect to
T1(֌).

Conversely, suppose that T1(M) is not L-secure with respect to T1(֌). By
way of witness for this fact, let σc and σ′ be traces of T1(M), where σ′c is
not a trace, σ \ noflow(Eu) = σ′ \ noflow(Eu), and c ∈ Eu. Note first that
whenever σ is a trace and a ∈ A, then σa is also a trace. Since σ′c is not a
trace, we must have c ∈ Ou. Define α to be the subsequence of σ consisting of
actions in A and similarly let α′ be the subsequence of actions in σ′. Note that
purgeu(α) = α\noflow(Eu) = (σ \ (noflow(Eu))\O and similarly for σ′, so we
obtain that purgeu(α) = purgeu(α′). Since all the transitions in T1(M) labelled
from O are self-loops, we have that αc and α′ are traces of T1(M), but not α′c.
It follows that obsu(s0 · α) = c 6= obsu(s0 · α′), so α and α′ provide a witness
showing that M is not P-secure with respect to ֌. ⊓⊔

Thus, on this translation, RG’s definition says that a system is secure if ob-
servations in a domain u depend only on the actions that have been performed
in domains permitted to interfere with u — although the events in such domains
also contain observations, no dependence on these observations is allowed. How-
ever, there seem to be some intuitive grounds that RG’s definitions are intended
to allow such dependencies.

This suggests that we should also consider the mixed abstraction, which is
designed to deal with “signal events”, for which the intuition seems to be similar
to observations. It would seem that we should take S, the set of signal events,
to be equal to O. One immediate obstacle to such an application of the mixed
abstraction to T1(M), however, is that the self-loops for the observations in this
process generate τ -transitions (in fact, divergences, i.e. infinite sequences of τ

transitions) in the mixed abstraction at every state, so that the process has no
stable failures. Roscoe [Ros97](p. 307) stipulates that the mixed abstraction is
inapplicable to such processes.

We therefore would need another translation to be able to apply the mixed
abstraction to state-observed systems. If we are to capture any dependencies



on observations, moreover, the translation should treat observations as obliga-
tory rather than optional. How to define a translation that achieves this is far
from clear. The divergence-causing self-loops, or something like them, seem to
be necessary to capture the asynchronous nature of observation in the state-
observed model. Consider a transition from state s to state t on action a,
where the observations made by the agents A, B, . . . are obsA(t) = oA and
obsB(s) = obsB(t) = oB , . . .. One way we could represent this in the LTS is by
means of a sequence of transitions

s
a

−→ (s, a, A)
oA−→ (s, a, B)

oB−→ . . . t.

However, there is then the risk of the translation failing because the occurrence
of the event oB would signal to B that someone has performed an action, even if
dom(a) 6֌ B. To avoid this, we need that the event oB is continuously available
between states s and t. This seems to require a construction that will cause
divergences in the abstraction.

It therefore does not seem that the mixed abstraction is applicable to any
class of processes that can model state-observed systems. We therefore turn
instead to a consideration of a translation from the action-observed model, which
the CSP theory seems better suited to handle.

Suppose we are given an action-observed system M = 〈S, s0, A, step, out, dom〉
with domains D and observations O. As above, we assume without loss of gen-
erality that the sets Ou = {out(s, a) | s ∈ S, a ∈ A, dom(a) = u} of possible
observations of agents u ∈ D are disjoint. Our second translation constructs a
pair T1(M) = (L3(M), Π(M)) consisting of an LTS L3(M) and a partition Π(M)
over the alphabet A ∪ O. The LTS L3(M) = 〈S′, s0,→〉 has

– States S′ = S ∪ S × A,
– initial state s0,
– transition relation defined by s

x
−→ t if either

• s ∈ S, x ∈ A and t = (s, x), or
• s = (z, a) ∈ S × A and x ∈ O and t = z · a ∈ S and x = out(z, a).

That is, we represent the occurrence of action a in state s with output o to
dom(a) by means of a sequence of two transitions:

s
a

−→ (s, a)
o

−→ s · a.

As above, the partition Π(M) consists of the the sets Eu = Au ∪Ou for u ∈ D.
We define T2(֌) to be identical to T1(֌).

The following relates MO-security to our notions of security on action-
observed machines.

Proposition 7. Let M be an action-observed machine with observations O.
Then T2(M) is MO-secure with respect to T2(֌) iff M is ITO-secure.

Proof. For u ∈ D, write nf(u) for
⋃

v 6֌u Av ∪ Ov. Note that this is precisely

noflow(Eu). We prove that T2(M) is MO-secure with respect to T2(֌) iff for all



u ∈ D and for all sequences α, α′ ∈ A∗ with trace(α)\nf(u) = trace(α′)\nf(u)
and a ∈ Au we have out(s0 · α, a) = out(s0 · α′, a). By Proposition 1, this is
equivalent to ITO-security.

Suppose first that there exist sequences α, α′ and a ∈ Au such that trace(α)\
nf(u) = trace(α′)\nf(u) but out(s0·α, a) 6= out(s0·α′, a). We show MO

nf(u)(T2(M))

is not locally deterministic. Let r be a run of T2(M) ||nf(u)\O Chaosnf(u)\O in
which the first component has trace trace(α)a and the second component offers
actions from nf(u) as needed to coordinate with this behavior of the first com-
ponent, and then proceeds to Stop. Let r′ be a run similarly constructed with
respect to α′. Then, at the end of r, the first component is in state (s0 · α, a),
so the only event enabled is out(s0 ·α, a), and similarly for the second run with
respect to out(s0 ·α′, a). Both runs generate the trace σ = trace(α)a \ nf(u) of
MO

nf(u)(T2(M)). The first gives that σ out(s0 ·α, a) is a trace of MO
nf(u)(T2(M))

and the second gives that (σ, {out(s0 ·α, a)}) is a failure. Hence MO
nf(u)(T2(M))

is not MO-secure.
Conversely, suppose that T2(M) is not MO-secure. By way of witness, let σ

be a trace of MO
nf(u)(T2(M)) and c ∈ Eu be an event such that σc is a trace of

this process but (σ, {c}) is a failure. Note that any trace must be a sequence of
alternating actions and observations in Eu. Thus, if c ∈ Au, then either σ = ǫ

or the final event in σ is an observation. This means that at the end of any run
with trace σ, the first process in the composition T2(M) ||nf(u)\O Chaosnf(u)\O

must be in a state s ∈ S. But this means that c ∈ Au is enabled at s, so (σ, {c})
cannot be a failure. We must therefore have that c ∈ Ou and that the last event
of σ is an action a ∈ Au. Let r be a run of T2(M) ||nf(u)\O Chaosnf(u)\O that can
be extended by the event c and similarly let r′ be a run giving rise to the failure
(σ, {c}). Define αa and α′a to be the sequences trace(r) \ O and trace(r′) \ O

in A∗, respectively. Then at the end of runs r and r′, the first process in the
composition must be at the states (s0 ·α, a) and (s0 ·α′, a), respectively. It follows
that c = out(s0 · α, a) 6= out(s0 · α′, a) since these are the only events available
at these states. Since trace(α) \ nf(u) = σ = trace(α′) \ nf(u), this provides a
witness showing that the condition of the characterization is false.

This result shows that the meaning of RG’s definitions is sensitive to how one
chooses to model systems. Whereas, on our first translation, L-security corre-
sponds to P-security on both state and action observed systems, on this second
translation, the more general notion of MO-security corresponds to the weaker
notion of ITO-security.

7 Conclusion

We have established several correspondences between a range of definitions of in-
transitive noninterference based in several different semantic models of systems:
state-observed state-machines, action-observed state-machines, and the process
algebra CSP. The notions of P-security, TO-security, ITO-security, TA-security
and IP-security as defined on action-observed systems correspond directly to



the similarly named notions as defined on state-observed systems, under a natu-
ral transformation from the action-observed to the state-observed domain. RG’s
notions of security on CSP processes correspond either to P-security or ITO-
security, depending on which of two natural mappings from state-machines to
CSP one uses.

Our results have left open a number of questions. In dealing with state- and
action observed systems, we confined our attention to deterministic systems. It
remains to explore the generalization of the definitions we have considered to
nondeterministic systems and systems that are not input-enabled, as has been
studied for IP-security by von Oheimb [Ohe04]. His work should be reconsid-
ered in the light of our results. More generally, one could consider extensions of
these definitions to the richer semantic framework of process algebra. We have
shown some specific correspondences with RG’s definitions under our mappings
of deterministic state- and action-observed machines, but it would also be of
interest to give definitions in the process algebraic setting that correspond to
the other definitions of noninterference we have discussed. A deeper exploration
of the question raised above concerning the interpretability of the state-observed
model in a process algebraic setting would also be of interest.

A starting point of RG’s work was difficulties that they had in treating the
specific example of downgraders using IP-security. We have not attempted to
address this particular example in our work, so also leave open this issue of
pragmatics and applications for the spectrum definitions we have studied.

However, the correspondence between MO-security and ITO-security on
action-observed systems brings out a point that may not have been apparent
from RG’s presentation: in a chain such as H ֌ D ֌ L, according to MO-
security, the mere fact that D has observed information about H is sufficient
for L to be permitted to know this information. In particular, anything that
D learns from the observation out(s, a) obtained as a result of performing the
action a is permitted by MO-security to have been transmitted to L without
further activity by D.

If one considers this behaviour insecure, we note that it would be even more
pronounced in any CSP modelling of state-observed systems, where it would be
possible for D to observe consequences of H actions without performing any
actions. Here, H could maintain security of the system by sending information
directly to L, but ensuring that this information is simultaneously reflected in
D’s observations. This may amount to an intuitive notion of security if D’s ability
to audit information flows from H to L is of primary concern, but it would not
correspond to a policy that requires D to control such information flows. We
note that both TA-security and IP-security permit D to transmit information
to L that D has not observed, so are even more permissive than MO-security
in this regard. Indeed, RG’s treatment of downgraders is based on L-security
(equivalent to the strongest notion of P-security) but needs to make some very
strong assumptions, viz. that the content being downgraded is encoded in the
name of the action.



To better understand these definitions, it would be very helpful to have a set
of worked examples to clarify the circumstances under which the use of each is
appropriate, as well as to elucidate the role that they might play in the derivation
of other desirable properties of systems. For the specific case of downgraders,
recent work of Chong and Myers [CM04], Mantel and Sands [MS04], Bossi et al
[BPR04] and Sabelfeld and Sands [SS05] is of relevance.
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