
A Comparison of Semantic Models for

Noninterference ?

Ron van der Meyden a,b, Chenyi Zhang a,b

aSchool of Computer Science and Engineering, University of New South Wales
bNational ICT Australia, Sydney, Australia

Abstract

The literature on definitions of security based on causality-like notions such as non-
interference has used several distinct semantic models for systems. Early work was
based on state-machine and trace-set definitions; more recent work has dealt with
definitions of security in two distinct process algebraic settings. Comparisons be-
tween the definitions has been carried out mainly within semantic frameworks. This
paper studies the relationship between semantic frameworks, by defining mappings
between a number of semantic models and studying the relationship between notions
of noninterference under these mappings.

1 Introduction

“Noninterference” is a term loosely applied in the literature to a class of for-
mal security properties motivated from considerations of information flow and
causality. Since it was invented in [GM82], several distinct schools have pro-
duced a variety of generalizations of the original notion, each based on their
own approach to modelling systems. Existing definitions of noninterference
can be roughly classified by whether they are framed in the semantic context
of state-based automaton models [GM82, WJ90, Mil90, Rus92, BY94, vO04],
trace-based models [McC88, McL94, ZL97, Man00], or process algebraic based
models (further divisible into CSP [Hoa85] and CCS [Mil89] based variants)
[FG01, Ros95, Rya01].

There have been a number of survey works and studies of the relationships
between these definitions in the individual schools [Rya01, FG01] but, on

? National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council

Preprint submitted to Elsevier 9 October 2008

the whole, comparisons have been carried out within rather than across se-
mantic frameworks. This leaves a somewhat unsatisfactory situation for the
potential users of this extensive literature. Noninterference originated as a
proposed formalisation of information flow security in operating systems ver-
ification, a topic that has been the subject of renewed interest in recent years
[vO04, GWvF03, MWTG00]. However, the formal systems models and defini-
tions of security used in this area, and others, tend to be based on state-based
rather than trace-based or process algebraic formalisms. (While the conceptual
parsimony of process algebraic models is convenient for theoretical purposes,
it is a disadvantage for the purpose of modelling complex systems.) It re-
mains unclear just what is the significance of the process algebraic work on
noninterference for the application originally motivating this area of research.

In this paper, we attempt to bridge some of the gaps between semantic models
by considering the relationships between the various classical semantic mod-
els and some of the proposed notions of noninterference. We consider three
types of models: two automaton-like models (introduced in Section 2) and a
process algebraic framework (discussed in Section 5). The semantic intuitions
underlying these frameworks are somewhat different. The automaton models
have notions of “action” and of “observation”, the latter being a function of
state in one case and associated to actions in the other. The process algebraic
framework is seemingly more general, but diverges from the intuitions of the
automaton models in that it treats both actions and observations uniformly
as “active”. It is desirable to precisely understand the relationship between
these frameworks. We address this question by defining formal mappings (see
Sections 4 and 5) between the semantic frameworks. We study whether a vari-
ety of definitions of noninterference (introduced for the automaton models in
Section 3 and for the process algebraic framework in Section 5) in the different
frameworks correspond under these mappings. In particular, we identify two
distinct transformations from an automaton theoretic framework to a CCS-like
process algebraic framework. Both seem to capture reasonable idioms for the
representation of the automaton-theoretic notions of action and observation
in process algebra.

Our results show that for several of the definitions of noninterference in the lit-
erature (viz. “nondeducibility on inputs” and “nondeducibility on strategies”),
similarly named and motivated definitions in the two automaton-theoretic
frameworks and the process algebraic framework do correspond under the
translations between these semantic frameworks. This gives a formal justifica-
tion for the common naming and gives the user of older automaton theoretic
definitions confidence that the process algebraic literature has not superseded
older approaches in cases where an automaton-based modelling is adequate
for the purposes of the application. Moreover, the fact that this correspon-
dence holds under two different mappings from automata to process algebra
shows that there is some flexibility in how we can understand automaton-based

2

modellings from a process algebraic perspective.

However, matters are significantly more subtle for several other definitions of
security, viz McCullough’s restrictiveness [McC88] and Bevier and Young’s
notion of Behavioral Nondeterministic Security [BY94]. Both are based on
a notion of McCullough unwinding on systems. Behavioral Nondeterministic
Security is closest to the definitions of security that have been used in the
literature on information flow in operating systems. This notion has been
considered neither in the literature on action-observed systems, nor in process
algebra, so one of the contributions of the paper is to define versions of this
notion in these semantic settings.

For both restrictiveness and Behavioral Nondeterministic Security we find that
while definitions of these notions in the two automaton-theoretic frameworks
coincide directly, for only one of our two translations from automata to process
algebra does there exists a definition of restrictiveness in the process algebraic
literature that corresponds under the translation. (For restrictiveness, we also
find a correspondence under this translation to “strong bisimulation-based
nondeducibility on compositions” [FG01].) However, we are able to develop a
novel process algebraic notion of unwinding, which we call weak McCullough
unwinding and show that it yields new notions of security in the process al-
gebraic setting corresponding precisely to restrictiveness and Behavioral Non-
deterministic Security on automata under the second translation.

Our results highlight some differences in the understanding of action and ob-
servation in automata and process algebra. The automaton model treats ob-
servations as obligatory, and not under the control of the agent: an agent
cannot avoid making an observation. On the other hand, a common under-
standing of process algebra treats all events of an agent as under their control.
The definition of weak unwinding is stated in a way that effectively treats ob-
servations as not under the causal control of the observing agent. In defining
Behavioral Nondeterministic Security in the process algebraic setting, we also
need to make sense of the notion of an agent’s “most recent observation” in
ways that depend on the translation being used: in one case observations in
the automaton theoretic model are mapped to potential observations in the
process algebraic mode, in the other we need a notion of “most recent observa-
tion” that includes the agents most recent action. Our results show that there
are, indeed, some subtleties that need to be considered very carefully when
modelling a system in process algebra for purposes of a security analysis.

The structure of the paper is as follows. In section 2 we define the two state-
based semantic models we consider: state-observed and action-observed au-
tomata. Section 3 defines the range of security properties we study with re-
spect to each of these two semantic models. In section 4, we define mappings
between these two state-based models, and establish correspondences between

3

notions of security for these two models. Section 5 defines the process alge-
braic semantics we consider, and defines notions of security for this semantics
(including our new definitions for weak restrictiveness and Behavioural Nonde-
terministic Security in this setting), and shows how these notions correspond
to state-based notions of security under two different mappings from automata
to processes. We make some concluding remarks in Section 6.

2 State-Based Models

The original system models used in the literature on noninterference modelled
systems as a type of deterministic or nondeterministic automaton, with out-
puts for each of the security domains. Similarly to the Moore-Mealy distinction
for finite state automata, we find two types of models, depending on whether
outputs are associated to states [BY94] or actions [GM82, Rus92]. The original
definitions assumed deterministic systems, but the focus of subsequent work
has been on how to generalize the definitions to nondeterministic systems. In
general, these systems are input-enabled, in the sense that any action can be
taken at any time.

A nondeterministic action-observed state machine is a tuple of the form M =
〈S, s0, next, dom,A〉, where S is a set of states, s0 ∈ S is the initial state,
A is a set of actions, dom : A → D associates with each action a security
domain from the set of security domains D, and next : S × A → P(O × S)
is a transition function. Here O is a set of observations that can be made
when performing an action. Given a state s ∈ S, and an action a ∈ A, the set
next(s, a) is required to be non-empty. A tuple (o, t) ∈ next(s, a) intuitively
represents that on action a it is possible to make a transition from state s to
state t and produce output o. Such a machine is deterministic if next(s, a)
is a singleton for all states s and actions a. In this case, the function next
may be replaced by two functions step : S × A → S and out : S × A → O
such that next(s, a) = {(out(s, a), step(s, a))} to obtain the state machine
definition one finds, e.g., in [Rus92]. A run of an action-observed system is a
sequence r = s0(a1, o1)s1(a2, o2)s2 . . . (an, on)sn ∈ S((A× O)S)∗ such that for
all 1 ≤ i ≤ n, (oi, si) ∈ next(si−1, ai). A state s ∈ S is said to be reachable if
it occurs in some run. We write Mna for the set of all nondeterministic action-
observed state machines and Ma for the set of deterministic action-observed
state machines, where, in both cases, all states are reachable. 1

1 This restriction is of significance because the definitions and results below that
concern unfolding relations are sensitive to unreachable states. A system may always
be restricted to its reachable component, and this operation should, intuitively, not
have an impact on its security. Thus this restriction is without loss of generality.

4

A nondeterministic state-observed state machine is a tuple of the form M =
〈S, s0, next, obs, dom,A〉 where S is a set of states; s0 ∈ S is the initial state;
the function next : S × A → P(S) \ {∅} is a transition function, such that
next(s, a) defines the set of states to which it is possible to make a transition
when action a ∈ A is performed at a state s ∈ S; the function dom : A → D
associates a security domain with each action, and the function obs : S×D →
O describes the observation made in each state by each security domain. For
readability, we ‘curry’ the function obs by writing obsu(s) for obs(s, u) for
u ∈ D and s ∈ S. Such a state machine is deterministic if next(s, a) is a
singleton for all states s and actions a. In this case we may define a function
step : S×A → S by next(s, a) = {step(s, a)}. A run of a state-observed system
is a sequence r = s0a1s1a2s2 . . . ansn ∈ S(AS)∗ such that for all 1 ≤ i ≤ n,
si ∈ next(si−1, ai). (Here we omit representation of the observations since these
may be recovered using the function obs.) A state s ∈ S is said to be reachable
if it occurs in some run. We write Mns for the set of all nondeterministic
state observed machines, andMs for the set of all deterministic state-observed
machines where, in both cases, all states are reachable.

The most significant apparent difference between state and action observed
machines is that, in the former, all agents make an observation when an action
is performed, whereas in the latter, only the agent performing the action does
so. Since the execution model is asynchronous, this means that whereas in
action observed systems, other agents would, unless they themselves act, have
no knowledge that any agent has performed an action, they may come to have
this information in state observed systems even without acting. However, such
a situation would often be a reason for the system to be declared insecure. The
action-observed setting somewhat resembles the process algebraic setting of
[FG95] where agents have to perform actions to synchronise with the system to
achieve the effect of ‘observation’, but differs from it in that it bundles actions
together with observations whereas [FG95] has separate notions of ‘input’ and
‘output’ actions.

3 Security Properties on State-Based Models

We now recall from the literature a number of security properties in the two
types of state-based systems. We study the relationships between these prop-
erties in section 4.

5

3.1 Noninterference

Historically, one of the first information flow properties was (transitive) nonin-
terference [GM82, GM84], defined with respect to deterministic machines. We
base our discussion on the presentation of Rushby [Rus92], which has been
followed in many other works. Rushby defines both state-observed [Rus82]
and action observed [Rus92] systems, but treats them independently and
does not consider any direct relations between the two. The classical defini-
tions were cast in terms of security policies describing permitted information
flows between an arbitrary collection of agents. Much of the subsequent lit-
erature restricts attention to the policy L ≤ H with two agents High (H)
and Low (L), with information permitted to flow from Low to High but not
from High to Low. For uniformity, we also make this restriction here, and let
AH = {a ∈ A | dom(a) = H} and AL = {a ∈ A | dom(a) = L}.

As noted above, in both state-observed and action-observed deterministic sys-
tems, we have a function step : S × A → S to represent the deterministic
state evolution as a result of actions. To represent the result of executing a
sequence of actions, define the operation ◦ : S × A∗ → S, by s ◦ ε = s and
s ◦ (α · a) = step(s ◦ α, a) for s ∈ S, α ∈ A∗ and a ∈ A.

With respect to the simple policy L ≤ H, the definition of noninterference can
be described in terms of the operation purgeL : A∗ → A∗ on sequences of ac-
tions that restricts the sequence to the subsequence of actions of L. Intuitively,
the purged High actions are not allowed to lead to any effects observable to
L. This is formalised as follows in the definitions of noninterference following
[Rus92], one for each type of system.

Definition 3.1

(1) A system in Mna satisfies noninterference if it is deterministic and for
all α ∈ A∗ and a ∈ AL, we have out(s0 ◦ α, a) = out(s0 ◦ purgeL(α), a).
We write NIa for the set of such systems.

(2) A system in Mns satisfies noninterference if it is deterministic and if for
all α ∈ A∗, we have obsL(q0 ◦ α) = obsL(q0 ◦ purgeL(α)). We write NIs

for the set of such systems.

The definitions of noninterference in the two types of system are very similar.
We show below that they can be seen to be equivalent in a precise sense.

6

3.2 Nondeducibility on Inputs

One way of understanding the statement that H does not interfere with L
in a deterministic system is as stating that every sequence of H actions is
compatible with the actions and observations of L. This leads to the proposal
to take a similar notion as the formulation of noninterference in nondetermin-
istic systems: an approach known as nondeducibility [Sut86]. Nondeducibility
is defined in a quite general way, in terms of a pair of views of runs. We focus
here on a commonly used special case: Low’s nondeducibility of High’s actions.

We take an agent u’s view viewu(r) of a run r to be the maximal state of infor-
mation that it can have in an asynchronous system: its sequence of actions and
observations reduced modulo stuttering. We begin by extending the agent’s
observations to runs. In action observed systems we define the extended ob-
servation function Obsa

u : S((A × O)S)∗ → (AO)∗ for u ∈ D by Obsa
u(s) = ε

and

Obsa
u(r · (a, o) · s′) =





Obsa
u(r) · a · o if dom(a) = u

Obsa
u(r) otherwise.

Here, taking the stance that an agent is aware of each action that it performs
(so that if it performs an action twice, obtaining the same output, it knows that
it has performed the action twice) we do not need to apply a stuttering reduc-
tion, and take viewu(r) = Obsa

u(r). In state observed systems, the agent makes
an observation at each state, and we define Obss

u : S(AS)∗ → O+(AO+)∗ by
Obss

u(s) = obsu(s), and

Obss
u(δ · a · s) =





Obss
u(δ) · a · obsu(s) if dom(a) = u

Obss
u(δ) · obsu(s) otherwise.

Here the agent may make the same observation several times in a row, without
an intervening action by that agent. This indicates that another agent has
acted. To eliminate this timing-based reasoning, in order to make the definition
compatible with the assumption of asynchrony, we may take the view to be
viewu(r) = Cond(Obss

u(r)) where Cond is the function on sequences that
removes consecutive repetitions.

To state the definition of nondeducibility, we also require a function to extract
the sequence of actions performed by an agent. We write Actu(r) for the
sequence of actions performed by agent u in run r, and Act(r) the sequence
of all actions in r. We say that a sequence β is a possible view for agent u in
a system M if there exists a run r of M such that viewu(r) = β.

Definition 3.2 A system M satisfies Nondeducibility on Inputs if for every
α ∈ A∗

H , and every possible L view β in M , there exists a run r of M with

7

ActH(r) = α and viewL(r) = β. Write NDIs and NDIa for the set of systems
in Mns and Mna (respectively) satisfying nondeducibility on inputs.

3.3 Nondeducibility on Strategies

Wittbold and Johnson [WJ90] argued that systems classified as secure by
nondeducibility on inputs may nevertheless permit flows of information flow
from High to Low. They present a system in which by selecting its actions ac-
cording to a particular strategy, High may directly control Low’s observations.
They propose an alternate definition they call “nondeducibility on strategies”
which behaves more satisfactorily on the example.

The framework in which they work is synchronous state machines with simul-
taneous actions. Nevertheless, it is possible to formulate a similar definition in
the asynchronous models defined above. In state-observed systems, we define
an asynchronous High strategy to be a function π : O+(AHO+)∗ → AH ∪ {ε}
mapping each possible high view to a choice of High action or the “noop”
action ε. We say that a run s0a1s1 . . . ansn is consistent with π if dom(ai) = H
implies ai = π(viewH(s0a1s1 . . . ai−1si−1)), for each i = 1 . . . n. Similarly, in
action-observed systems, we define an asynchronous High strategy to be a
function π : (AHO)∗ → AH ∪{ε}. A run s0(a1, o1)s1 . . . (an, on)sn is consistent
with π if dom(ai) = H implies ai = π(viewH(s0(a1, o1)s1 . . . (ai−1, oi−1)si−1)).
Given a system M ∈ Mna or M ∈ Mns and a strategy π of the appropriate
type, define

AviewL(M , π) = {viewL(r) | r is an run of M consistent with π}.

Definition 3.3 M is secure wrt Nondeducibility on Strategies (written M ∈
NDSa or M ∈ NDSs, according as M ∈ Mna or M ∈ Mns) if for all High
strategies π, π′, AviewL(M , π) = AviewL(M , π′).

It has been shown that in synchronous systems with simultaneous inputs,
Nondeducibility on Strategies is strictly stronger than Nondeducibility on In-
puts. [WJ90] However in asynchronous systems this result does not hold, and
in fact we will show the two notions coincide. Before showing the results we
claimed, we need the following lemma.

Lemma 3.4 A system M ∈ Mna(Mns) is in NDIa(NDIs) iff every possible
L observation is consistent with ε ∈ A∗

H .

Proof: The ‘only if’ direction is trivial. For the ‘if’ direction, assume every
possible L view is consistent with ε and let β be a possible L view.

(1) If M ∈Mna, then let r be a run with viewL(r) = β and ActH(r) = ε. Then

8

for any α ∈ A∗
H , the run r′ which extends r by applying the sequence of

actions α from the end of r will be compatible with both α and β.
(2) If M ∈Mns, similarly let r be a run with viewL(r) = β and ActH(r) = ε.

For any α ∈ A∗
H , if we extend r by the sequence of actions α, every

H action in α will not cause any change of L’s observation, or it will
make the resulting view (which has L’s observation changing without an
L action being performed) inconsistent with ε. Thus, the extended run
will be compatible with both α and β.

2

Theorem 3.5 NDSa = NDIa and NDSs = NDIs.

Proof: To show NDS ⊆ NDI we show that if M 6∈ NDI then M 6∈ NDS.
By Lem. 3.4, M not in NDI implies there exists some possible L view β not
consistent with the sequence of H actions ε, so β is also not consistent with
the High strategy π defined by π(γ) = ε for all H views γ. So M is not in
NDS.

To show NDI ⊆ NDS, suppose the system is in NDI. Then every possible L
view β is consistent with ε ∈ H∗, i.e., there exists a run r with L view β and
H actions ε. By asynchrony, every H input could be delayed by the system,
so r is also a run consistent with any strategy π. This shows that for each π,
the set AviewL(M, π) consists of all possible views of L in M , and M ∈ NDS
follows. 2

A very similar result has previously been noted in a process algebraic setting
by Focardi and Gorrieri 2 . Thm. 3.5 could in fact be obtained as a consequence
of their results and translation results from state and action observed systems
that we present in section 5. Note that, by Wittbold and Johnson’s example
[WJ90], the equivalence does not hold in synchronous systems.

3.4 Unwinding-Like Properties

A number of the definitions in the literature on noninterference for nondeter-
ministic systems are closely related to the following notion, that was originally
motivated as a way of facilitating proofs of noninterference for deterministic
systems.

Definition 3.6 An unwinding relation for an action-observed deterministic

2 See [FG95] on p.20-21: Theorem 3.27 states NDCIT = NNIIT , and Corollary
3.29 states NNIIT = TNDI ∩ IT . The definition of TNDI resembles that of NDI,
and the definition of NDCIT resembles that of NDS.

9

system M ∈ Ma is an equivalence relation ∼L on the states of M satisfying
the following conditions, for all states s, t and actions a: 3

• Output Consistencya: if a ∈ AL and s ∼L t then out(s, a) = out(t, a);
• Locally Respects: if a ∈ AH then s ∼L step(s, a);
• Step Consistency: if a ∈ AL and s ∼L t then step(s, a) ∼L step(t, a).

An unwinding relation for a state-observed deterministic system M ∈ Ms is
an equivalence relation satisfying Locally Respects, Step Consistency, and the
following variant of Output Consistency.

• Output Consistencys: if s ∼L t then obsL(s) = obsL(t).

We note that unwinding relations are sensitive to the behavior of systems on
unreachable parts of the state space. Since it is not reasonable that security
of a system should depend on unreachable states, as stated before, we recall
that we assume that all systems have been restricted to their reachable states.

The relationship between unwinding conditions and noninterference is given
by the following classical results:

Theorem 3.7 [GM84, Rus92]

(1) If there exists an unwinding relation for a deterministic system M ∈Mna

(M ∈Mns), then M ∈ NIa (M ∈ NIs).
(2) If M ∈ NIa (M ∈ NIs) then there exists an unwinding relation for M .

Proof: A proof for action-observed system can be found in [Rus92]. For state
observed systems, the first part can be done by induction on the length n of

a run r = s0a1s1 . . . ansn. For the second part, similar to [Rus92], let
L∼ be the

relation such that s
L∼ t if for all α ∈ A∗, obsL(s ◦ α) = obsL(t ◦ α). Then

L∼
satisfies the unwinding relations if the system is secure. 2

The following is a natural generalization of Def. 3.6 to nondeterministic sys-
tems. (Note that Output Consistency has been incorporated into SC in the
unwinding relation for Mna.)

Definition 3.8 An unwinding relation for a system M ∈ Mna is an equiva-
lence relation ∼L on the states of M such that for all states s, s′, t, actions a,
and outputs o,

• LRa: if a ∈ AH and (o, t) ∈ next(s, a) then s ∼L t,

3 We present a slight modification of the usual definition, which would have an
equivalence relation ∼u for each agent u, satisfying a similar set of conditions for
each u. For the policy L ≤ H we can take ∼H to be the identity relation, which
automatically satisfies the necessary conditions.

10

• SCa: if a ∈ AL and s ∼L s′ and (o, t) ∈ next(s, a), then there exists a state
t′ such that (o, t′) ∈ next(s′, a) and t ∼L t′.

An unwinding relation for a system M ∈Mns is an equivalence relation satis-
fying

• OCs: if s ∼L t then obsL(s) = obsL(t).
• LRs: if a ∈ AH and t ∈ next(s, a) then s ∼L t,
• SCs: if a ∈ AL and s ∼L s′ and t ∈ next(s, a), then there exists t′ ∈

next(s′, a) such that t ∼L t′.

Several definitions of noninterference can be expressed in terms of this gen-
eralized notion of unwinding. Given the equivalence of noninterference and
the existence of an unwinding relation in deterministic systems (Thm. 3.7),
the following is a natural approach to the generalization of noninterference to
nondeterministic systems.

Definition 3.9 M ∈ Mna (M ∈ Mns) satisfies restrictiveness, written M ∈
RESa (M ∈ RESs), if there exists an unwinding relation for M .

The use of McCullough’s [McC88] term “restrictiveness” in this definition is
non-obvious. We justify it later when we discuss McCullough’s work in the
context of the process algebraic definitions treated in Section 5.

Whereas Def. 3.9 obtains a definition of noninterference by asserting that
some relation is an unwinding, we can also obtain a definition of security by
requiring that a particular relation is an unwinding. The following is essentially
from [BY94], and a similar definition is given in [vO04]. Definitions used in the
recent literature on formal verification of information flow security in operating
systems (e.g. [GWvF03, MWTG00]) are closely related, although these involve
other aspects such as scheduling that go beyond our present asynchronous
systems model.

Definition 3.10 M ∈ Mns satisfies Behavioral Nondeterministic Security
(M ∈ BNSs) if the relation ∼L on the states of M defined by s ∼L t if
obsL(s) = obsL(t) is an unwinding relation.

Intuitively, this definition says that L’s future observations depend only on
L’s current observation and L’s future actions. This is particularly appro-
priate when we interpret L’s observation as L’s complete state, and wish to
express that H is unable to interfere with this state. A related intuition in
action observed systems is that L’s future observations should depend only
on L’s most recent observation. The literature does not appear to contain any
such definition for action-observed systems, perhaps because states do not
necessarily encode the most recent observation. However, by means of a trans-
formation of the system we may obtain a behaviourally equivalent system in

11

which states do encode the information required.

Before describing the transformation, we note that we may use the follow-
ing standard notion to make precise the notion of behavioural equivalence.
Given M1,M2 ∈ Mna of the forms M1 = 〈S1, s

1
0, next1, dom, A〉 and M2 =

〈S2, s
2
0, next2, dom,A〉, a bisimulation is a relation ≈ ⊆ S1 × S2, such that if

s ≈ t and a ∈ A, then

• for all (o, s′) ∈ next1(s, a), there exists (o, t′) ∈ next2(t, a) such that s′ ≈ t′,
• for all (o, t′) ∈ next2(t, a), there exists (o, s′) ∈ next1(s, a) such that s′ ≈ t′.

Write M1 ≈ M2 if there exists a bisimulation satisfying s1
0 ≈ s2

0.

Bisimulation is generally thought to preserve all behavioral properties of a
system that are of interest. It seems reasonable that it should also preserve
security properties, but since security properties are neither safety nor live-
ness properties, our intuitions on this matter are somewhat less clear. 4 The
following result shows that that, at least in the case of RESa, our intuitions
are upheld.

Lemma 3.11 For M1,M2 ∈ Mna, if M1 ≈ M2 then M1 ∈ RESa iff M2 ∈
RESa.

Proof: It suffices to show that if M1 ≈ M2 and M1 ∈ RESa then M2 ∈ RESa.
Since M1 ∈ RESa, there exists an unwinding relation ∼1 on S1 satisfying SCa

and LRa. Define ∼2 on S2 by t1 ∼2 t2 if there exists s1, s2 ∈ S1 such that
s1 ∼1 s2, s1 ≈ t1 and s2 ≈ t2. To show ∼2 is reflexive, for every reachable
t ∈ S2, we have a run starting from s2

0 to t. By s1
0 ≈ s2

0, an induction on this
run leads us to a state s ∈ S1 with s ≈ t. Then t ∼2 t is by s ∼1 s. ∼2

is both symmetric and transitive since ∼1 is symmetric and transitive. It is
straightforward to show ∼2 is an unwinding relation on S2.

• To show SCa, let t1 ∼2 t2 and (o, t′1) ∈ next2(t1, a) for some a ∈ AL. By
definition there exist s1, s2 ∈ S1 such that s1 ∼1 s2, s1 ≈ t1 and s2 ≈ t2.
Then there exists (o, s′1) ∈ next1(s1, a) such that s′1 ≈ t′1. From s1 ∼1 s2

there exists (o, s′2) ∈ next1(s2, a) such that s′1 ∼1 s′2. Then from bisimulation
there exists (o, t′2) ∈ next2(t2, a) such that s′2 ≈ t′2, and we have all that is
required to establish t′1 ∼2 t′2.

• To show LRa, for any reachable state t ∈ S2, there exists a sequence of
transitions from s2

0 to t. From s1
0 ≈ s2

0, we prove by induction that there
exists a sequence of transitions from s1

0 to a state s ∈ S1 and s ≈ t. Then
for all a ∈ AH with (o, t′) ∈ next(t, a), there exists (o, s′) ∈ next(s, a) such
that s′ ≈ t′. From ∼1 satisfies LRa we have s ∼1 s′. This gives the result

4 See [vdM07] for an example where an apparently sensible security property is not
preserved under bisimulation.

12

t ∼2 t′ as required.

2

We now define a transformation of action-observed systems that ensures that
states encode the most recent observation made by each agent.

Definition 3.12 Let UF : Mna → Mna be the unfolding function such that
for each M = 〈S, s0, next, A, dom〉 the system UF (M) is the restriction of the
system 〈S ′, s′0, next′, A, dom〉 to its set of reachable states, where

• S ′ = S × (D → O ∪ {ε0});
• s′0 = (s0, f0) where f0 is the function with f0(u) = ε0 for all u ∈ D
• next′ : S ′×A → P(O×S ′) is defined as next′((s, f), a) = {(o, (s′, f [dom(a) 7→

o])) | (o, s′) ∈ next(s, a)}.

Here ε0 is a special output denoting no ‘real’ output has been observed to this
moment. We use the notation f [u 7→ o] for the function g that is identical to
f except that g(u) = o.

The intuition of this mapping is that it introduces an extra component in
the state that remembers the most recent output for each agent. (The price
is to blow up the state space for all these observational possibilities.) This
information is extractable by the functions lastobsu : S ′ → O defined by
lastobsu((s, f)) = f(u) for (s, f) ∈ S ′ and u ∈ D. We may now give a definition
of Behavioural Nondeterministic Security on action observed systems that
captures the intuition that L behaviour should depend only on L’s most recent
observation.

Definition 3.13 M ∈ Mna satisfies Behavioral Nondeterministic Security
(M ∈ BNSa) if on UF (M) the relation ∼L defined by s ∼L t if lastobsL(s) =
lastobsL(t) is an unwinding relation.

It is not difficult to see that UF (M) and M are bisimilar. As argued above, it
is a reasonable intuition that definitions of security should be preserved under
bisimulation, so a test for security of system M stated in terms of UF (M)
seems justifiable. Indeed, it also follows that if M1 and M2 are bisimilar then
so are UF (M1) and UF (M2), which further supports this claim.

We now consider how these unwinding-based definitions of security are related:

Proposition 3.14 The following inclusions are proper: BNSa ⊂ RESa ⊂
NDIa and BNSs ⊂ RESs ⊂ NDIs.

Proof:

(1) To see that BNSa ⊆ RESa, note that if M ∈ BNSa then there exists an

13

s0

l → 0,h → 0

s1

l → 0,h → 0

s2

l → 1,h → 1

l → 0 l → 0

s0

s1

l → 0,h → 0

s2

l → 1,h → 0

l → 0 l → 1
h → 0

M1 M2

Fig. 1. Systems distinguishing BNSa, RESa and NDIa

unwinding relation on UF (M), thus UF (M) ∈ RESa. It is obvious that
M ≈ UF (M), so M ∈ RESa by Lemma 3.11.

To show the difference between BNSa and RESa, we have the sys-
tem M1 with S = {s0, s1, s2} and the transition function next(si, h) =
{(0, si)} for i = 0, 1, 2, next(s0, l) = {(0, s0), (0, s1), (0, s2)}, next(s1, l) =
{(0, s1)} and next(s2, l) = {(1, s2)}. Clearly M1 ∈ RESa but M1 6∈ BNSa

(because the possibility of an L observation of 1 is not uniquely deter-
mined when the last L observation is 0). Thus RESa 6⊆ BNSa.

That RESa ⊆ NDIa is also obvious. Suppose β ∈ (AO)∗ is a possible
L observation, then there is a run r producing β. Arbitrarily adding or
deleting any H action at any state s in r results a state s′ with s ∼ s′,
from which we can prove by induction on length of β that s′ is able to
produce any L observation that s can do. After deleting all actions from
H, we get β consistent with ε ∈ A∗

H .
The inclusion is proper: to show this we have the system M2 with S =

{s0, s1, s2} and the transition function next(s0, h) = {(0, s1)}, next(si, h) =
{(0, si)} for i = 1, 2, next(s0, l) = {(0, s1), (1, s2)}, next(s1, l) = {(0, s1)}
and next(s2, l) = {(1, s2)}. It is obvious M2 ∈ NDIa (because any se-
quence of h actions can always be placed after any sequence of l actions)
but M2 6∈ RESa (because a h action at s0 affects whether L is able to
observe 1), so NDIa 6⊆ RESa.

(2) For state-observed systems, from Fsa, Fas introduced in Section 4 pre-
serves all the security properties we have defined in this paper, we simply
apply Fsa to get the above inclusion results on state observed systems,
and apply Fas to translate the counterexamples into the state-observed
case.

2

The following result shows that these notions are in fact generalizations of
noninterference on deterministic systems.

14

s0 s1 s2
l → 0 l → 0

h → 0 h → 0 h → 0, l → 1

Fig. 2. A deterministic example in RESa but not in BNSa

Proposition 3.15 On deterministic systems, the notions NIa(NIs), NDIa(NDIs)
and RESa(RESs) are equivalent.

Proof: Since RESs ⊆ NDIs, to prove NIs = NDIs = RESs on Ms, we only
need to show

(1) NDIs ∩ Ms ⊆ NIs. Suppose M ∈ NDIs ∩ Ms. Then for every possible
action sequence α ∈ A∗, there exists a run r ∈ S(AS)∗ with Act(r) = α.
Let its low observation viewL(r) be β. Then from Lem. 3.4, β is consistent
with empty H input, so there exists a run r′ with viewL(r′) = β and
ActH(r′) = ε, i.e., Act(r′) = purgeL(α). From M ∈ Ms, r and r′ are the
unique runs for the action sequences α and purgeL(α). Since they have
the same L view, they agree on the last observation which is obsL(s0◦α) =
obsL(s0 ◦ purgeL(α)).

(2) NIs ⊆ RESs. Suppose M ∈ NIs. Then M is deterministic and from
Thm. 3.7, there exists an unwinding relation ∼L for NIs, which can be
taken to be the unwinding relation for RESs.

Similar results on action-observed systems can be derived from the translation
results of Section 4. 2

We remark that the containment BNSa ⊂ RESa is proper in deterministic
systems. For an example of this, define M = 〈S, s0, step, out, dom,A〉 by S =
{s0, s1, s2}, A = {l, h} with dom(h) = H and dom(l) = L, O = {0, 1}. The
functions step and out are defined by

• step(si, h) = si and out(si, h) = 0 for i = 0, 1 and 2,
• step(s0, l) = s1 and out(s0, l) = 0,
• step(s1, l) = s2 and out(s1, l) = 0,
• step(s2, l) = s2 and out(s2, l) = 1.

See Figure 2.

15

4 Transformations Between State-Based Models

We now turn to our main interest in this paper, which is to study the relation-
ship between security properties defined over different semantic models. For
this, we require translations between the two types of models. The intuition
underlying the two models introduced above, that agents can both act on and
observe their environment is the same, and the modelling of the dynamics of
actions is very closely related. Thus, the major issue in translation is how to
deal with the observations. To transform action observed systems into state
observed systems is not too difficult: the essence has already been introduced
in the unfolding construction used for BNSa (Definition 3.12), and we need
only modify this construction by erasing observations from the transitions.

Definition 4.1 Let Fas : Mna → Mns be the translation function such that
for each M = 〈S, s0, next, A, dom〉, if UF (M) = 〈S ′, s′0, next′, A, dom〉 and
lastobsu : S ′ → O are the associated mappings to observations O, we have
Fas(M) = 〈S ′, s′0, next′′, obs, A, dom〉, where

next′′(s, a) = {t | (o, t) ∈ next′(s, a)}

and obs(s, u) = lastobsu(s).

The range of Fas is a proper subset of Mns, because in any Fas(M), for any
u, v ∈ D, u can not modify v’s observation before v gives any input. It is plain
that if M is deterministic, then so is Fas(M), so also Fas : Ma →Ms.

It is also possible to translate state observed systems to action observed sys-
tems. An apparent obstacle, however, is that whereas in action-observed sys-
tems, an action gives a new observation only to the agent performing the
action, an action in a state-observed system may also give a new observation
to others. In the following definition, we handle the need to model these ad-
ditional effects by mapping the state observations to potential observations,
that would be obtained if the agent were to look at the state. Thus, we define
a translation that equips each agent u with a new action looku that enables
the agent to obtain its observation from the current state, without changing
that state.

Definition 4.2 Let Fsa : Mns →Mna be the function such that for each M =
〈S, s0, next, obs, A, dom〉, we have Fsa(M) = 〈S, s0, next′, A′, dom′〉, where:

(1) A′ = A ∪ {looku | u ∈ D},
(2) next′ : S × A′ → P(O × S) is defined by

(a) next′(s, a) = {(o, t) | t ∈ next(s, a) ∧ o = obsdom(a)(t)} for a ∈ A,
(b) next′(s, looku) = {(obsu(s), s)} for u ∈ D,

(3) dom′ = dom ∪ {〈looku, u〉 | u ∈ D}.

16

We note that this translation produces a system with significantly more runs
and views than the original state-observed system. This comes about because
agents may, by failing to perform a look action, omit to make an observation
they would have made in the state-observed system, or may perform a look
action multiple times in the same state. The former, in particular, means that
there exist runs in which agents have a “state of information” that would not
have occurred in the state observed system. We would not expect, therefore,
that all ‘information theoretic’ properties will be preserved by these transla-
tions. However, we may prove that the properties discussed above correspond
under the translations:

Theorem 4.3 Let P be any of the properties NI, NDI, NDS, BNS, RES.
Then

(1) for all M ∈Mna, we have M ∈ Pa iff Fas(M) ∈ Ps, and
(2) for all M ∈Mns, we have M ∈ Ps iff Fsa(M) ∈ Pa.

Proof: If P is NI, then we have NIa(NIs) coincides NDIa(NDIs) given
M ∈ Ma(Ms) from Prop. 3.15. If P is NDS, the result follows using Thm.
3.5. For the rest of the properties,

If P is NDI:

(1) We first show M ∈ NDIs iff Fsa(M) ∈ NDIa. From Lem. 3.4, we only
need to show all possible L views in M are consistent with ε ∈ A∗

H iff
possible L views in Fsa(M) are consistent with ε ∈ A∗

H .
For the ‘if’ part, let Fsa(M) ∈ NDIa and let β ∈ O+(ALO+) be a

possible L view on M . We need to show that β is consistent with ε ∈ A∗
H .

There exists a run r of M with viewL(r) = β. Note that in r, every
transition t ∈ next(s, a) with a ∈ AH , has obsL(s) = obsL(t). Otherwise
if we map r to Fsa(M) and insert lookL actions at each state encountered,
we get a run r′ of Fsa(M) such that viewL(r′) contains a subsequence
(lookL o) (lookL o′) with o 6= o′. Then viewL(r′) is inconsistent with ε ∈
A∗

H , which contradicts Fsa(M) ∈ NDIa.
Assume β ∈ O(ALO)∗ is a possible L view of M and let r0 = s0a1s1 . . . ansn

be a run of M with viewL(r0) = β. By Def. 4.2, Fsa(M) has the same
state space. Mapping r0 to Fsa(M) and adding an initial lookL action, we
obtain a run r1 = s0(lookL, o0)s0(a1, o1)s1 . . . (an, on)sn of Fsa(M), where
each oi = obsdom(ai)(si). Taking xi ≥ 0 to be the index of the i-th action by
L in this sequence, we have viewL(r1) = (lookL, o0)(ax1 , ox1) . . . (axm , oxm).
In addition, obsL(sxj

) = obsL(sxj+1) = . . . = obsL(sxj+1−1) = oxj
for all

0 ≤ j ≤ m. So it is obvious viewL(r1) = lookL ·β. Since Fsa(M) ∈ NDIa,
viewL(r1) is consistent with ε ∈ A∗

H , so there exists a run r2 of Fsa(M)
with viewL(r′2) = viewL(r1) and ActH(r2) = ε. We may write

r2 = s0(lookL, o0)s0(ax1 , o1)s
′
1 . . . (axm , om)s′m.

17

Again by Def. 4.2, we map r2 to M as r3 = s0ax1s
′
1 . . . axms′m. It is clear

that viewL(r3) = β and ActH(r3) = ε.
For the ‘only if’ part, suppose M ∈ NDIs and let β ∈ ((AL∪{lookL})O)∗

be a possible L view on Fsa(M). We need to show that β is consistent
with ε ∈ A∗

H . Let r be a run of Fsa(M) such that viewL(r) = β. Note
that every observation on β returned after a lookL must be the same as
the observation returned by the nearest preceding L action, otherwise
this indicates H has done something, and mapping r back to M this will
contradict M ∈ NDIs.

Define β′ ∈ ((AL ∪ {lookL})O)∗ by deleting all lookL pairs in β but
adding the pair (lookL, obsL(s0)) at the beginning. It is clear that β′ is
a possible view of Fsa(M) and if β′ is consistent with ε then so is β.
Dropping the initial lookL and mapping r to M we get a run r′ with
lookL · viewL(r′) = β′. From M ∈ NDIs there exists a run r′′ with
viewL(r′′) = viewL(r′) and ActH(r′′) = ε. Mapping r′′ back to Fsa(M),
we obtain that β′ is consistent with ε ∈ A∗

H . That β is consistent with ε
immediately follows.

(2) The proof that M ∈ NDIa iff Fas(M) ∈ NDIs is similar to that above,
but more straightforward. For the ‘if’ part, let β ∈ (ALO)∗ be a possible L
view on M . Then there exists a run r0 on M with viewL(r0) = β. Mapping
r0 to Fas(M), we get a run r1 with viewL(r1) = ε0 · β, because from Def.
4.1, no agent can change the other agent’s observation on states directly.
From Fas(M) ∈ NDIs, there exists a run r2 with viewL(r2) = ε0 · β and
ActL(r2) = ε. Using Def. 4.1, we map r2 back to M , obtaining a run r3

such that ActL(r3) = ε and viewL(r3) = β. The ‘only if’ part can be
proved similarly.

If P is RES:

We show that if M ∈ RESs iff Fsa(M) ∈ RESa. We write next for the
transition function in M and next′ for the transition function in Fsa(M).

(1) For the ‘only if’ part. Suppose M ∈Mns is in RESs, then there exists an
equivalence relation ∼L on M satisfying OCs, LRs and SCs. Note that M
and Fsa(M) have the same set of states. We show that the same relation
∼L satisfies the conditions LRa and SCa in Fsa(M).

LRa: Supppose a ∈ AH and (o, t) ∈ next′(s, a). We need to show s ∼L t.
There are two cases: a = lookH and a ∈ AH in M . If a = lookH , then
t = s and s ∼L t follows from the fact that ∼L is reflexive. If a ∈ AH ,
then by construction of Fsa(M) we have t ∈ next(s, a), hence s ∼L t
by LRs.

SCa: Suppose a ∈ AL, s ∼L s′ and (o, t) ∈ next′(s, a) in Fsa(M). We need
to show that there exists a state t′ such that (o, t′) ∈ next′(s′, a) and
t ∼L t′. There are two cases: a = lookL and a ∈ AL in M . If a = lookL

then t = s and o = obsL(s). By OCs, we have obsL(s) = obsL(s′).

18

Thus, taking t′ = s′, we have (o, t′) ∈ next′(s′, a) and t ∼L t′ as
required. In the case a ∈ AL in M , we have t ∈ next(s, a) and
o = obsL(t). Since M satisfies SCs, there exists t′ ∈ next(s′, a) such
that t ∼L t′. By OCs, this implies that obsL(t′) = obsL(t) = o. Thus
(o, t′) ∈ next(s′, a) as required.

(2) For the ‘if’ part, suppose Fsa(M) is in RESa. Then there exists an equiv-
alence relation ∼L on Fsa(M) satisfying LRa and SCa. We show the same
relation ∼L satisfies OCs, LRs and SCs on M .

OCs: If s ∼L t, then by SCa, s and t will have the same observation on
the (unique) transition of lookL, so obsL(s) = obsL(t).

LRs: For a ∈ AH , if t ∈ next(s, a), then by definition of Fsa there exists
(o, t) ∈ next′(s, a), and s ∼L t follows by LRa.

SCs: For a ∈ AL, suppose s ∼s t and s′ ∈ next(s, a). Then from the
definition of Fsa, (o, s′) ∈ next′(s, a) (where o = obsL(s′)). By SCa,
there exists a state t′ such that (o, t′) ∈ next′(t, a) and s′ ∼L t′. By
construction, t′ ∈ next(t, a), so this provides the required state.

On Fas, this is similar to the proof for F 1
al in Thm. 5.21.

If P is BNS:

(1) We show that M ∈ BNSa iff Fas(M) ∈ BNSs. Now M ∈ BNSa if
UF (M) with the relation (s, f) ∼L (t, g) iff f(L) = g(L) satisfies the
conditions LRa and SCa. The system Fas(M) has the same set of states,
initial states and actions as UF (M), and is in BNSs if it satisfies the
conditions OCs,LRs and SCs with respect to the same relation ∼L. The
transition relations next on UF (M) and next′ on Fas(M) are related by
(o, (t, g)) ∈ next((s, f), a) iff (t, g) ∈ next′((s, f), a) and o = g(dom(a)).
The equivalence reduces to a straightforward comparison of the required
conditions. We show that if SCs holds in Fas(M) then SCa holds in
UF (M). For, let a ∈ AL and (o, (t, g)) ∈ next((s, f), a) and (s, f) ∼L

(s′, f ′). Then (t, g) ∈ next′((s, f), a) and o = g(dom(a)). By SCs, there
exists (t′, g′) ∈ next′((s′, f ′), a) such that (t, g) ∼L (t′, g′), i.e., g(L) =
g′(L). Thus, g′(L) = o, and we have (o, (t′, g′)) ∈ next((s′, f ′), a) and
(t, g) ∼L (t′, g′), as required for SCa. The converse and the remaining
conditions are similarly straightforward and are left to the reader.

(2) For the proof that M ∈ BNSs iff Fsa(M) ∈ BNSa, let M = 〈S, s0, next,
obs, A, dom〉, Fsa(M) = 〈S, s0, next′, A ∪ {lookH , lookL}, dom〉, and
UF (Fsa(M)) = 〈S ′, s′0, next′′, A∪{lookH , lookL}, dom〉. Note that Fsa(M)
has the same state space as M . We have the following properties of the
constructions:
P1. for all s, t1, t2 ∈ S and a1, a2 ∈ A with dom(a1) = dom(a2), if (o1, s) ∈

next′(t1, a1) and (o2, s) ∈ next′(t2, a2) then o1 = o2.
P2. For all s ∈ S, if fs ∈ OD is the function with fs(L) = obsL(s) and

fs(H) = obsH(s), then (s, fs) is reachable in UF (Fas(M)).

19

The first is direct from Def. 4.2. For (P2), a straightforward induction
shows that if s is reachable, then (s, g) is reachable for some g, and a
further lookL and lookH step from this state reach (s, fs).

Suppose M ∈ BNSs. Then we have the additional properties:
P3. For all (s, f) ∈ S ′, if f(L) 6= ε0 then obsL(s) = f(L).
P4. For all (s, f) ∈ S ′, if f(L) = ε0 then obsL(s) = obsL(s0).
For (P4), note that if (s, f) reachable from (s0, f0), there exists a run in
UF (Fsa(M)) of the form (s0, f0)a1(s1, f1)a2(s1, f2) . . . an(s, f) with ai ∈
AH for each 1 ≤ i ≤ n. By definition of UF and Fsa, s0a1 . . . ansn is a
run of M , and it follows by LRs that obsL(s) = obsL(s0). The argument
for (P3) is similar, starting from the the state reached by the last action
of L in the run leading to (s, f).

Since M ∈ BNSs, the relation ∼ on S defined by s ∼ t if obsL(s) =
obsL(t) satisfies LRs and SCs. We need to show the relation ∼′ on S ′

defined by (s, f) ∼′ (t, g) if f(L) = g(L) satisfies LRa and SCa in
UF (Fsa(M)). Observe that if (s, f) ∼′ (t, g) then s ∼ t, because if f(L)
and g(L) are both equal ε0, then obsL(s) = obsL(t) = obsL(s0), by (P4);
else if neither equals ε0, then obsL(s) = f(L) = g(L) = obsL(t), by (P3).
(a) For LRa, if a ∈ AH ∪ {lookH} it follows from the definition of UF

that for all (o, (t, g)) ∈ next′′((s, f), a) we have f(L) = g(L), hence
(s, f) ∼′ (t, g).

(b) For SCa, suppose a ∈ AL∪{lookL} and (s, f) ∼′ (t, g) and (o, (s′, f ′))
∈ next′′((s, f), a). By the above observation, we have obsL(s) =
obsL(t), i.e., s ∼ t. In the case a ∈ AL, by Def. 4.2 and 3.12, there
exists s′ ∈ next(s, a) with obsL(s′) = o and f ′ = f [L 7→ o]. By
BNSs there exists t′ ∈ next(t, a) with obsL(t′) = o. Then we have
(o, (t′, g[L 7→ o])) ∈ next(t, a), and (s′, f ′) ∼′ (t′, g[L 7→ o]), as re-
quired for SCa. In the case a = lookL, we have (s′, f ′) = (s, f [L 7→
obsL(s)]) ∼′ (t, f [L 7→ obsL(t)]) ∈ next′′((t, g), lookL), as required
for SCa.

If UF (Fsa(M)) ∈ BNSa, then ∼′ satisfies LRa and SCa, and we need
to show ∼ satisfies LRs and SCs (OCs is immediate from the definition).
(a) For LRs, let t ∈ next(s, a), where a ∈ AH . By Def. 4.2 and 3.12,

and by (P2), (s, fs) is reachable and (o, (t, g)) ∈ next′′((s, fs), a)
where o = obsH(t) and g = fs[H 7→ o]. Now, (s, fs) ∼′ (t, g) and
(obsL(s), (s, fs)) ∈ next′′((s, fs), lookL). Thus, there exists, by SCa,
a state (t′, g′) such that (obsL(s), (t′, g′)) ∈ next′′((t, g), lookL) and
(s, fs) ∼′ (t′, g′). By definition of Fsa and UF , next′′((t, g), lookL) =
{(obsL(t), (t, g[L 7→ obsL(t)]))}. It follows that obsL(t) = obsL(s).

(b) For SCs, supppose s ∼ t. By (P2), (s, fs) and (t, ft) are reachable,
and obviously, (s, fs) ∼′ (t, ft). If s′ ∈ next(s, a) with a ∈ AL, by
definition, (o, (s′, fs[L 7→ o])) ∈ next′′((s, fs), a), where o = obsL(s′).
Since ∼′ satisfies SCa, there exists (t′, g) such that (o, (t′, g)) ∈
next′′((t, ft), a), and (s′, fs[L 7→ o]) ∼′ (t′, g). But, by definition of

20

UF and Fsa, the only such transition has g = ft[L 7→ obsL(t′)], so
this implies obsL(s′) = o = obsL(t′) (i.e., s′ ∼ t′), and t′ ∈ next(t, a),
as required for SCs.

2

This result can be understood as confirming the following key intuition con-
cerning security properties and observations: a system is insecure if an agent
is able to obtain prohibited information. Thus, modifying a system by permit-
ting additional runs in which agents make fewer observations and uninforma-
tive (e.g. repeat) observations does not change the satisfaction of the security
property.

5 Transformations to a Process Algebraic Model

Since the development of the original noninterference definitions, research has
moved to how these definitions may be generalised to systems defined in pro-
cess algebra. In this section, we study the relationships between definitions of
security in the state-machine models with definitions in a process algebraic
setting.

5.1 Process Algebraic Definitions

Work on security based in process algebra has been conducted within the
framework of the process algebra CSP [Hoa85], surveyed in [Rya01], as well
as the framework of a variant called SPA of the process algebra CCS [Mil89],
surveyed in [FG01]. We focus here on the latter, which is closer to the models
considered above in that it distinguishes inputs and outputs (corresponding
loosely to actions and observations). It is also cast in terms of a common
semantics underpinning for both the CSP and CCS approaches, viz., labelled
transition systems.

Definition 5.1 A labelled transition system (LTS) is a quadruple M = 〈P, p0,
→,L〉 where L is the set of event labels, P is the set of processes (or states),
p0 is the initial process (or state), and →⊆ P × (L∪{τ})×P is the transition
relation.

A run of M is a sequence p0
l1→ p1

l2→ p2 . . . pn−1
ln→ pn, and the states that

occur in a run are said to be reachable. The corresponding trace of L is the
sequence of labels l1 . . . ln with any occurrences of τ deleted. We write T (M)
for the set of traces of M . We write L for the set of all LTSs in which all
states are reachable.

21

In CCS, there is also a self-inverse bijection · : L → L and the set of events L
is partitioned into a set I of input events and the set O = {a|a ∈ I} of output
events. Intuitively, the input event a may synchronise with the output event
a when composing processes. We write LIO(I) for the set of all LTS’s with
inputs I and corresponding set of outputs O = {a|a ∈ I}, or simply LIO when
I is clear.

In order to study security definitions, Focardi and Gorrieri [FG95] enhance
CCS by an orthogonal partitioning of the space of events into High and Low
events. Combining the two distinctions, the set L of all events is thereby
partitioned into High inputs (denoted HI), High outputs (HO), Low inputs
(LI) and Low outputs (LO). They call the resulting process calculus SPA.

Apparently, labelled transition systems are more general than the state ma-
chine models discussed above, in that inputs are not always enabled. Superfi-
cially, SPA’s labelled transition systems seem closest to action-observed state
machines, inasmuch as both inputs (actions) and outputs (observations) are
associated to transitions. Given the equivalences discussed above, we therefore
focus on translating action-observed machines into SPA. However, whereas
action-observed machines combine an action and an observation into a single
state transition, SPA separates the two notions. This leaves open several plau-
sible translations from Mna to LIO. One follows an approach like that used
above for the translation from Mna to Mns, and treats the observations as op-
tional events which do not change the state. We assume in the following that
the sets of possible H and L observations in an action observed system are
disjoint. This is without loss of generality, since we may always rename the H
observations, which does not affect any of the notions of security, since these
do not refer to H observations. Similarly, we assume the sets of actions and
observations are disjoint. (Note the H and L actions are already separated by
the function dom.)

Definition 5.2 Let F 1
al : Mna → LIO be the mapping such that if M =

〈S, s0, next, dom,A〉, we have F 1
al(M) is the restriction to its reachable states

of 〈P, p0,→,L〉 where

(1) P = S × (O ∪ {εH , εL})D,
(2) p0 = (s0, f0) where f0 is the function with f0(L) = εL and f0(H) = εH ,
(3) L = I ∪O with I = A,

(4) (s, f)
l−→ (t, g) iff either l = a ∈ A and for some o ∈ O we have

(o, t) ∈ next(s, a) and g = f [dom(a) 7→ o], or (t, g) = (s, f) and l = f(u)
for some u ∈ D and f(u) ∈ O.

Another approach to the translation, which keeps observations obligatory, is
to introduce for each state s and action a a new state (s, a) to represent that
the action a has been taken from state s, but the corresponding observation

22

has not yet been made.

Definition 5.3 Let F 2
al : Mna → LIO such that for M = 〈S, s0, next, dom,A〉,

we have Fal(M) = 〈P, p0,→,L〉 where

(1) P = S ∪ (S × A),
(2) p0 = s0,
(3) L = I ∪O with I = A,
(4) →= {(s, a, (s, a)) | s ∈ S, a ∈ A} ∪ {((s, a), o, t) | (o, t) ∈ next(s, a)}.

Focardi and Gorrieri discuss the condition of input-totality in the context of
relating their definitions of security on SPA processes to classical definitions.
An LTS M ∈ LIO(I) is input total if for all s ∈ P and for all a ∈ I, there
exists t ∈ P such that s

a−→ t. It is apparent that for all M ∈ Mna, the LTS
F 1

al(M) is input total, but the LTS F 2
al(M) is not input total, since inputs

are not accepted in the intermediate states (s, a). We will discuss below the
impact this difference has on the relationship between definitions of security
in Mna and LIO.

We now state a number of the definitions of security discussed by Focardi and
Gorrieri. Given a trace t of an LTS in LIO, we write low(t) for the subsequence
of labels in LI ∪ LO, high(t) for the subsequence of labels in HI ∪HO, and
highinput(t) for the subsequence of labels in HI. We extend these functions to
apply pointwise to sets of traces. We call a sequence in low(T (M)) a possible
low view of M .

Definition 5.4 M ∈ LIO is secure wrt Nondeterministic Noninterference
(M ∈ NNIl) if for every possible low view α ∈ low(T (M)), there exists a
trace t ∈ T (M) such that low(t) = α and highinput(t) = ε is the null se-
quence.

This definition permits the trace t to contain high outputs. The following
stronger definition prohibits this.

Definition 5.5 M ∈ LIO is secure wrt Strong Nondeterministic Noninter-
ference (M ∈ SNNIl) if for every possible low observation α ∈ low(T (M)),
there exists a trace t ∈ T (M) such that low(t) = α and high(t) = ε is the null
sequence.

The following is a formulation of nondeducibility on inputs in LIO.

Definition 5.6 M ∈ LIO is secure wrt Nondeducibility on Inputs (M ∈
NDIl) if for every α ∈ HI∗, for every possible low view β ∈ low(T (M)),
there exists a trace t ∈ T (M) such that low(t) = β and highinput(t) = α.

23

Finally, we have a definition that is motivated as a generalization of nonde-
ducibility on strategies. This can be phrased 5 in terms of a process composi-
tion with synchronization on High events, which we formulate as follows. Given
LTSs M1 = 〈P1, p1,→1,L1〉 and M2 = 〈P2, p2,→2,L2〉, define the composition
M1||HM2 = 〈P, p0,→,L〉 with states P = P1 × P2, initial state p0 = (p1, p2),

labels L = L1 ∪ L2, and transitions defined by (s, t)
l−→ (s′, t′) if either

l ∈ LI ∪LO and one of s
l−→ s′ and t = t′ or s = s′ and t

l−→ t′, or else l = τ

and there exists events l1, l2 in HI ∪ HO such that l1 = l2 and s
l1−→ s′ and

t
l2−→ t′.

Definition 5.7 M ∈ LIO is secure wrt Nondeducibility on Compositions (M ∈
NDCl) if for every M ′ ∈ LIO that has labels in HI ∪ HO only, we have
low(T (M)) = low(T (M ||HM ′)).

Intuitively, process composition is used here to capture the effect of High
executing a strategy in the system M . In effect, the definition compares two
different behaviours of High, since the term M represents the effect of High not
constraining its behaviour in any way, whereas M ||HM ′ represents the behav-
iors resulting when High restricts its behaviour to one that may synchronise
with M ′.

The range of quantification for M ′ in this definition is arguably too large, since
it encompasses processes that may refuse to synchronise with High output
events in M , by not having the corresponding input event enabled. Prima
facie, it would seem that this is an issue for comparisons with nondeducibility
on strategies in the system models discussed above, where there is no way
for an agent to refuse an observation. Focardi and Gorrieri also consider the
following variant NDCIT , which constrains the LTS’s in question to be input-
enabled. We define this in terms of a looser notion NDC(IT)l, to separate
input-totality of the system itself from input-totality of the composed systems.

Definition 5.8 M ∈ LIO(HI∪LI) is secure wrt Nondeducibility on Composi-
tions with Input Total systems (M ∈ NDC(IT)l) if for every input-total M ′ ∈
LIO(HI), we have low(T (M)) = low(T (M ||HM ′)). Define M ∈ NDCITl if
M is itself input-total and M ∈ NDC(IT)l.

Intuitively, restricting M ′ to be input-total ensures M ′ cannot block any H
output events from M in the composed system M ||HM ′.

5 We simplify the presentation of Focardi and Gorrieri to minimize the amount of
process algebraic notation that we need to introduce.

24

5.2 Nondeducibility-based definitions

We are now ready to begin investigating the relationship between the defi-
nitions of security in action-observed systems and LIO, under the transfor-
mations defined above. In this subsection we deal with nondeducibility-based
definitions. Later subsections treat restrictiveness and BNS.

Concerning nondeducibility on inputs, we obtain the following.

Theorem 5.9 For all systems M ∈ Mna we have M ∈ NDIa iff F 1
al(M) ∈

NDIl iff F 2
al(M) ∈ NDIl.

Proof:

(1) We show M ∈ NDIa iff F 1
al(M) ∈ NDIl. Suppose that M ∈ NDIa. Let

β0 ∈ low(T (F 1
al(M))) be a possible L view of F 1

al(M) and let α be any
sequence of H inputs, i.e., α ∈ HI∗. To show F 1

al(M) ∈ NDIl we need to
show that there exists a trace t with low(t) = β0 and highinput(t) = α.
Since β0 ∈ low(T (F 1

al(M))) there exists a run of F 1
al(M) with trace t0 and

low(t0) = β0. Note first that we still have a trace if we delete any HO
events, since, by construction of F 1

al(M), these do not change the state.
Note the following property of F 1

al(M): if a ∈ LI, o ∈ LO and γ2 ∈
(HI ∪HO∪LO)∗ and γ1, γ3 are any sequences of labels, then γ1aγ2oγ3 is
a trace iff γ1aoγ2γ3 is a trace. This follows from the fact that transitions
with labels in HO ∪ LO do not change the state and for transitions
(s, f)

a−→ (s′, f ′) with a ∈ HI we have f ′(L) = f(L).
Thus, we may ensure that there is a LO event immediately after each

LI = AL event, and delete any other LO events (including εL events). Let
t1 be the resulting trace and β1 = low(t1). Then β1 ∈ (ALO)∗, and any
consecutive pair ao ∈ ALO in this sequence corresponds in the witnessing
run to a sequence of transitions (s, f)

a−→ (t, g)
o−→ (t, g). This means

that (o, t) ∈ next(s, a) in M , and it follows that β1 is a possible low
view in M . Thus, by the assumption that M ∈ NDIa, there exists a run
r of M with viewL(r) = β1 and ActH(r) = α. Mapping r to F 1

al(M) by
including a self-transition for each observation, we obtain a run of F 1

al(M)
with trace t2 such that low(t2) = β1 and highinput(t2) = α. We now note
that this trace can be modified into a trace t3 with low(t3) = β0 and
highinput(t3) = α by application of the property of F 1

al(M) noted above.
Conversely, suppose F 1

al(M) ∈ NDIl and let β be a possible L view
of M and α ∈ A∗

H . The run of M witnessing β maps directly over to
a run of F 1

al(M) with trace t such that low(t) = β. Thus, there exists
a run of F 1

al(M) with trace t2 with low(t2) = β and highinput(t2) = β.
Since output events do not change the state in F 1

al(M), we may assume
that there are no HO events. Similarly, using the property of F 1

al(M)

25

noted above, we may assume that each LI event is followed immediately
by an LO event, and these are the only LO events in t2. The run now
immediately translates back to a run r′ of M with viewL(r′) = β and
ActH(r′) = α.

(2) The proof that M ∈ NDIa iff F 2
al(M) ∈ NDIl is similar, but more

straightforward, since each run on M can be directly translated into a
trace on F 2

al(M) and vice versa.

2

Thus, both transformations produce LTS representations of the system that
are equivalent with respect to the property of non-deducibility on input. Since
non-deducibility on strategies is equivalent to non-deducibility on input on
Mna, this result gives us a way of checking the former property through a
mapping to LIO. However, it remains of interest to check whether the notion
of nondeducibility defined on LIO corresponds to that on Mna. This is partic-
ularly so as Focardi and Gorrieri show that the placement of nondeducibility
on composition with respect to the other properties is somewhat sensitive to
the class of systems to which it is applied, and the class of systems used in
the compositions. Focardi and Gorrieri prove the following relationships:

Proposition 5.10 [FG95]

(1) NDCl = SNNIl ⊂ NNIl, and
(2) NDIl ⊂ NNIl

(3) NDIl 6⊆ NDCl and NDCl 6⊆ NDIl

(4) NDCl ∩ IT = NNIl ∩ IT = NDIl ∩ IT

We add to this the following result about input total systems:

Proposition 5.11 NDCl ∩ IT = NDC(IT)l ∩ IT

Proof: It is obvious NDCl ⊆ NDC(IT)l, so NDCl∩ IT ⊆ NDC(IT)l∩ IT .

To show NDC(IT)l ∩ IT ⊆ NDCl ∩ IT , it is sufficient to show NDC(IT)l ∩
IT ⊆ NNIl∩IT from Prop. 5.10(4). Suppose M ∈ LIO 6∈ NNI ∩IT , then by
definition, we have (M\HI)/H 6=T M/H, i.e. low(T (M)) 6= low(T (M\HI)).
Let M ′ be the process M ′ =

∑
a∈HI a.M ′ that accepts all H inputs but pro-

duces no H outputs. Then low(T (M ||HM ′)) = low(T (M\HI)). (Since HO
events in M synchronise with HI events in M ′, of which there are none.) From
above we have low(T (M ||HM ′)) 6=T low(T (M)), so M 6∈ NDC(IT)l ∩ IT .
2

That is, on input-total systems, input-total High processes have the same
discriminative powers as all processes. Using the fact that F 1

al produces input-
total LTS’s, the equivalence of NDSa and NDIa and the facts from the pre-

26

vious two propositions, we obtain a direct correspondence between nonde-
ducibility on strategies and several notions of nondeducibility on composition.

Corollary 5.12 For M ∈ Mna, we have M ∈ NDSa iff F 1
al(M) ∈ NDCITl

iff F 1
al(M) ∈ NDC(IT)l iff F 1

al(M) ∈ NDCl.

This means that on input-total systems, and hence on the range of F 1
al, the

distinct notions NDCl, NDC(IT)l, NDCITl, NDIl and NNIl collapse. We
find a similar correspondence for F 2

al (except that NDCITl is excluded here
since F 2

al(M) is not input-total.)

Theorem 5.13 For M ∈ Mna, we have F 2
al(M) ∈ NDIl iff F 2

al(M) ∈ NDCl

iff F 2
al(M) ∈ NDC(IT)l.

Proof: Since NDCl ⊆ NDC(IT)l, as noted above, it suffices to show that
F 2

al(M) ∈ NDC(IT)l implies F 2
al(M) ∈ NDIl, and F 2

al(M) ∈ NDIl implies
F 2

al(M) ∈ NDCl.

(1) Suppose F 2
al(M) ∈ NDC(IT)l. Let M ′ =

∑
a∈HI a.M ′ be the process that

accepts all H outputs from F 2
al(M) but generates no outputs itself. Since

M ′ is input total, we have low(T (F 2
al(M)||HM ′)) = low(T (F 2

al(M))). To
show that F 2

al(M) ∈ NDIl we suppose β ∈ low(T (F 2
al(M))) and α ∈

HI∗ and show that there exists a trace t of F 2
al(M) with low(t) = β

and highinput(t) = α. For this, note that since low(T (F 2
al(M)||HM ′)) =

low(T (F 2
al(M))) there exists a trace t′ of F 2

al(M) with low(t′) = β and
highinput(t′) = ε. By construction of F 2

al(M), all HO events in a trace
must have a preceding HI event, so there cannot be any HO events in t′,
and it follows that the final state of t′ is a state in M . We may now add
the sequence of events α (and the HO events these generate) to the end
of t′, obtaining a trace t with low(t) = β and highinput(t) = α.

(2) Suppose F 2
al(M) 6∈ NDCl, then from NDCl = SNNIl, low(T (F 2

al(M))) 6=
low(T (F 2

al(M)\H)), then there exists some low view t ∈ low(T (F 2
al(M)))

but t 6∈ low(T (F 2
al(M)\H)), from low(T (F 2

al(M)\H)) ⊆ low(T (F 2
al(M)))

(Restriction on H makes fewer observation to L than allowing H to do
everything). So t is not consistent with ε ∈ HI∗, so F 2

al(M) is not in
NDIl.

2

These results show that under either representation of action-observed sys-
tems, there is significant flexibility in the range of quantification of the com-
posed processes in the definition of nondeducibility on composition. Note that
there is moreover a difference between NDSa and any of these notions, in
that NDSa quantifies over deterministic strategies, a constraint that is not
considered in the definitions on labelled transitions systems.

27

5.3 Restrictiveness

We now turn to McCullough’s notion of ‘restrictiveness’, already mentioned
above. There are two versions of ‘restrictiveness’ introduced in McCullough’s
early works. The former [McC87] is a trace-based definition, while the latter is
essentially defined on labelled transition systems [McC88, McC90]. In [McC90]
McCullough mentions both definitions and concludes that the one on labelled
transition systems is a stronger notion. The cleanest presentation of the LTS
version occurs in [McC90]. Here we present this definition in the pattern used
for unwinding properties for the automaton models above.

Definition 5.14 Define a McCullough unwinding relation for an LTS M
without τ transitions to be an equivalence relation ∼ on the states of M such
that

• M1: for all states s, s′, t and input sequences α and α′ such that α|LI =
α′|LI, s

α−→ s′ and s ∼ t, there exists a state t′ such that s′ ∼ t′ and

t
α′−→ t′;

• M2: for all states s, s′, t and output sequences α such that s
α−→ s′ and s ∼ t,

there exists a state t′ and an output sequence α′ such that α|LO = α′|LO,

t
α′−→ t′, and s′ ∼ t′.

Using this notion, the following is equivalent to McCullough’s definition.

Definition 5.15 An LTS M is restrictive (M ∈ RESl) if it is input-total,
it has no τ transitions, and there exists a McCullough unwinding relation for
M .

We may note that in fact part of the assumption of input-totality follows from
the rest of this definition, since the existence of a McCullough unwinding
implies input-totality with respect to High inputs. (To see this at state s take
α = ε and α = h for a High action h, and apply M1 with s′ = t = s.)

The assumption of input-totality is often made in the literature, on the in-
tuitive grounds that it ensures that enabledness of inputs cannot be a cause
of information flow. On the other hand, input-totality might be argued to be
too strong a condition. In particular, note that our translation F 2

al produces
systems that are necessarily not input total, since inputs are not enabled at
states of the form (s, a). This means that no system F 2

al(M) will be classified
as secure according to the definition RESl, which is undesirable.

In fact, there is a second reason why no system in the range of F 2
al can satisfy

RESl. Let s be a state in F 2
al(M) for some action-observed system M with

action a ∈ AH enabled. Then, by the translation, any action b ∈ AL must

28

be enabled on s as well. If F 2
al(M) is in RESl, then there is a McCullough

unwinding relation ∼ on F 2
al(M), which must satisfy s ∼ (s, a) (to see this,

take α = a and α′ = ε in M1). However, while b is enabled on s, it is not
enabled on (s, a), so we cannot satisfy condition M1.

The most reasonable response to this observation depends on one’s intuitions
concerning outputs. On the one hand, in the process algebraic literature, a
common understanding is that the agent observing an output plays an ac-
tive (e.g., handshake) role in its occurrence. From a security perspective, this
means that a receiver can transmit information to a sender, simply by re-
fusing to participate in the handshake. On this view, the above definition of
restrictiveness may be reasonable.

On the other hand, it is also sensible to understand outputs/observations
as events that “happen to”, or “are available to” agents, but which they are
powerless to prevent. This is implicitly the view taken in our automaton-based
models, and it has also been taken in the process algebraic literature: e.g., the
signal events of [Ros95] are intended to capture this intuition. On this view, it
is too strong a condition to ask that the Low input b be enabled both at s and
(s, a) in F 2

al(M) (for a a High input), since High cannot block the reception of
its output from the state (s, a), after which the system reaches a state where
b is in fact enabled. We are therefore motivated to formulate a novel revised
version of unwinding and restrictiveness that is compatible with this latter
perspective.

Definition 5.16 A weak McCullough unwinding relation is an equivalence
relation ∼, such that

• W1: for all a ∈ HI, s
a−→ t implies s ∼ t,

• W2: for all a ∈ HO, s ∼ t and s
a−→ s′, there exists α ∈ HO∗ and t′ ∈ S

such that t
α−→ t′ and s′ ∼ t′,

• W3: for all a ∈ L, s ∼ t and s
a−→ s′, then there exists α, β ∈ HO∗ and

t′ ∈ S, such that s′ ∼ t′, and t
α·a·β−→ t′.

Intuitively, W1 says that High inputs do not affect Low, W2 allows that Low
may be aware that High is receiving some outputs (it could even be aware of
exactly what these outputs are), and W3 says that Low is aware of its own
events. However, note that in W3, we do not require that Low events can be
directly traced, but only modulo the occurrence of the HO events that H is
powerless to block. The relationship between this definition and the previous
one is expressed in the following result, whose proof is straightforward.

Lemma 5.17 A McCullough unwinding relation is also a weak McCullough
unwinding relation.

29

Note that the converse is not true even for input total systems. To understand
this suppose we have the following system. Let S = {s, t, r}, LI = {l}, LO =
{o, o′}, HI = ∅ and HO = {oH}. The transition relation is defined as

• s
l−→ s, s

l−→ r, t
l−→ t and r

l−→ r

• s
o−→ s, t

o−→ t and r
o′−→ r,

• s
oH−→ t and t

oH−→ s.

Now it is obvious that s and t may not be related by any McCullough unwind-
ing relation. However s and t can possibly be related by a weak McCullough

unwinding relation because for s
l−→ r, there exists t

oH · l−→ r such that r is
related to r, which is not allowed in the McCullough unwinding relation.

Based on the notion of weak McCullough unwinding (and dropping the as-
sumption of input-totality), we obtain the following notion of security.

Definition 5.18 An LTS M is weakly restrictive (M ∈ RESw
l) if it has a

weak McCullough unwinding relation.

This definition has an appropriate relationship to nondeducibility based defi-
nitions such as NDIl and NDSl, even on systems that are not input-enabled,
in that the following holds:

Lemma 5.19 If M ∈ RESw
l then for all traces α of M there exists a trace β

with viewL(α) = viewL(β) and β|HI = ε.

We remark that Focardi and Gorrieri [FG95] have also proposed a definition
of restrictiveness in the context of all LTS’s. Like the definition of RESl above,
they also require input-totality. In addition to dealing with τ transitions, their
definition requires that a distinction be made between high and low level τ
transitions, for reasons that are not made clear. Since our translations do not
produce LTSs with τ transitions, we will not attempt to treat this extension
here; without it, their definition amounts to RESl as we have defined it.
It is worth remarking that Focardi and Gorrieri classify their definition of
restrictiveness with the other trace-based properties they consider. We point
out that a better comparison is with the separate hierarchy of bisimulation-
based definitions of security they define. The following is one of the notions in
this hierarchy.

Definition 5.20 M ∈ LIO satisfies strong bisimulation non-deducibility on

compositions (SBNDC) if for every p ∈ P reachable from p0, if p
h−→ p′ for

some h ∈ H then (p\H) ≈B (p′\H).

Here, ≈B is the weak bisimulation, and ‘\’ is the restriction operator, with the
usual definitions in CCS [Mil89].

30

We may show the following result, that establishes a correspondence between
notions of restrictiveness on action-observed systems and labelled transition
systems under the translation F 1

al. We note that this result justifies the use of
the term restrictiveness in Def. 3.9.

Theorem 5.21 (1) M ∈ RESa iff F 1
al(M) ∈ RESl iff F 1

al(M) ∈ RESw
l iff

F 1
al(M) ∈ SBNDC.

(2) M ∈ RESa iff F 2
al(M) ∈ RESw

l .

This result (together with Thm. 4.3) shows that on the state-based models,
the (usually quite complicated) definition of “restrictiveness” has a rather
intuitive formulation with a very clear relationship to the classical unwinding
theory for noninterference on deterministic state-based systems. Moreover,
this notion corresponds exactly with SBNDC under one of our translations.

To prove Thm 5.21, we first establish a number of lemmas. We first note
that although, in general, restrictiveness is stronger than weak restrictiveness,
we can identify situations where the two notions coincide. In particular, the
following result shows that this is the case for High input enabled systems in
which observation transitions do not change the state; note that this condition
applies to the LTSs generated by our translation F 1

al.

Lemma 5.22 Suppose M ∈ L satisfies (1) for all states s, t and output events
o, s

o−→ t implies s = t, and (2) s
a−→ for all states s and H inputs a. Then

M ∈ RESl iff M ∈ RESw
l .

Proof: Since a McCullough unwinding relation is also a weak McCullough
unwinding relation by Lem. 5.17, we only need to show that if there is a weak
McCullough unwinding relation on M then there is an unwinding relation on
M . Let ∼ be a weak McCullough unwinding relation. We show ∼ is also a
McCullough unwinding relation. Let s ∼ t.

• (M1) For all α, α′ ∈ I∗ satisfying α|L = α′|L and s
α−→ s′, let α =

α0a0α1a1 . . . an−1αn, and α′ = α′0a0α
′
1a1 . . . an−1α

′
n, where ai ∈ LI for i =

0, . . . n − 1 and αi, α
′
i ∈ HI∗ for i = 0, . . . n. We also assume there are in-

termediate states s0, s1 . . . sn such that si
αi·ai−→ si+1 for all i, and s = s0, and

sn
αn−→ s′. We prove by induction that there exist states t0, t1 . . . tn such that

ti
α′i·ai−→ ti+1 and si ∼ ti for all i. The base case is trivial. Suppose sk ∼ tk

and sk
αk−→ s′k

ak−→ sk+1. By W1, sk ∼ s′k, therefore tk ∼ s′k. Also, for each

sequence α′k, by High input totality, there exists t′k such that tk
α′k−→ t′k, and

by W1 we have tk ∼ t′k. Thus s′k ∼ t′k. From s′k
ak−→ sk+1, by W3, there ex-

ists t′k
γ·ak·γ′−→ tk+1 and sk+1 ∼ tk+1 with γ, γ′ ∈ HO∗. By the fact that every

output transition goes to its source state, we have t′k
ak−→ tk+1. For the final

case which is sn ∼ tn and sn
αn−→ s′ implies there exists t′ and α′n ∈ HO∗

31

such that tn
α′n−→ t′ and s′ ∼ t′, this can be shown in a similar way.

• (M2) For all α ∈ O∗, s
α−→ s′ implies s = s′. We take α′ = ε and t′ = t, so

that t
α′−→ t′ and s′ = s ∼ t = t′.

2

Next, weak unwinding can be given a simpler characterization on the image
of the mapping F 2

al.

Lemma 5.23 For every action-observed system M , F 2
al(M) ∈ RESw

l iff there
exists an equivalence relation ≈ on the states of F 2

al(M) such that

• W1′: for all a ∈ H, s
a−→ t implies s ≈ t,

• W2′: for all a ∈ L, if s ≈ t and s
a−→ s′, then there exists α ∈ HO∗ and a

state t′ such that s′ ≈ t′ and t
α·a−→ t′.

Proof: For the ‘if’ direction it is obvious that ≈ is a weak McCullough
unwinding relation. For the ‘only if’, suppose F 2

al(M) ∈ RESw
l . Then there is

a weak McCullough unwinding relation ∼ on F 2
al(M). We show that ∼ satisfies

the conditions on ≈. Let S be the set of states of M .

(W1′) For a ∈ HI, W1′ is immediate from W1. For o ∈ HO, note that if
x

o−→ t then x = (s, a) for some a ∈ HI and s ∈ S and t ∈ S. By W1 and
symmetry, (s, a) ∼ s, so by W2 there exists α ∈ HO∗ and a state s′ such that
s

α−→ s′ and t ∼ s′. However, no actions in HO are enabled at s, which means
the only possibility is α = ε and we get t ∼ s′ = s. So x = (s, a) ∼ t by the
fact that ∼ is an equivalence relation.

(W2′) Suppose s ∼ t and s
a−→ s′ for a ∈ L. By W3, there exist β, β′ ∈ HO∗

and a state t′ such that t
β·a·β′−→ t′ and s′ ∼ t′. We need to find α ∈ HO∗ and

a state y such that t
α·a−→ y and s′ ∼ y. We consider the cases of a ∈ LI and

a ∈ LO separately.

If a ∈ LI, then we must have s ∈ S and s′ = (s, a). We consider two cases,
depending on whether t ∈ S.

• If t ∈ S, then actions in HO are enabled neither at t, nor at (t, a). Therefore,
we must have β = β′ = ε, and t′ = (t, a), so t

a−→ (t, a) = t′. Here we take
α = ε and y = t′ ∼ s′.

• If t is of the form (r, b) with r ∈ S, it is impossible that b ∈ AL because
in this case no outputs in HO or inputs in LI would be enabled at (r, b).
Thus b ∈ AH and t = (r, b)

o−→ r′ a−→ (r′, a) for some r′ ∈ S and o ∈ HO.
Indeed, we must have β = o and β′ = ε (since no HO event can be enabled
at (r′, a)). Thus, (r′, a) ∼ s′, and we may take α = o and y = (r′, a).

32

Suppose that a ∈ LO. By W3, there exist β, β′ ∈ HO∗ such that t
β·a·β′−→ t′ and

s′ ∼ t′. Since there are no successive output transitions in F 2
al(M), we must

have β = β′ = ε, so t
a−→ t′. Thus, we may take α = ε and y = t′. 2

We are now in a position to prove Thm. 5.21.

Proof: (Theorem 5.21) For (1), F 1
al(M) ∈ RESl implies F 1

al(M) ∈ RESw
l is

direct from Lem. 5.17. It therefore suffices to show that (A) M ∈ RESa implies
F 1

al(M) ∈ RESl, that (B) F 1
al(M) ∈ RESw

l implies F 1
al(M) ∈ SBNDC, and

that (C) F 1
al(M) ∈ SBNDC implies M ∈ RESa. Let M = 〈S, s0, next, dom,A〉

and F 1
al(M) = 〈P, p0,→,L〉.

(A) For the argument from M ∈ RESa to F 1
al(M) ∈ RESl, suppose M ∈

RESa. Then there exists an unwinding relation ∼⊆ S × S. First, F 1
al(M) is

input total. Define ≈⊆ P × P by (s, f) ≈ (s′, f ′) if s ∼ t and f(L) = f ′(L).
We show that ≈ is a McCullough unwinding relation.

(1) If (s, f) ≈ (s′, f ′) and for any α, α′ ∈ I∗ with α|L = α′|L, (s, f)
α−→ (t, g)

it can be easily shown by induction on α and α′ by the properties LRa

and SCa of the unwinding relation ∼, that there exists (t′, g′) such that

(s′, f ′) α′−→ (t′, g′) and (t, g) ≈ (t′, g′).
(2) The output condition is trivial because all output transitions in F 1

al(M)
are self-transitions.

(B) To show F 1
al(M) ∈ RESw

l implies F 1
al(M) ∈ SBNDC, suppose F 1

al(M)
in RESw

l . Then there exists a weak McCullough unwinding relation ∼ on the
states of F 1

al(M). From the restriction operator, for any process P we have
P\H ≡ P ||H0 (we mix-use the term state and process). Given a reachable
state p and p

a−→ p′ for a ∈ AH , we need to show that p||H0 ≈B p′||H0. If
a ∈ HO then p = p′, and the claim trivially holds. If a ∈ HI then we have
p ∼ p′. We need to show the relation ≈ defined by p||H0 ≈ p′||H0 if p ∼ p′ is a
weak bisimulation. Since there are no τ transitions, we only need to check the

case when p||H0
b−→ q||H0 for some b ∈ AL. By definition of weak McCullough

unwinding there exists p′
α·b·β−→ q′ and q ∼ q′ for some α, β ∈ HO∗. However in

F 1
al(M) all outputs only produce self-transitions, thus we have p′ b−→ q′ and

q ∼ q′. Therefore we have shown q||H0 ≈ q′||H0, i.e., ≈ is a weak bisimulation
as required. Thus p||H0 ≈B p′||H0. By definition, F 1

al(M) ∈ SBNDC.

(C) For the argument from F 1
al(M) ∈ SBNDC to M ∈ RESa, suppose

F 1
al(M) ∈ SBNDC. We first define ∼′⊆ S × S by s ∼′ t if there exist

f, g ∈ OD such that f(L) = g(L), both (s, f) and (t, g) are reachable, and
(s, f)||H0 ≈B (t, g)||H0. This relation is reflexive and symmetric, but need not
be transitive. Define ∼ as the transitive closure of ∼′. Then ∼ is an equivalence
relation. We show that ∼ is an unwinding relation on M .

33

LRa: Suppose s, t ∈ S, a ∈ AH and (o, t) ∈ step(s, a). Let f ∈ OD be such that
(s, f) is reachable in F 1

al(M). From definition 5.2, (s, f)
a−→ (t, f [H 7→ o]),

and since F 1
al(M) ∈ SBNDC, we have (s, f)||H0 ≈B (t, f [H 7→ o])||H0.

Moreover, f(L) = f [H 7→ o](L), so we have s ∼′ t, hence s ∼ t.
SCa: Suppose s ∼ t, a ∈ AL and (o, s′) ∈ step(s, a). We need to show that

there exists a state t′ such that (o, t′) ∈ step(t, a) and s′ ∼ t′. Since s ∼ t,
there exists some n ∈ N+ such that s(∼′)nt. We proceed by induction
on n, showing that if s(∼′)nt, a ∈ AL and (o, s′) ∈ step(s, a), then there
exists a state t′ such that (o, t′) ∈ step(t, a) and s′(∼′)nt′. The base case of
n = 0 is trivial. Suppose that s(∼′)nu ∼′ t, a ∈ AL and (o, s′) ∈ step(s, a).
By the induction hypothesis, there exists a state u′ such that (o, u′) ∈
step(u, a) and s′(∼′)nu′. Since u ∼′ t, there exist f, g ∈ OD such that
(u, f) and (t, g) are reachable, f(L) = g(L) and (u, f)||H0 ≈B (t, g)||H0.
By construction of F 1

al(M), we have (u, f)
a−→ (u′, f [L 7→ o]). Thus,

there exists a transition (t, g)
a−→ (t′, g′) such that (u′, f [L 7→ o])||H0 ≈B

(t′, g′)||H0. But there exists a transition labelled o from (u′, f [L 7→ o]), so
there must also exist a transition labelled o from (t′, g′). By construction
of F 1

al(M), implies that g′(L) = o = f [L 7→ o](L). This shows that u′ ∼′ t′.
Since, also by construction of F 1

al(M), we have (o, t′) ∈ next(t, a), this
gives the required transition and relation in M to complete the proof.

For (2), let F 2
al(M) = 〈P, p0,→,L〉 with P = S ∪ (S ×A), p0 = s0, L = I ∪O

and →= {(s, a, (s, a)) | s ∈ S, a ∈ A} ∪ {((s, a), o, t) | (o, t) ∈ next(s, a)}. We
show M ∈ RESa implies F 2

al(M) ∈ RESw
l . Let ∼ be an unwinding relation

on M . Define a symmetric relation ≈0⊆ P , by the following:

(1) For s, t ∈ S, if s ∼ t in M then s ≈0 t.
(2) For s, t ∈ S, a ∈ HI and o ∈ HO, if s

a−→ (s, a)
o−→ t, then s ≈0 (s, a)

and (s, a) ≈0 t.
(3) For s, t ∈ S and a ∈ LI, if s ∼ t then (s, a) ≈0 (t, a).

Define ≈ as the reflexive, transitive closure of ≈0. Then ≈ is an equivalence
relation. We prove that ≈ satisfies conditions W1′ and W2′ in Lemma 5.23.
The proof of W1′ is trivial from rule (2). For W2′, we first show that the
relation ≈0 satisfies the following:

(*) If u1 ≈0 u2 and u1
α·e−→ u′1 for α ∈ HO∗ and e ∈ L then there exists

α′ ∈ HO∗ and a state u′2 such that u2
α′·e−→ u′2 and u′1 ≈0 u′2.

The proof of W2′ is then straightforward. Suppose a ∈ L, u ≈ v and u
a−→ u′.

Then there exist u0, u1, . . . un ∈ P such that ui−1 ≈0 ui for all i = 1 . . . n,
u = u0 and v = un. By induction using (*), we obtain a sequence of states
u′ = u′0, . . . u

′
n and sequences α1, . . . αn ∈ HO∗ such that ui

αi·a−→ u′i and u′i−1 ≈0

u′i. It follows by transitivity that u′ ≈ u′n and v
αn·a−→ u′n, as required for W2′.

34

For the proof of (*), suppose that u1 ≈0 u2 and u1
α·e−→ u′1 for α ∈ HO∗ and

e ∈ L. We have the following cases:

• If u1 ≈0 u2 by rule 1, then u1, u2 ∈ S and u1 ∼ u2. By construction of
F 2

al(M), the only possibilities for the transition u1
α·e−→ u′1 are e ∈ LI, α = ε

and u′1 = (u1, e). Since then u2
ε·e−→ (u2, e), and (u1, e) ≈0 (u2, e) by rule 3,

we may take α′ = ε and u′2 = (u2, e).
• If u1 ≈0 u2 by rule 2, then we have the following cases.
· Suppose u1 = s and u2 = (s, b) for some s ∈ S and b ∈ HI, then the

only possibility for u1
α·e−→ u′1 is s

ε·a−→ (s, a) with e = a ∈ LI. Let
(o, t) ∈ next(s, b) for some o ∈ HO, then s ∼ t in M by LRa. Therefore
t

a−→ (t, a) and (s, a) ≈0 (t, a) by rule 3. Combining the previous H output
we have u2 = (s, b)

o·a−→ (t, a) and (s, a) ≈0 (t, a), so we may take α′ = o
and u′2 = (t, a).

· The reverse of the previous case: u1 = (s, b) and u2 = s for some b ∈ HI.
Here the only possibility for u1

α·e−→ u′1 is (s, b)
o−→ t

a−→ (t, a) for some
t ∈ S, α = o ∈ HO and e = a ∈ LI. Therefore in M we have (o, t) ∈
next(s, b), and s ∼ t by LRa. So we have s

ε·a−→ (s, a) and (t, a) ≈0 (s, a)
by rule 3. Here we may take α′ = ε and u′2 = (s, a).

· Suppose u1 = (s, b) and u2 = t with (s, b)
o−→ t for b ∈ HI and o ∈ HO.

Then the only possibility for u1
α·e−→ u′1 is (s, b)

o−→ t
a−→ (t, a) with α = o

and e = a ∈ LI. Since t ∼ t in M , we have t
ε·a−→ (t, a) and (t, a) ≈0 (t, a)

by rule 3, so we may take α′ = ε and u′2 = (t, a).
· The reverse of the previous case: u1 = t, u2 = (s, b) and (s, b)

o−→ t for
b ∈ HI and o ∈ HO. Now the possibility for u1

α·e−→ u′1 is t
ε·a−→ (t, a) with

α = ε and e = a ∈ LI. Then (s, b)
o·a−→ (t, a) and (t, a) ≈0 (t, a) by rule 3,

so we may take α′ = o and u′2 = (t, a).
• If u1 ≈0 u2 by rule 3, then u1 and u2 are in the form of (s, a) and (t, a),

respectively, with s ∼ t and a ∈ LI. Then the only possibility for u1
α·e−→ u′1

is that u1 = (s, a)
ε·o−→ s′ = u′1 with e = o ∈ LO, so (o, s′) ∈ next(s, a). By

s ∼ t and SCa, there exists (o, t′) ∈ next(t, a) such that s′ ∼ t′. Therefore
s′ ≈0 t′ by rule 1 and u2 = (t, a)

ε·o−→ t′. Thus, we may take α′ = ε and
u′2 = t′.

This completes the proof of (*).

Next we show that F 2
al(M) ∈ RESw

l implies M ∈ RESa. Suppose there is a
relation ≈ on F 2

al(M) as defined in Lem. 5.23. We define s ∼ t in M if s ≈ t in
F 2

al(M). Then obviously ∼ is an equivalence relation since ≈ is an equivalence
relation. To show that ∼ is an unwinding relation, we argue as follows:

• LRa: for all a ∈ AH and (o, t) ∈ next(s, a), we have s
a−→ (s, a)

o−→ t in
F 2

al(M), so s ≈ t by W1′ and transitivity, which implies s ∼ t.
• SCa: if s ∼ t, a ∈ AL and (o, s′) ∈ next(s, a) then s ≈ t and we have

s
a−→ (s, a)

o−→ s′ in F 2
al(M). By W2′, there exists α′ ∈ HO∗ and a state

35

u such that t
α′·a−→ u and (s, a) ≈ u. Since no actions in HO are enabled

on t the only possibility for t
α′·a−→ u is α′ = ε and t

ε·a−→ (t, a), so we
have (s, a) ≈ (t, a). By a similar argument using W2′ from (s, a) ≈ (t, a)
and (s, a)

o−→ s′, we conclude that there exists a state t′ ∈ S such that
(t, a)

o−→ t′ and s′ ≈ t′, hence s′ ≈ t′. By the definition of F 2
al, we have

(o, t′) ∈ next(t, a) and s′ ∼ t′ .

2

We note that the function F 2
al does not make F 2

al(M) ∈ RESw
l coincide

F 2
al(M) ∈ SBNDC in that every H input must be followed by an H out-

put in the translated system, while SBNDC requires that s
a−→ t implies

s ≈B t for all reachable s and a ∈ H, thus it does not distinguish inputs and
outputs from H.

It is also worth noting that we relate the RES properties to SBNDC but not
BNDC. This is because in some cases BNDC does not guarantee deducibility-
based security. The following process Q

Q = τ.l1.Q + l2.l2.Q + h1.l1.Q

is not hard to be verified as in SBSSNI and BNDC, which has a slightly
different form discussed in Forster’s thesis [For97], but L’s observation of (a
single) l2 is incompatible with H’s action h1. Therefore, in general, BNDC is
incomparable with deducibility based security properties such as NDIl.

5.4 BNS

For completeness, we also characterise the notion BNS, [BY94] discussed
above, within LTS. The intuition for BNS is that that Low’s future pattern
of observations depends only on the current Low state, which, in the context
of action-observed system, we took to be Low’s most recent observation.

We found in the previous section that restrictiveness on action-observed sys-
tems corresponds to two different notions of security on labelled transition
systems, depending on whether we translate from action-oriented systems us-
ing F 1

al or F 2
al, since these translations construct labelled transition systems

with somewhat different intuitive interpretations. A similar point applies to
the notion BNS. In order to formulate BNS on labelled transition systems, we
need to make sense of the notion of “most recent observation” of an agent, so
that we may define BNS as stating (using a notion of unwinding) that Low’s
new observation on performing an action depends only on its most recent
observation and the action being performed (the dependency on the later is
implicit in the definitions above).

36

In case of F 1
al, we have the difficulty that the translation constructs LTSs

that generate some runs in which an agent performs a sequence of actions
but never makes an observation. However, the missing observations in such
runs were enabled as self-loops from the states generated during the execution.
The appropriate intuitive viewpoint to take to this would seem to be that an
agent is able to observe the set of outputs enabled at a state. (This makes
the most intuitive sense when output transitions are self-transitions. It is also
quite reasonable if different observations represent, e.g., the values of variables
that an agent may read.)

For a state p of an LTS 〈P, p0,→,L〉, define obsL(p) to be the set of o ∈ LO
such that there exists p′ ∈ P with p

o−→ p′. Using this definition we obtain
the following definition of BNS in labelled transition systems.

Definition 5.24 An LTS M is in BNSl if the relation ∼L, defined on M by
p ∼L q if obsL(p) = obsL(q), is a McCullough unwinding.

The intuition for the relation ∼L on LTS’s (equivalence of the set of possi-
ble observations) is somewhat different from that used in the definition of
BNSa (equivalence of the most recent L observation). However, in F 1

al(M),
the (unique) next possible observation is in fact that which would have been
obtained from the most recent L action. Thus, it is not surprising to find the
following equivalence.

Theorem 5.25 If M ∈Mna then M ∈ BNSa iff F 1
al(M) ∈ BNSl.

Proof: Let M = 〈S, s0, next, dom,A〉, F 1
al(M) = 〈P, p0,→,L〉, and UF (M) =

〈S ′, (s0, f0), next′, dom,A〉. First, note that UF (M) and F 1
al(M) have the same

set of states. Moreover, we have (s, f) ∼L (t, g) (in UF (M)), iff f(L) = g(L) iff
obsL((s, f)) = {f(L)} = {g(L)} = obsL((s, f)) iff (s, f) ∼L (t, g) (in F 1

al(M)).
Thus also the equivalence relations in question are identical and we need to
show that ∼L is an unwinding relation on UF (M) iff ∼L is a McCullough
unwinding on F 1

al(M).

We prove ∼L is an unwinding relation on UF (M) if ∼L is a McCullough
unwinding on F 1

al(M).

LRa For all (o, (t, g)) ∈ next′((s, f), a) with a ∈ AH , g = f [H 7→ o], so
g(L) = f(L) which implies (s, f) ∼L (t, g).

SCa For all (s, f), (t, g) ∈ S ′ with (s, f) ∼ (t, g) and (o, (s′, f ′)) ∈ next′((s, f), a)
with a ∈ AL, by definition, f ′(L) = o, and on M , (o, s′) ∈ next(s, a).
Thus, (s, f)

a−→ (s′, f ′) in F 1
al(M). Since ∼L is a McCullough unwind-

ing relation, and a ∈ LI, there exists a transition (t, g)
a−→ (t′, g′) with

(s′, f ′) ∼L (t′, g′). Thus g′(L) = f ′(L) = o. This means there exists a
transition (o, t′) ∈ next(t, a) in M , hence (o, (t′, g′)) ∈ next((t, g), a) in
UF (M).

37

From ∼L being an unwinding relation to ∼L being a McCullough unwinding
can be proved by first doing an induction on the length on any input sequence
α, α′ ∈ (LI ∪HI)∗ with α|LI = α′|LI. The output case is trivial and similar
to what was shown in the proof of Thm. 5.21. 2

In case of the systems produced by F 2
al, we do not have the problem that

outputs are optional, so we can make sense of the notion of “most recent
observation” straightforwardly as “the label of the output transition most re-
cently taken”. However, this translation produces two different types of states:
those of the form of states s of the system being translated (where no outputs
are enabled) and those of the the form (s, a) (where only a single output is
enabled). Since their behaviour with respect to Low outputs differs, we cannot
treat these two types of states as equivalent under an unwinding. In order to
define a reasonable notion of BNS on such systems, we therefore take the view
that an agent is aware of its most recent observation, as well as any actions
it has taken since that observation (allowing multiple such actions makes the
definition applicable to a more general set of LTSs than those produced by
F 2

al).

To formalise these ideas, we using the following notion of unfolding, which
produces a version of an LTS in which states record the most recent observa-
tion and any subsequent actions. For M = 〈P, p0,→,L〉 an LTS with inputs
I and outputs O, let the unfolding of M be

UFl(M) = 〈P × (OI∗ ∪ I∗)D, (p0, f0),→,L〉

restricted to the set of reachable states, where f0 is the function satisfying
f0(u) = ε for all u ∈ D. The transition relation is defined as (s, f)

a−→ (t, g)
if s

a−→ t in M , and

• if a ∈ I, then g = f [dom(a) 7→ f(dom(a)) · a],
• if a ∈ O, then g = f [dom(a) 7→ (a)].

Intuitively, the function f records each agent’s information about the most
recent observation and any subsequent actions. On taking an action we append
this action to the agent’s record; on an observation we update the record to
consist of just that observation.

Using this notion of unfolding, we may now state a definition of BNS on
LTSs that is appropriate to the LTSs produced by the transformation F 2

al.
As discussed above in the context of restrictiveness, the notion of unwinding
that is most appropriate to such systems is weak McCullough unwinding. This
leads to the following definition.

Definition 5.26 M ∈ L is in BNSw
l if the relation ∼ on UFl(M), defined

by (u, f) ∼ (v, g) if f(L) = g(L), is a weak McCullough unwinding relation.

38

This notion corresponds to BNSa in the desired way:

Theorem 5.27 M ∈ BNSa iff F 2
al(M) ∈ BNSw

l .

In the proof of this result, we need to establish the relationship between two
systems connected by F 2

al when they are both unfolded (though in two different
ways). Given M = 〈S, s0, next, A, dom〉 ∈ Mna and F 2

al(M) = 〈P, p0,→,L〉,
define the following equivalence relations

• ∼ on the states S× (O∪{ε0})D of UF (M) by (s, f) ∼ (t, g) if f(L) = g(L),
and

• ∼′ on the states P × (OA∗ ∪ A∗)D of UFl(F
2
al(M)) by (s, f ′) ∼ (t, g′) if

f ′(L) = g′(L).

We have the following observation.

Lemma 5.28 For all s, t ∈ S, there exists reachable states (s, f) and (t, g)
in UF (M) such that (s, f) ∼ (t, g) iff there exists reachable states (s, f ′) and
(t, g′) in UFL(F 2

al(M)) such that (s, f ′) ∼′ (t, g′).

Proof: For the ‘only if’, if (s, f) is reachable in UF (M) then there is a
run (s0, f0)(a1, o1)(s1, f1) . . . (an, on)(sn, fn) with (s, f) = (sn, fn). Then by
definition of UFL and F 2

al, there is a run

(s0, f
′
0) a1 ((s0, a1), f

′′
1) o1 (s1, f

′
1) . . . ((sn−1, an), f ′′n) on (sn, f

′
n)

of UFL(F 2
al(M)) with s = sn. If there exists a rightmost L action ai in this run,

then f ′n(L) = oi = fn(L). Otherwise f ′n(L) = ε and fn(L) = ε0. We let f ′ be
f ′n. Similarly by tracing a run reaching (t, g) in UF (M), we construct another
run in UFL(F 2

al(M)) reaching (t, g′) with either g′(L) = oi = g(L) = f(L) or
g(L) = ε0 = f(L) and g′(L) = ε. Therefore we have the existence of f ′ and g′

with f ′(L) = g′(L), so (s, f ′) ∼′ (t, g′). The proof for the ‘if’ part is similar.
2

We can now give the proof of Thm. 5.27:

Proof: Let M = 〈S, s0, next, A, dom〉, and F 2
al(M) = 〈P, p0,→,L〉 with

P = S∪(S×A). Note that in the LTSs F 2
al(M) and UFl(F

2
al(M)) we consider,

we have LI = AL and HI = AH .

For the ‘only if’ part, suppose M ∈ BNSa. We show that on UFl(F
2
al(M)) the

relation ∼′, defined by (u, f) ∼′ (v, g) if f(L) = g(L), is a weak McCullough
unwinding relation.

W1. If (u, f)
a−→ (u′, f ′) with a ∈ HI, then f ′ = f [H 7→ f(H) · a], and f ′(L) =

f(L), therefore (u, f) ∼′ (u′, f ′).

39

W2. Suppose (u, f)
a−→ (u′, f ′) with a ∈ HO, and (u, f) ∼′ (v, g). Then f ′ =

f [H 7→ a], and therefore f ′(L) = f(L) = g(L). We satisfy the requirements
of W2 using (v, g)

ε−→ (v, g) and (u′, f ′) ∼′ (v, g).
W3. Suppose (u, f)

a−→ (u′, f ′) with a ∈ L, and (u, f) ∼′ (v, g). We need to

show there exists (v, g)
α·a·α′−→ (v′, g′) with α, α′ ∈ HO∗ and (u′, f ′) ∼′ (v′, g′).

We consider first the case where a ∈ LI. Then u ∈ S by definition of the
function F 2

al. There are two cases as follows.
· If v ∈ S, then by (u, f) ∼′ (v, g) we have f(L) = g(L). Since a is enabled

on v we have (v, g)
a−→ (v′, g′) and g′ = g[L 7→ g(L) · a]. It is obvious that

f ′(L) = f(L) · a = g(L) · a = g′(L). In this case we let α = α′ = ε.
· If v ∈ S × A, then let it be (t, b). We must have b ∈ HI, because by

definition of F 2
al, f(L) is in LO ∪ {ε}; if we had b ∈ LI then g(L) = o′ · b

with o′ ∈ LO, which implies f(L) 6= g(L), a contradiction. Since b ∈ HI,

we have ((t, b), g)
o′′−→ (r, g′′) with o′′ ∈ HO and r ∈ S. It is not hard to

see g′′(L) = g(L) = f(L). Since every action is enabled on r, there exists
(r, g′′) a−→ ((r, a), g′), and it follows g′(L) = g′′(L) · a = f(L) · a = f ′(L).
In this case we let α = o′′ and α′ = ε.
Alternately, suppose that a ∈ LO. Then u ∈ S × A by definition of

the function F 2
al, so u is in the form of (s, b) with s ∈ S and b ∈ LI. By

definition of UFl and F 2
al, we have f(L) in the form of o · b for some o ∈ LO,

therefore g(L) = f(L) = o ·b and v must be in the form (t, b) since otherwise
f(L) 6= g(L). Moreover there exists f ′′ and g′′ such that (s, f ′′) ∼′ (t, g′′)
with f ′′(L) = g′′(L) = o. By Lem. 5.28 there exists h1, h2 ∈ (O∪{ε0})D such
that (s, h1) ∼ (t, h2) on UF (M). Then in UF (M) we have (a, (u′, h′1)) ∈
next((s, h1), b), and by BNSa there exists (a, (v′, h′2)) ∈ next((t, h2), b) with
h′1(L) = h′2(L) = a. So (a, v′) ∈ next(t, b) in M , hence (t, b)

a−→ v′ in
F 2

al(M). Therefore, in UFL(F 2
al(M)) we have (v, g) = ((t, b), g)

a−→ (v′, g′)
and g′(L) = a = f ′(L). Consequently, (u′, f ′) ∼′ (v′, g′), and we have the
requirements of W3 with α = α′ = ε.

For the ‘if’, suppose UFl(F
2
al(M)) is in BNSw

l , we show that the relation ∼
defined by (s, f) ∼ (t, g) if f(L) = g(L) on UF (M) is an unwinding relation.

• For LRa, if a ∈ AH , it follows from the definition of UF that for all
(o, (t, g)) ∈ next((s, f), a) we have f(L) = g(L), hence (s, f) ∼ (t, g).

• For SCa, suppose a ∈ AL and (s, f) ∼ (t, g) and (o, (s′, f ′)) ∈ next((s, f), a).
By Lem. 5.28, there exists reachable states (s, h1) and (t, h2) of UFl(Fal(M))
such that (s, h1) ∼′ (t, h2). Moreover, by construction of UFl(F

2
al(M)), there

exist transitions (s, h1)
a−→ ((s, a), h′1)

o−→ (s′, h′′1). Since ∼′ is a weak Mc-
Cullough unwinding relation, there exists α1, α2, α3, α4 ∈ HO∗ such that
(t, h2)

α1·a·α2−→ ((t, a), h′2)
α3·o·α4−→ (t′, h′′2) and (s′, h′′1) ∼′ (t′, h′′2), and obvi-

ously by definition of F 2
al we have α1 = α2 = α3 = α4 = ε. This gives

us (o, (t′, g′)) ∈ next((t, g), a) with g′(L) = o = f ′(L). So (s′, f ′) ∼ (t′, g′).

2

40

6 Conclusion

We have studied the relationships between a variety of definitions of noninter-
ference under a number of mappings between different semantic frameworks.
While there have been a number of extensive comparative studies of defini-
tions of noninterference within semantic frameworks [Rya01, FG01], work on
the comparison of different frameworks has been more limited. Focardi et al.
[FRS05], connects language-based security with a particular process algebraic
property by a one-way translation. Focardi and Gorrierri [FG01] discuss a
number of connections between CCS-based and CSP-based security proper-
ties on non-divergent processes. The first connection is that failure seman-
tics, which is the default semantics of CSP (without divergence), is strictly
weaker than bisimulation semantics, so that if the failure-based properties
(such as FNDC, FSNNI) are defined, they will be strictly weaker than
their corresponding bisimulation-based properties (such as BNDC, BSNNI)
but strictly stronger than their corresponding trace-based properties (such as
NDC, SNNI). Second, they compared Roscoe’s eager and lazy security prop-
erties [Ros95], which are based on low-determinism, with the bisimulation-
based properties on labelled transition systems. It is shown that bisimulation-
based properties are strictly weaker than the lazy security property, but not
comparable with the eager security property. Mantel and Sabelfeld studied the
relationship between programming language security and trace-based security
in [MS03], in which a time-sensitive bisimulation-based security is connected
to a trace-based property of [Man00], by translating a program of a particular
language into a state event system.

We have focused in our work on mappings from state-based models, in order to
create a bridge from this type of model (which, for pragmatic reasons, is still
the most commonly used approach in applied work on formal verification of
information flow properties in operating systems [vO04, GWvF03, MWTG00])
to the more recent literature on security in process algebraic settings. Our
results show that similar properties in different models do often correspond in
a precise sense, but highlight some subtleties. We found that the most direct
correspondence between existing notions on the various models is obtained
when the obligatory observations in the state-observed model are treated as
optional when mapped to the other models. However, for another translation,
that treats observations as obligatory, we were able to give a new definition of
unwinding that leads to a correspondence of all the notions we consider under
this translation.

Also, and of particular interest, given our motivation from operating systems
verification, the strongest process algebraic notion, SBNDC, is still weaker
on the automaton models than the notion BNSs which seems closest to the
models and properties used in the operating systems verification literature

41

[GWvF03, MWTG00].

Our focus in this paper, following much of the literature, has been on asyn-
chronous models and the specific policy L ≤ H. However, the operating sys-
tems literature that originally motivated the study of noninterference also
involves issues such as separation policy, intransitive noninterference, schedul-
ing and synchrony that go beyond the concerns we have treated in this paper.
We intend to address these issues in future work.

References

[BY94] W. R. Bevier and W. D. Young. A state-based approach to nonin-
terference. In Proc. IEEE Computer Security Foundations Work-
shop, pages 11–21, 1994.

[FG95] R. Focardi and R. Gorrieri. A classification of security properties
for process algebras. In Journal of Computer Security, 1, pages
5–33. IOS Press, 1995.

[FG01] R. Focardi and R. Gorrieri. Classification of security properties.
In FOSAD 2000, LNCS 2171, pages 331–396, 2001.

[For97] R. Forster. Non-interference properties for nondeterministic pro-
cesses. PhD thesis, Dissertation for transfer to D.Phil status,
Oxford University Computing Laboratory, 1997.

[FRS05] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based
and process calculi security. In Proc. Foundations of Software Sci-
ence and Computation Structures (FoSSaCS), LNCS 3441, pages
299–315, 2005.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages 11–
20, April 1982.

[GM84] J. A. Goguen and J. Meseguer. Unwinding and inference control.
In IEEE Symposium on Security and Privacy, page 75, 1984.

[GWvF03] D. Greve, M. Wilding, and W. M. van Fleet. A separa-
tion kernel formal security policy. In ACL2 Workshop, 2003.
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[Man00] H. Mantel. Possiblistic definitions of security – an assembly kit.
In 13th IEEE Computer Security Foundations Workshop, pages
185–199, July 2000.

[McC87] D. McCullough. Specifications for multi-level security and a hook-
up property. In Proc. IEEE Symposium on Security and Privacy,
pages 161–166, 1987.

[McC88] D. McCullough. Noninterference and the composability of se-

42

curity properties. In Proc. IEEE Symposium on Security and
Privacy, pages 177–186, 1988.

[McC90] D. McCullough. A hookup theorem for multi-level security. IEEE
Transactions on Software Engineering, 16(6):563–568, 1990.

[McL94] J. McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In Proc. IEEE Symposium
on Security and Privacy, pages 79–93, May 1994.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[Mil90] J. K. Millen. Hookup security for synchronour machine. In Proc.
IEEE Computer Security Foundations Workshop, pages 84–90,
1990.

[MS03] H. Mantel and A. Sabelfeld. A unifying approach to the secu-
rity of distributed and multi-threaded programs. In Journal of
Computer Security, 4, pages 615–676. IOS Press, 2003.

[MWTG00] W. Martin, P. White, F.S. Taylor, and A. Goldberg. Formal
construction of the mathematically analyzed separation kernel. In
Proc. 15th IEEE Int. Conf. on Automated Software Engineering
(ASE’00), 2000.

[Ros95] A. W. Roscoe. CSP and determinism in security modelling. In
Proc. IEEE Symposium on Security and Privacy, pages 114–221,
1995.

[Rus82] J. Rushby. Proof of separability a verification technique for a
class of security kernels. In Proc. 5th International Symposium
on Programming, Turin, Italy, pages 352–367, April 1982.

[Rus92] J. Rushby. Noninterference, transitivity, and channel-control se-
curity policies. Technical report, SRI international, Dec 1992.

[Rya01] P. Y. A. Ryan. Mathematical models of computer security. In
FOSAD 2000 LNCS 2171, pages 1–62, 2001.

[Sut86] D. Sutherland. A model of information. In Proc. National Com-
puter Security Conference, pages 175–183, 1986.

[vdM07] R. van der Meyden. What, indeed, is intransitive noninterference?
(extended abstract). In Proc. European Symposium on Research
in Computer Security (LNCS 4734), pages 235–250. Springer,
2007.

[vO04] D. von Oheimb. Information flow control revisited: Noninfluence
= Noninterference + Nonleakage. In Proc. European Symposium
on Research in Computer Security (ESORICS 2004), volume 3193
of LNCS, pages 225–243. Springer, 2004.

[WJ90] J. T. Wittbold and D. M. Johnson. Information flow in nonde-
terministic systems. In Proc. IEEE Symposium on Security and
Privacy, pages 144–161, 1990.

[ZL97] A. Zakinthinos and E.S. Lee. A general theory of security prop-
erties. In Proc. IEEE Symposium on Security and Privacy, pages
94–102, May 1997.

43

