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1 Introduction26

The logic of knowledge has been shown to be a helpful formalism for the analysis of fault-27

tolerant distributed algorithms [2, 3, 6, 5]. A particular focus of work in this area has been28

the problem of Byzantine Agreement [10], which requires a group of agents to coordinate on29

a decision in the face of faulty behaviour by some the agents. It has been shown that the30

precise conditions under which a decision can be made by an agent in such a setting can31

be characterized, independently of details of the fault model, in terms of what the agent32

knows. That characterization can then be applied to derive protocols that are optimal in33

the sense that agents decide in each possible run, at the earliest possible time. The present34

paper reconsiders a number of issues in these results, for Simultaneous Byzantine Agreement35

(SBA), which requires agents to decide simultaneously (in the same round of computation).36

This version of Byzantine Agreement is relevant for applications such as the fair release37

of stock market information, or the coordination of a set of actuators controlling physical38

equipment such as an airplane or motor vehicle.39

In order to coordinate, agents need to exchange information. In the context of Byzantine40

Agreement protocols, this information is about the agents’ initial preferences for the joint41

decision to be made, and about the faults that they have observed while running the protocol.42

Driven by a focus on protocols that are theoretically optimal, in the sense of deciding as early43

as possible, the literature has concentrated on “full information protocols” [10, 2, 6], which44
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maximize the information exchanged by having agents store all messages that they receive,45

and transmitting their complete state in each round of the protocol. Agents using a full46

information protocol know everything that they could know in any other protocol, enabling47

them to make their decision at a time no later than they would in any other protocol.48

However, full information protocols use agent states that grow exponentially with time.49

While this state can be reduced with further analysis [6], in some cases, the theoretically50

optimal protocols are relatively inefficient, or even intractable, in space usage or computation51

time [6, 7]. Full information protocols are therefore not necessarily practical, and more52

practical protocols need to make compromises.53

Limiting the information exchanged by the protocol is one approach to obtaining a more54

practical protocol. However, one might still ask for a protocol that is optimal, when compared55

with other protocols that exchange information in the same way. A consideration of this56

issue was begun in [1], for the Eventual Byzantine Agreement problem in the case of sending57

omission failures. In the present paper, we consider optimality of limited information exchange58

protocols for Simultaneous Byzantine Agreement. Our particular focus is to understand the59

relationship between optimality of SBA protocols relative to a limited information exchange60

and a knowledge based program for this problem. We are interested in a general result61

that covers a range of different failure and information exchange models, since this kind62

of abstraction is one of the advantages obtainable from the knowledge based approach to63

distributed computing.64

In addressing this question, we are lead to first revisit a number of issues. The character-65

ization of SBA protocols using the logic of knowledge has employed a number of distinct66

notions of common knowledge, and there are also differences in the underlying semantic67

models used to represent the various failure models that have been studied. It also emerges68

that there are subtleties with respect to the notion of optimality guaranteed by the knowledge69

based program once one considers limited information exchange.70

With respect to notions of common knowledge, the original analysis of Simultaneous71

Byzantine Agreement in the crash failures model by Dwork and Moses [2] uses a notion of72

common knowledge amongst the nonfailed (active) agents, whereas a later developed analysis73

by Moses and Tuttle [6] (followed by [3]), for omissions failure models, and a more general74

notion of agreement protocol, uses a notion of common belief amongst the nonfaulty agents.75

As generally understood, in the crash failure model, an agent may be nonfailed, but still76

faulty, because it will fail at a later time. There exists some gaps in reasoning in these sources77

related to these issues, as well as some errors in some presentations of related results (e.g., in78

[3]). We clarify the relationship between these notions, both at the level of specifications and79

the knowledge based program. Specifically, we show that both the SBA specification and the80

common belief condition used in the knowledge based program for SBA may refer to either81

the nonfaulty or the nonfailed agents, without change of meaning.82

There are also some divergences between the formal modelling of the crash failure model83

between the original source [2] and later presentations [3]. The former uses a distinguished84

“crashed” state to represent when an agent has crashed, whereas the latter models crashed85

agents as simply failing to send messages from some point on (making this model a special86

case of the sending omissions model). This turns out to have an impact on the notion of87

common knowledge that can be used in these models. In the interests of generality, we88

develop a general modelling that covers both of these models of crash failures. We are then89

able to establish an equivalence between the different notions of common knowledge that90

have been used in the crash failures case.91

Using the resulting unified understanding of the literature, we then turn to the main92
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contribution of the paper, in which we provide a knowledge based characterization of an93

optimal protocol for SBA with respect to a limited information exchange. We work with the94

knowledge based program P that, when implemented with respect to the full information95

exchange, yields an SBA protocol that is an optimum with respect to all possible SBA96

protocols (for a fixed failure model). We show that if we implement P with respect to a given97

information exchange protocol, we can also obtain an implementation that is an optimum98

relative to protocols using that information exchange. This result requires an assumption on99

the information exchange, namely, that the agents do not exchange information about the100

specific actions that they have performed. In particular, agents should not inform others101

about the fact that they have made a decision, or what that decision is.102

We also show that if we allow agents to also exchange the information that they have103

taken a decision, but not what that decision is, then the knowledge based program still yields104

an implementation that is optimal amongst protocols using the given information exchange,105

in the sense that this implementation cannot be improved upon by any SBA protocol using106

that information exchange. However, we show by example that, under these assumptions, we107

do not always get an optimum.108

Our immediate motivation for developing these results was work that will be reported109

elsewhere, in which we have been using automated synthesis techniques to derive a concrete110

protocol from a knowledge based program and a description of the failure model in which it111

operates. The results of the present paper help us to understand the optimality guarantees112

satisfied by the implementations obtained using this process.113

The structure of the paper is as follows. We begin in Section 2 by recalling the general114

interpreted systems semantics for the logic of knowledge, and introducing the modal operators115

needed for the work. Section 3 states the specification for the Simultaneous Byzantine116

Agreement problem. Section 4 describes how an interpreted system is generated from an117

underlying information exchange protocol, a model of the failures against which the solution118

needs to defend, and a protocol used by agents to make their decisions. In Section 5, we119

reconsider the knowledge based characterization of SBA in the crash failures model due to120

Dwork and Moses [2], and show how this is related to the later characterization of Moses and121

Tuttle [6] for omissions failures. The upshot of this analysis is that the Moses and Tuttle122

characterization can be applied in all cases. We then apply this characterization to study123

optimality of SBA protocols with respect to limited information exchanges in Section 6.124

Section 7 presents a counter-example showing that the knowledge based characterization does125

not always yield an optimum solution in limited information exchange contexts. Section 8126

concludes with a discussion of related work and open problems. Proofs of results omitted in127

the body of the paper are provided in the appendix.128

2 Knowledge in Interpreted Systems129

We use the general semantic model of [3] to model the semantics of the logic of knowledge. We130

model the global states of a distributed system involving n agents from the set Agt = {1, . . . , n}131

as a set Le ×L1 × . . .×Ln, where Le is a set of states of the environment in which the agents132

operate, and each Li, for i ∈ Agt, is a set of local states of agent i. A run of the system is a133

function r : N → Le ×L1 × . . .×Ln mapping times, represented as natural numbers, to global134

states. A point is a pair (r,m) consisting of a run r and a time m. An interpreted system is135

a pair I = (R, π) consisting of a set R of runs and an interpretation π : R × N → P(Prop)136

associating a subset of the set Prop of propositions to each point of the system.137

The semantics of knowledge is defined using a relation ∼i on points for each agent i,138
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given by (r,m) ∼i (r′,m′) if ri(m) = ri(m′). For each agent i, the logic of knowledge has a139

modal operator Ki, such that Kiϕ is a formula for each formula ϕ. Satisfaction of formulas140

ϕ at points (r,m) of an interpreted system I = (R, π) is defined by the relation |=, such that141

1. I, (r,m) |= p if p ∈ π(r,m), for atomic propositions p ∈ Prop, and142

2. I, (r,m) |= Kiϕ if I, (r′,m′) |= ϕ for all points (r′,m′) ∼i (r,m).143

The interpreted systems we consider in this paper will generally be synchronous in the sense144

that if (r,m) ∼i (r′,m′) then m = m′.145

We work with a number of different notions of group knowledge, that operate with respect146

to an indexical set S of agents, which differs from point to point in the system. That is, we147

assume that there is a function S mapping each point of the system to a set of agents. The148

semantics of the atomic formula i ∈ S is given by I, (r,m) |= i ∈ S if i ∈ S(r,m).149

An agent may not know whether it is in a set S. We can define a notion of belief, relative150

to the indexical set S, by BS
i ϕ = Ki(i ∈ S ⇒ ϕ). We define the notions of “everyone151

in S believes” and “everyone in S knows”, by EBSϕ =
∧

i∈S B
S
i ϕ and EKSϕ =

∧
i∈S Kiϕ.152

Common belief, relative to an indexical set S, is defined by CBSϕ = EBSϕ ∧ EB2
Sϕ ∧ . . ..1153

Common knowledge, relative to an indexical set S, is is defined by CKSϕ = EKSϕ∧EK2
Sϕ∧. . ..154

A more semantic characterization is as follows. Define the relations ∼∗
S and ≈∗

S on points155

of a system I to the reflexive, transitive closures of the relations ∼S and ≈S on points given156

by157

1. (r,m) ∼S (r′,m′) if there exists i ∈ S(r,m) such that (r,m) ∼i (r′,m′)158

2. (r,m) ≈S (r′,m′) if there exists i ∈ S(r,m) ∩ S(r′,m′) such that (r,m) ∼i (r′,m′)159

Then we have that I, (r,m) |= CKSϕ iff I, (r′,m′) |= ϕ for all points (r′,m′) of I such that160

(r,m) ∼∗
S (r′,m′). Similarly, I, (r,m) |= CBSϕ iff I, (r′,m′) |= ϕ for all points (r′,m′) of I161

such that (r,m) ≈∗
S (r′,m′).162

These notions are (greatest) fixed points, satisfying CBSϕ ≡ EBSCBSϕ and CKSϕ ≡163

EKSCKSϕ. Provided it is valid that S ̸= ∅, we have that EBSϕ ⇒ ϕ and EKSϕ ⇒ ϕ and164

CBSϕ ⇒ ϕ and CKSϕ ⇒ ϕ are all valid. These are therefore knowledge-like notions. Further,165

for each of the operators O ∈ {Ki, B
S
i , EBS , EKS , CBS , CKS} we have Oϕ ⇒ Oψ valid if166

ϕ ⇒ ψ is valid.167

▶ Proposition 1. If A and B are indexical sets such that A ⊆ B is valid, then the formulas168

BB
i ϕ ⇒ BA

i ϕ, CKBϕ ⇒ CKAϕ and CBBϕ ⇒ CBAϕ are valid.169

▶ Proposition 2. The formulas Kiϕ ⇒ BA
i ϕ, EKAϕ ⇒ EBAϕ and CKAϕ ⇒ CBAϕ are valid.170

3 Simultaneous Byzantine Agreement171

The specification of Simultaneous Byzantine Agreement concerns a set of agents, operating172

subject to faults, who are required to reach a common decision on a set of values from173

some set V . At each moment of time, each agent i chooses an action from the set Ai =174

{noop} ∪ {decidei(v) | v ∈ V }.175

We may state the specification SBA(S) of Simultaneous Byzantine Agreement with176

respect to an indexical set S as follows:177

1 Moses and Tuttle [6] define this as ϕ ∧ CBSϕ. If we write this as T CBS(ϕ) (for “true common belief)
we have T CBS(ϕ) ⇒ ϕ valid even when S ̸= ∅ is not valid. However, their application of this operator
is for the set S of nonfaulty agents, which is always non-empty because they work with the assumption
that the number t of faulty agents is at most the number of agents minus two. In all their applications,
therefore, T CBS(ϕ) is equivalent to CBS(ϕ).
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Unique-Decision: Each agent i performs an action decidei(v) (for some v) at most178

once.2179

Simultaneous-Agreement(S): If i ∈ S and i performs decidei(v) then, at the same180

time, all j ∈ S also perform decidej(v).181

Validity(S): If i ∈ S and i performs decidei(v) then there exists an agent j with182

initj = v.183

There are variances in the literature as to the set S that should be used in this specification.184

Most work takes S to be the set N of nonfaulty agents. However, Dwork and Moses [2]185

(on the crash failure model) appears to refer to the nonfaulty agents, informally, in their186

introduction, but work with the active (nonfailed) agents A in their proofs. We consider the187

alternatives below in order to clarify these points.188

A further point where the specification requires formal clarification is the meaning of189

“agent i ∈ S performs an action decidei(v)”. Does this hold in a situation where an agent190

attempts to perform the action, but crashes? (In [3], this is formalised as decidingi(v),191

defined as ¬decidedi(v) ∧ ⃝decidedi(v), where “⃝” is the “next time” operator, and N192

appears to be interpreted (p. 207 and p. 213) as the set of active agents. But this combination193

does not support the claim (on p. 218) that the formula decidingi(v) ⇒ BN
i decidingi(v)194

is valid.)195

4 Information Exchange Protocols and Failure Models196

To model protocols for SBA under a variety of failure models, and study the effect of a range of197

assumptions about how agents in these protocols exchange information, we compose protocols198

into two parts, a decision protocol P and an information exchange E . The environment in199

which the agents operate will be modelled as failure model F .200

An information exchange E associates to each agent i a tuple Ei = ⟨Li, Ii,Mi, µi, δi⟩,201

where202

1. Li is a set of local states for agent i;203

2. Ii ⊆ Li is a set of initial states;204

3. Mi is a set of messages that agent i may send, assumed to contain the value ⊥ representing205

that the agent sends no message;206

4. µi : Li × Ai → (Agt → Mi) is a function, such that µi(s, a)(j) represents the message207

that agent i, with local state s, sends agent j in a round in which it performs action a;208

5. δi : Li ×Ai ×Πj∈AgentsMj → Li, is a function, such that δi(s, a, (m1, . . . ,mn)) represents209

the local state of agent i immediately after a round in which the agent started in local210

state s, performed action a, and received messages (m1, . . . ,mn) from agents 1, . . . , n211

respectively.212

A decision protocol P for an information exchange E consists of a function Pi : Li → Ai for213

each agent i.214

We focus here on synchronous protocols in which local states in Li are of the form215

⟨initi, timei, . . .⟩, where initi ∈ V represents agent i’s initial preference for the decision216

to be made, and timei represents the current time. (In the case of the crash failures217

2 In Byzantine contexts, with S equal to the set of nonfaulty agents, it would be appropriate to change
this to say that each agent i ∈ S performs an action decidei(v) (for some v) at most once, since the
condition as stated cannot be guaranteed. However, in benign failure models this stronger condition
can be easily satisfied.
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model, there is also an additional state crashedi.) The update function δi acts so that if218

δ(⟨initi, timei, . . .⟩, a,m) = ⟨init′
i, time′

i, . . .⟩ then init′
i = initi and time′

i = timei + 1.219

In the full information information exchange EF IP for SBA, agents’ initial local states220

consist of their initial preferences, agents send their complete local states to all other agents221

in each round, and update their states by recording all messages received in their local state.222

That is, initial states are values initi, for all agents i, j, states s ∈ Li, and actions a, we223

have µi(s, a)(j) = s, and δ(s, a,m) = s ·m for all message vectors m. (The action a and the224

time are not recorded explicitly in the local state in this model, but can be deduced.)225

A failure model is given by a tuple F = ⟨Le, Ie, δe,Adv⟩226

1. Le is a set of states of the environment.227

2. Ie ⊆ Le is a nonempty set of initial states of the environment.228

3. δe : Le × Πi∈AgtAi → Le, such that δe(s, (a1, . . . , an)) represents how the state of229

the environment is updated in a round in which agents perform actions a1, . . . , an.230

(Dependence on agent actions allows the environment to record information about the231

actions performed by the agents. We could also include here a dependence on the messages232

sent, but we will not need this for the failure models considered in this paper.)233

4. Adv is a nonempty set of adversaries, where each adversary is given by a tuple ⟨∆t,∆r,∆s⟩,234

where235

∆t : N × Agt × Agt ×
⋃

i∈Agt Mi →
⋃

i∈Agt Mi is a function, such that ∆t(k, i, j,m) is236

a message resulting from a fault, if any, through which the environment perturbs the237

message m transmitted by agent i to agent j in round k + 1.238

∆r : N × Agt × Agt ×
⋃

i∈Agt Mi →
⋃

i∈Agt Mi is a function, such that ∆r(k, i, j,m) is239

a message resulting from a fault, if any, through which the environment perturbs the240

message m received by agent j from agent i in round k + 1.241

∆s : N× Agt × Πi∈AgtLi → Πi∈AgtLi is a function, representing effects that faults have242

on the agents’ local states, such that ∆s(k, i, s∗
i ) = s′

i when the effect of the fault, if243

any, is to cause state s∗
i of agent i to be modified in round k + 1 to state s′

i, for each244

agent i. (Here we write s∗
i to indicate the state of the agent after it has applied its245

state update for the round.)246

Given a decision protocol P , information exchange E and failures model F , we define247

the interpreted system IP,E,F = (RP,E,F , π) with global states L∗
e × L1 × . . . × Ln, where248

L∗
e = Le × Adv, and runs r defined by249

1. r(0) = ((se, (∆t,∆r,∆s)), s1, . . . , sn), where se ∈ Ie and si ∈ Ii for each i ∈ Agt, and250

(∆t,∆r,∆s) ∈ Adv.251

2. for all times k, if r(k) = ((se, (∆t,∆r,∆s)), s1, . . . , sn), then r(k + 1) is the state252

((s′
e, (∆t,∆r,∆s)), s′

1, . . . , s
′
n) obtained as follows.253

For each agent i, let ai = Pi(si) be the action selected by the decision protocol, and254

let mi,j = µi(si, ai)(j) be the message that agent i sends to agent j, according to the255

information exchange Ei.256

Note that the adversary (∆t,∆r,∆s) is the same in r(k) and r(k + 1). The remaining257

state of the environment is updated from se to s′
e = δe(se, (a1, . . . , an)).258

For each agent i and j, let m′
i,j = ∆r(k, i, j,∆t(k, i, j,mi,j)) be the message resulting259

from any faults caused by the adversary in the transmission from i to j. Thus, for each260

agent j, the messages received by agent j are (m′
1,j , . . . ,m

′
n,j). The expected effect of261

these message receptions on the agents’ local states is to transition from (s1, . . . , sn) to262

(s∗
1, . . . , s

∗
n), where s∗

j = δj(sj , aj , (m′
1,j , . . . ,m

′
n,j)). We define s′

i = ∆s(k, i, s∗
i ) for each263

agent i. That is, we apply the perturbation ∆s to the local states of the agents after they264

have updated their local states according to the information exchange.265
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Agents may experience a number of different types of faults. Agent i has a transmission266

fault in round k+1 of run r if ∆t(k, i, j,mi,j) ̸= mi,j , where mi,j is the message sent by i to j267

in round k+ 1. Agent j has a reception fault in round k+ 1 of run r if ∆r(k, i, j,mi,j) ̸= mi,j ,268

where mi,j is the message delivered from i to j in round k + 1. Agent i has a state fault if,269

in round k + 1, we have (s′
1, . . . , s

′
n) = ∆s(k, (s∗

1, . . . , s
∗
n)) and s′

i ≠ si. If none of these types270

of faults apply, then we say that agent i does not have a fault in round k + 1. We say that271

an agent i is faulty in a run r if it has a fault of any type for some round k ∈ N. Agent i272

is nonfaulty to time k if it does not have a fault in rounds 1 . . . k in run r. We define the273

indexical set N (r, k) to be the set of agents that are not faulty in r, and the indexical set274

A(r, k) to be the set of agents that are not faulty to time k.275

The interpretation π will give meaning to a number of propositions dependent on the276

specifics of the information exchange and the failure model. In particular, for agents i, values277

v ∈ V , and indexical sets S, T ,278

decidesi(v) is in π(r,m) if Pi(r,m) = decidei(v);279

i ∈ S is in π(r,m) if i ∈ S(r,m);280

S ⊆ T is in π(r,m) if S(r,m) ⊆ T (r,m);281

S = ∅ is in π(r,m) if S(r,m) = ∅;282

∃v is in π(r,m) if there exists an agent i with initi = v in ri(0).283

We have noted an ambiguity in “agent performs decidesi(v)” in the specification of284

SBA. In the following, we interpret this as decidesi(v) as defined above. We remark that285

our definition of decidesi(v) holds at a point where an agent is required by its protocol to286

perform decidei(v), but crashes in the next round.287

Plainly, N ⊆ A is valid; any agent that never fails will not have failed before the288

current time. Note that N is independent of the time, and depends only on the run:289

N (r,m) = N (r,m′) for all times m,m′. This does not hold for A.290

A context for SBA is a pair γ = (E ,F), where E is an information exchange and F is a291

failure model. For brevity we may also write IP,γ for the interpreted system IP,E,F .292

Commonly studied failure models from the literature can be represented in the above293

form. We say that ∆s is correct for agent i if ∆s(k, i, si) = s for all si ∈ Li and k ∈ N.294

Similarly ∆t is correct for agent i if ∆t(k, i, j,m) = m for all k, j and m, and ∆r is correct295

for agent j if ∆r(k, i, j,m) = m for all k, i and m.296

In the hard crash failures model of [2], agents may crash at any time. In the round in297

which an agent crashes, it sends an arbitrary subset of the set of messages it was required298

to send in the round. To represent this model, we require that agents’ local state sets Li299

contain a distinguished state crashed. We always take ∆r to be correct for all agents i. An300

adversary for which agent i crashes in round k+1 has ∆s(k, i, si) = crashed for all si ∈ Li,301

and there exists a set J ⊆ Agt such that, for all messages m, ∆t(k, i, j,m) = ⊥ for j ∈ J ,302

and ∆t(k, i, j,m) = m for j ∈ Agt \ J . For k′ > k, we also have ∆s(k′, i, si) = crashed,303

and ∆t(k′, i, j,m) = ⊥ for all agents j. For agents that do not crash, ∆s,∆t and ∆r are304

correct. We write Crasht for the failure model in which Adv contains the adversaries in305

which t or fewer agents may crash.306

In the communications crash version of the crash failures model used in [3], again agents307

may crash at any time, and in the round in which an agent crashes, it sends an arbitrary308

subset of the set of messages it was required to send in the round. However, we do not309

require for this model that agents’ local state sets Li contain the distinguished state310

crashed. Instead, failures in this model can be understood as crashes of the agent’s311

transmitter. An adversary for which agent i crashes in round k+1 has ∆s(k, i, si) = si for312

all si ∈ Li, and there exists a set J ⊆ Agt such that, for all messages m, ∆t(k, i, j,m) = ⊥313
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for j ∈ J , and ∆t(k, i, j,m) = m for j ∈ Agt \ J , and for k′ ≥ k, we also have314

∆t(k, i, j,m) = ⊥ for all agents j. In all other cases, ∆s, ∆t, and ∆r are correct. We315

write ComCrasht for the failure model in which Adv contains the adversaries in which t316

or fewer agents may crash.317

In the Sending Omissions model SOt, ∆s and ∆r are correct for all agents, but ∆t may318

allow failures for up to t agents.319

In the Receiving Omissions model ROt, ∆s and ∆t are correct for all agents, but ∆r may320

allow failures for up to t agents.321

In the General Omissions model GOt, ∆s is correct for all agents, but ∆r and ∆t may322

allow failures may allow failures for up to t agents.323

Other types of failure assumptions can also easily be modelled, such as crashing agents324

sending messages to a prefix of the list of agents [1 . . . n], atomic transmission failures in325

which a failing agent transmits to no other agents, message corruption, etc.326

5 Crash Failures327

We first consider some subtleties relating to the hard crash failures model and the knowledge328

based program from [2]. This modelling has consequences for the agent’s knowledge, and329

affects the knowledge based program developed in [2]. In the context of this model, N330

represents the nonfaulty agents and the set A of agents that have not failed to the current331

time is the set of active agents, that have not yet crashed.332

The specification for SBA for the crash failures model appears to be given by Dwork and333

Moses as SBA(N ), i.e., with respect to nonfaulty agents. On the other hand, it is stated334

in [3] as SBA(A), i.e., for the nonfailed agents. Moses and Tuttle [6] consider omissions335

failures, and state a specification that is a generalization (to a richer set of coordinated336

action problems, and allowing the inclusion of a termination requirement) of SBA(N ). The337

use of N appears to be the more common approach in the broader literature on distributed338

algorithms. We may note the following relationship between these specifications,339

▶ Proposition 3. Let γ be any context for SBA, and P any protocol for this context, and340

let S and T be indexical sets of agents such that IP,γ |= S ⊆ T . If IP,γ |= SBA(T ) then341

IP,γ |= SBA(S). In particular if IP,γ |= SBA(A) then IP,γ |= SBA(N ).342

Under certain conditions, we also have a converse to this result.343

▶ Proposition 4. Suppose that P is a protocol for the context γ, and let S and T be indexical344

sets of agents in IP,γ , such that345

(a) for all points (r,m), if IP,γ , (r,m) |= i ∈ T ∧ j ∈ T , then there exists a run r′ such that346

(r,m) ∼i (r′,m) and (r,m) ∼j (r′,m), and IP,γ , (r,m) |= i ∈ S ∧ j ∈ S, and347

(b) IP,γ |= S ⊆ T , and348

(c) IP,γ |= T ̸= ∅ ⇒ S ̸= ∅.349

Then IP,γ |= SBA(S) implies IP,γ |= SBA(T ).350

▶ Corollary 5. For crash failures and omissions failure contexts γ and protocols P , with351

IP,γ |= N ̸= ∅, we have IP,γ |= SBA(N ) implies IP,γ |= SBA(A).352

Thus, we have SBA(N ) is equivalent to SBA(A) in crash and omission failure models when353

N ≠ ∅ is valid. While SBA(N ) requires only the nonfaulty agents to decide simultaneously,354

in fact, the stronger statement that all nonfailed agents act simultaneously is implied by this355

specification.356



R. van der Meyden XX:9

For a set S, write decidesS(v) for
∧

i∈S decidesi(v). Dwork and Moses [2] The-357

orem 8 states that for any SBA protocol P for the crash failures model, decidesi(v) ⇒358

CKA(decidesA(v)) and decidesi(v) ⇒ CKA(∃v) are valid in IP,E,Crasht
. The specification359

of SBA is stated informally in the introduction of the paper using the term “nonfaulty” but360

it is not made precise in the paper whether this should be interpreted as referring to the361

set N of agents that never fail, or the set A of active agents, that have not yet failed. The362

proof of Theorem 8 appears to be using A as the interpretation. However, the result can363

also be established using the apparently weaker interpretation N , as shown in the following364

result. A second subtlety is that the proof depends on the fact that crash failures have been365

modelled using the hard crash failures model, so that crashed agents are in a special state366

crashed, with the property that Pi(crashed) = noop ̸= decidei(v) for all values v.367

▶ Proposition 6. Suppose that P is a protocol for the hard crash failures context (E ,Crasht)368

with t < n such that IP,E,Crasht
|= SBA(N ). Then decidesi(v) ⇒ CKA(decidesA(v)) and369

decidesi(v) ⇒ CKA(∃v) are valid in IP,E,Crasht
.370

On this basis, [2] use the general knowledge-based program P(Φ) in which agent i operates371

as follows372

do noop until ∃v ∈ V (Φv);
let v be the least value in V for which Φv

in decidei(v)
(1)373

where Φ is a collection of formulas indexed by a values v ∈ V such that Φv is the (knowledge-374

based) condition for each possible choice v ∈ V given by KiCKA(∃v). A concrete protocol P375

implements P(Φv) with respect to a context γ if at all points (r,m) of IP,γ , and all agents i,376

Pi(ri(m)) is the same action as would be selected by P(Φv) at (r,m), with Φv interpreted as377

true iff IP,γ , (r,m) |= Φv.378

By contrast, [3] show that for an SBA(A) protocol, the formula decidei(v) ⇒ BA
i CBA∃v379

is valid in IP,E,F . On the basis of this, they use Φv = BA
i CBA∃v in the knowledge based380

program P (Φ).3 In fact, this result holds more generally, as shown in the following result.381

▶ Lemma 7. Let S be an indexical set of agents and suppose that P is an SBA(S) protocol382

for an information exchange protocol E and failure environment F . Then the formula383

decidei(v) ⇒ BS
i CBS∃v is valid in IP,E,F .384

Beyond the use of CKA instead of CBA to characterize the conditions for an agent to385

decide, a further difference in the results of [2] and [3] is the modelling of crash failures.386

Whereas [2] uses the hard crash model, [3] uses the communication crash model. We now387

clarify the connection between these characterizations: in hard crash contexts, the two388

characterizations are equivalent.389

▶ Proposition 8. If P is an SBA(N ) protocol for the hard crash context (E ,Crasht) with t < n390

then CKA(decidesA(v)) ⇔ CBN (decidesN (v)) and i ∈ A ⇒ (KiCKA(decidesA(v)) ⇔391

BN
i CBN (decidesN (v)) are valid in IP,E,Crasht

.392

3 Moses and Tuttle [6] show just that i ∈ N ∧ decidei(v) ⇒ CBN ∃v is valid, and write a program in
which the condition “test for CBN ∃v” is used. This work predated the formal definition of knowledge
based programs, which requires that the conditions of the program be local to an agent. The treatment
of [3] is therefore more satisfactory.
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Proposition 8 establishes that, in hard crash contexts, the knowledge based program using393

KiCKA(decidesA(v)) is equivalent to the knowledge based program usingBN
i CBN (decidesN (v)),394

since these formulas are equivalent for active agents, and agents that have crashed take no395

actions in either case. However, these knowledge based programs may behave differently396

in a “communications crash” model, where crashed agents continue to take actions, since397

then i ∈ A ⇒ Ki(i ∈ A) is no longer valid, and whether a crashed agent satisfies Ki(i ̸∈ A)398

depends on the information exchange.399

Since the characterization of [6] is more general, in the sequel, we work with their belief400

based decision condition in the knowledge based program P(Φ), assume N ̸= ∅ is valid, and401

take SBA(N ) to be meaning of the specification of SBA.402

However, we may also note that, similar to the equivalence at the level of the specification,403

the choice of N or A in the condition of the knowledge based program makes no difference404

to the semantics. Define a synchronous epistemic bisimulation on I with respect to a set of405

atomic propositions Prop to be a relation ≈ such that whenever (r,m) ≈ (r′,m′), we have406

m = m′,407

for all p ∈ Prop, I, (r,m) |= p iff I, (r′,m) |= p, and408

for all i ∈ Agt, (r,m) ∼i (r′,m).409

▶ Proposition 9. Suppose that S and T are indexical sets of agents in an interpreted system410

I, and let ≈ be a synchronous epistemic bisimulation on I with respect to Prop such that411

(a) I |= S ⊆ T , and (b) for all points (r,m) of I there exists a point (r′,m) such that412

(r,m) ≈ (r′,m) and S(r′,m) = T (r,m). If p ∈ Prop then I |= BS
i CBSp ⇔ BT

i CBT p.413

▶ Corollary 10. If p is an atomic proposition that depends only on the local states of the agents,414

and F is either a crash or omission failure model, then IP,E,F |= (BN
i CBN p) ⇔ BA

i CBAp415

Taking p = ∃v, we see that we can use either the formula BN
i CBN ∃v or BA

i CBA∃v in416

the knowledge based program, without changing its semantics.417

6 Optimality with Respect to Limited Information Exchange418

We now turn the the question of optimality of SBA protocols with respect to limited419

information exchange. The literature has concentrated on implementations P of the knowledge420

based program P(Φ) with respect the full information exchange, because it can be shown421

that such implementations P are an optimum, in the sense that for every SBA protocol422

P ′ using any other information exchange, in every run the nonfaulty agents decide using423

P no later than they would in the corresponding run of P ′. Here, a run r of P is said to424

correspond to a run r′ of P ′ if they have the same initial state, hence the same adversary425

and initial states of all the agents.426

Since the full information protocol P may be impractical or even require agents to perform427

intractable computations we are interested in alternative limited information exchanges.428

However, having selected an information exchange, it is still desirable to use a protocol that is429

optimal amongst those that use the same information exchange. In this section, we consider430

whether the knowledge based program P(Φ) yields such implementations. We show that this431

is the case in several ways, subject to some assumptions about the information exchange.432

In order to fairly compare two decision protocols relative to an information exchange,433

it helps to assume that the information exchange does not explicitly transmit information434

about what decisions have been taken. Say that an information exchange protocol E with435

action sets Ai = {noop} ∪ {decidei(v)|v ∈ V } does not transmit decision information if for436

all agents i, local states s ∈ Li, and actions decidei(v1), decidei(v2) ∈ Ai, we have437
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µi(s, decidei(v1)) = µi(s, decidei(v2)), and438

for all message vectors m, we have δi(s, decide(v1),m) = δi(s, decide(v2),m).439

Say that an information exchange protocol E does not transmit information about actions if440

for all agents i, local states s ∈ Li, and actions a1, a2 ∈ Ai, we have441

µi(s, a1) = µi(s, a2), and442

for all message vectors m, we have δi(s, a1,m) = δi(s, a2,m).443

Clearly, if E does not transmit information about actions, then it does not transmit decision444

information. Intuitively, the information such protocols exchange is only about the initial445

states and failure pattern, and not about decisions that the protocol has taken. Similarly,446

the information exchange protocol does not record information about decisions in its local447

state. In effect, this assumption states that agents should not base their decisions on448

what other agents have decided, but only on what information about the initial state449

and failures has been exchanged. Note also that an early stopping protocol, which stops450

transmitting information once it has decided, satisfies the property of not transmitting451

decision information, but such a protocol may transmit information about actions, since we452

may still have µi(s, noop) ̸= µi(s, decidei(v)).453

We remark that a protocol, as defined in [6], determines the messages to be sent, and454

actions to be performed, as a function of a view (corresponding to our notion of local state)455

that is comprised of a history of messages received, a history of other inputs from the456

environment, the time, and the agent identity. This means that the [6] protocols (including457

their full-information protocols) do not transmit information about actions. However, in the458

case of a full-information protocol, and other protocols that exchange sufficient information,459

it is in fact possible, knowing the decision protocol that the agents are running, for an agent460

to deduce what actions other agents have taken in the past.461

We work with the following order on decision protocols: P ′ ≤E,F P if for all runs r′ of462

IP ′,E,F , and all agents i, if agent i decides in round m in run r′, then in the corresponding463

run r of IP,E,F , agent i decides no earlier than round m (or not at all). An SBA protocol P464

is optimal with respect to an information exchange E and failure model F , if for all SBA465

protocols P ′ with respect to E and F , if P ′ ≤E,F P then P ≤E,F P ′. That is, there is no466

SBA protocol P ′ that decides no later than P , and sometimes decides earlier.467

▶ Theorem 11. Suppose the information exchange E is synchronous and does not transmit468

decision information, and that the protocol P implements P(Φ) with respect to information469

exchange E and failure model F . Then P is an optimal SBA protocol with respect to470

information exchange E and failure model F ,471

Proof. We prove optimality. Suppose that P ′ ≤E,F P . We show that there is no run where472

some agent i running P ′ decides strictly earlier than in the corresponding run of P . Moreover,473

we show that for all runs r′ of IP ′,E,F , and all times m, then for the corresponding run r of474

IP,E,F , we have that r′
i(m) = ri(m) for all agents i.475

The proof is by induction on m. For m = 0, we have that r′
i(0) = ri(0) for all agents i,476

by definition of correspondence. Moreover, there can be no instance of P ′ deciding in an477

earlier round than P before time m = 0.478

For the inductive case, assume that that we have that for all agents i, r′
i(k) = ri(k) for479

all k ≤ m, and there is no instance, before time m, of some agent using P ′ deciding in an480

earlier round than it would using P . We show that for each agent i, protocols P ′ and P481

either both decide (possibly on different values), or both perform noop. It will follow from482

this that r′
i(m+ 1) = ri(m+ 1) for all agents i. Also, it remains true for each agent i that483

P ′ has not decided earlier than P to time m+ 1.484



XX:12 Optimal Simultaneous Byzantine Agreement

We first show that for each agent i, either both Pi(ri(m)) = P ′
i (r′

i(m)) = noop or485

there exists v, v′ ∈ V such that Pi(ri(m)) = decidei(v) and P ′
i (r′

i(m)) = decidei(v′).486

Obviously, this holds if Pi(ri(m)) = P ′
i (r′

i(m)) = noop, so we need only consider the cases487

where either protocol decides. If P ′(r′
i(m)) = decidei(v′), then by Lemma 7, we have that488

IP ′,E,F , (r′,m) |= BN
i (CBN ∃v′). Because the local states of corresponding runs of IP,E,F are489

identical to time m to those of IP ′,E,F , it follows that IP,E,F , (r,m) |= BN
i (CBN ∃v′). Because490

P ′ ≤E,F P , agent i has not yet decided at the point (r,m). Since P implements P(Φ), it491

follows that Pi(ri(m)) = decidei(v) for some value v. Alternately, if P (ri(m)) = decidei(v),492

then because P ′ has not decided earlier, and P ′ ≤E,F P , we must have P ′(r′
i(m)) =493

decidei(v′) for some value v′. Thus, in either case we have that both protocols decide, as494

required.495

Next, we show that r′
i(m+ 1) = ri(m+ 1) for all agents i. The proof considers several496

cases, but in each case, the fact that the local states of all agents are identical in r′(m) and497

r(m) and that for each agent i, protocols P ′ and P either both decide, or both perform498

noop, implies that the same messages are sent by each agent in round m + 1 of r′ and499

r′. (In the case that both protocols decide, we use the fact that E does not transmit500

decision information.) Moreover, the failure patterns are identical in these corresponding501

runs, so the same vector ρi represents the messages received by agent i in round m + 1502

in run r and in run r′. If Pi(ri(m)) = P ′
i (r′

i(m)) = noop, then we have r′
i(m + 1) =503

δi(r′
i(m), noop, ρi) = δi(ri(m), noop, ρi) = ri(m+ 1). Alternately, if Pi(ri(m)) = decidei(v)504

and P ′
i (r′

i(m)) = decidei(v′) then, because E does not record decision information, we have505

r′
i(m+1) = δi(r′

i(m), decide(v′), ρi) = δi(ri(m), decide(v′), ρi) = δi(ri(m), decide(v), ρi) =506

ri(m+ 1). ◀507

Note that Theorem 11 does not state that an implementation P of the knowledge-based508

program is an optimum SBA protocol, in the sense that P ≤E,F P ′ for all SBA protocols509

P ′ with respect to E and F . In fact, this is not true, as we show in Section 7. The counter-510

example illustrates a trade-off between information exchange and decision time: sending511

less information may result in making later decisions. The information exchange in this512

counter-example does not transmit decision information, but it does transmit information513

about actions. However, for information exchanges that do not transmit information about514

actions, we do obtain that the knowledge-based program implementation is an optimum.515

▶ Theorem 12. Suppose that information exchange E does not transmit information about516

actions. Let P be an implementation of the knowledge-based program P(Φ) with respect to E517

and failure model F . Then P is an optimum SBA protocol with respect to E and F .518

Proof. Note first that for all SBA protocols P and P ′, if r and r′ are corresponding runs519

of P and P ′ with respect to E and F , then because E does not transmit information about520

actions, for all times m and all agents i, we have ri(m) = r′
i(m). We show that P decides521

no later than P ′ for all agents i. Suppose that P ′ decides in round m+ 1 in run r′. Then522

IP ′,E,F (r′,m) |= BN
i (CBN ∃v) for some value v. Since the local states are always the same523

with respect to P , we also have IP,E,F (r,m) |= BN
i (CBN ∃v). Because P implements P(Φ)524

this implies that either agent i has already decided before time m in run r, or agent i also525

decides in round m+ 1 in run r. ◀526

7 A Counter-example527

For the counter-example promised above, we demonstrate that the implementation P of P(Φ)528

with respect to an information exchange E and the sending omissions failure model SOt is529
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not always an optimum SBA protocol with respect to E and SOt. To do so, we provide an530

SBA protocol P ′ with respect to E and SOt such that we do not have P ≤E,SOt
P ′. We take531

V = {0, 1} and give the description of P ′ for an arbitrary number n of agents of which up to532

t ≤ n are faulty, but then specialize to n = 4 and t = 3 for the counter-example.533

The information exchange E is defined as follows. The local states Li of agent i are tuples534

of the form ⟨initi, wi,newi, kf i, donei, timei⟩, where535

initi ∈ {0, 1} is the agent’s initial value,536

wi ∈ P({0, 1}) is, intuitively, the set of values that the agent knows to be the initial value537

of some agent,538

newi ∈ P({0, 1}) is, intuitively, the set of values that the agent first learned about in the539

most recent round,540

kf i ∈ P(Agt) is, intuitively, the set of agents that the agent knows to be faulty,541

donei ∈ {0, 1} indicates whether the agent has made a decision, and542

timei is the current time.543

The initial local states Ii are the states with wi = {initi}, newi = {initi}, kf = ∅ and544

donei = timei = 0.545

Agent i’s set of messages Mi contains ⊥ and messages of the form ⟨n, f⟩, where n ⊆ {0, 1}546

and f ⊆ Agt. Intuitively, n is a set of values that agent i has just learned about, and f547

is a set of agents that agent i knows to be faulty. The message that agent i sends when548

it performs action a and has local state si = ⟨initi, wi,newi, kf i, donei, timei⟩ is defined as549

follows:550

If either donei = 1 or a = decidei(v) for some v ∈ {0, 1}, then µi(si, a) = ⟨∅, ∅⟩.551

Intuitively, if either the agent is in the process of deciding, or it has already decided, then552

it sends a message carrying no information. Note that this is different from sending no553

message, since reception of such a message informs the recipient that agent i did not554

make a sending omission fault in the current round. Effectively, when an agent decides, it555

stops participating in the protocol, except for sending a heartbeat message in each round.556

Otherwise µi(si, a) = ⟨newi, kf i⟩. That is, if the agent has not yet decided and in the557

current round performs the action a = noop, the agent transmits the set of values it has558

newly learned about, and the set of agents that it knows to be faulty.559

When agent i is in local state si = ⟨initi, wi,newi, kf i, donei, timei⟩, performs action a,560

and receives vector of messages (m1, . . . ,mn) from the other agents, agent i’s state update561

δi(si, a, (m1, . . . ,mn)) = ⟨init′
i, w

′
i,new′

i, kf ′
i, done′

i, time′
i⟩ is defined as follows. Let J ⊆ Agt562

be the set of agents from which agent i actually receives a message, so that mj = ⊥ iff j ̸∈ J .563

For j ∈ J , suppose mj = (nj , fj). Then564

init′
i = initi,565

w′
i = wi ∪

⋃
j∈J nj ,566

new′
i = w′

i \ wi,567

kf ′
i = kf i ∪ (Agt \ J) ∪

⋃
j∈J fj ,568

if a = decidei(v) for some v ∈ {0, 1}, then donei = 1, otherwise done′
i = donei, and569

time′
i = timei + 1.570

Intuitively, the agent collects in w′
i the values that it has heard about, either previously or571

as new values transmitted by the other agents in the current round. It records an agent j572

as known to be faulty in kf ′
i if either it already knew j to be faulty, it does not receive a573

message from j in the current round, or it receives a message saying that j is faulty. This574

completes the description of the information exchange E .575

The protocol P ′ is defined for agent i on a local state si = ⟨initi, wi,newi, kf i, donei, timei⟩,576

when there may be up to t faulty agents, by P ′
i (si) = decidei(v) if donei = 0 and v is the577
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least value in wi and either time = t + 1 or kf i = Agt \ {i}, and Pi(si) = noop otherwise.578

That is, an agent decides if it learns that it is the only nonfaulty agent, otherwise it waits to579

time t+ 1 to make a decision.580

▶ Proposition 13. P ′ is an SBA protocol with respect to E and SOt.581

We now argue that for the implementation P of P(Φ) with respect to E and SOt, we582

do not have that P ≤E,SOt
P ′. Consider the case of n = 4 and t = 3, and let r be a run in583

which the only failures are that agents 1,2, and 3 omit to send their message to agent 1 in584

round 1. Note that the model is defined in such a way that an agent is able to detect its585

own faultiness by seeing that a message it sent to itself was not received. Hence, we have586

kf 1(r, 1) = {1, 2, 3}. In case of protocol P , this means that IP,E,SOt , (r, 1) |= Ki(i ̸∈ N ),587

which implies that IP,E,SOt
, (r, 1) |= BN

i CBN ∃v for all v. According to P , therefore, agent 1588

decides in round 2 and sends the message (∅, ∅) in round 2 (and all subsequent rounds). This589

means that at time 2, all other agents i have kf i(r, 2) = ∅. The run is indistinguishable to590

the other agents from a run without failures. When t = n− 1, the earliest possible decision591

time in a run without failures is round t+ 1 (see appendix), but t = 3, so no nonfaulty agent592

running P can decide in round 3 in run r.593

On the other hand, for protocol P ′, agent 1 does not decide in round 2 of the run r′
594

corresponding to r, since we do not have kf 1(r′, 1) = Agt \ {1} or 1 = t + 1 = 4. By the595

definition of E , this means that agent 1 sends a message (w, {1, 2, 3}) in round 2, and the596

nonfaulty agents i have kf i(r′, 2) = {1, 2, 3}. This means that the nonfaulty agents all decide597

in round 3 of the run r′.598

We therefore have a run in which the nonfaulty agents decide earlier using P ′ than they599

do when using the corresponding run of P , so it is not the case that P ≤E,SOt P
′. We remark600

that this remains the case had we defined ≤E,F by comparing decision times of only the601

nonfaulty agents, rather than all agents.602

8 Conclusion603

Our focus has been on Simultaneous Byzantine Agreement, in which the nonfaulty agents604

are required to decide at the same time. A number of variants of the specification have been605

studied in the literature on the knowedge based approach to distributed algorithms.606

One dimension of variation is with respect to the behaviour of faulty agents. The SBA607

specification does not require the faulty agents to make the same decision as the nonfaulty608

agents. Neiger and Tuttle [9] consider the uniform (also called consistent) variant, in which609

the faulty agents, if they decide, must agree with the nonfaulty agents. They show that a610

different formulation of common knowledge captures the condition under which a decision611

can be made, which is equivalent to the “common belief” condition for the crash and sending612

omissions failure models, but may differ otherwise. Since, in general, the faulty agents cannot613

decide ahead of the nonfaulty agents in this problem, the example of Section 7 does not614

apply in this case, so it remains open to understand optimality of Uniform SBA with respect615

to limited information exchange.616

Another dimension of variation is with respect to simultaneity. In Eventual Byzantine617

Agreement (EBA), the nonfaulty agents may decide at different times. In general, there is not618

an optimum protocol for this specification, but there are optimal protocols. Halpern, Moses619

and Waarts [5] show that a more complex notion called “continual common knowledge” is620

required to capture the conditions under which a decision can be made in optimal protocols621

for EBA. Neiger and Bazzi [8] show that adding a termination requirement to the specification622
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further complicates the required notion of common knowledge. We do not presently have a623

general characterization of optimality with respect to limited information exchange for EBA.624

Alpturer, Halpern and van der Meyden [1] present optimal protocols, for full information625

exchange and for two specific limited information exchanges, but the proof of optimality626

for the latter uses side conditions that do not hold in general. In particular, information627

exchanges involving reports about faults detected, such as our example in Section 7, do not628

satisfy these side conditions. A satisfactory general characterization of optimality for EBA629

with respect to limited information exchange therefore remains open.630

We have identified conditions on the information exchange under which the knowledge-631

based program P(Φ) gives an optimum with respect to a limited information exchange that632

does not transmit information about actions, but also a counter-example that shows that this633

knowledge-based program yields an optimal implementation but does not yield an optimum634

implementation when the information exchange transmits information about actions. The635

underlying reason is that the knowledge based program forces faulty agents to decide early,636

and this may diminish the amount of information available to the nonfaulty agents.637

Conceivably, another knowledge based program can express the optimum implementation,638

if one exists, with respect to an order that compares the decision times of only the nonfaulty639

agents only. However, it would seem that such a program would need agents that discover640

that they are faulty to determine when they decide based on counterfactual reasoning about641

the consequences, on the decision times of the nonfaulty agents, of deciding or deferring a642

decision. This introduces a number of complexities. For one thing, the knowledge-based643

program would need to refer to the future, and a unique implementation of the knowledge644

based program is then not guaranteed to exist. Counterfactual reasoning in knowledge based645

programs also requires a more complex semantic framework, which has been little studied.646

(The only relevant work is [4].) We therefore leave this question for future work.647
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A Proofs for Section 2 (Knowledge in Interpreted Systems)671

▶ Proposition 1. If A and B are indexical sets such that A ⊆ B is valid, then the formulas672

BB
i ϕ ⇒ BA

i ϕ, CKBϕ ⇒ CKAϕ and CBBϕ ⇒ CBAϕ are valid.673

Proof. Suppose that I, (r,m) |= BB
i ϕ. Then I, (r′,m′) |= ϕ for all points (r′,m′) ∼i (r,m)674

such that i ∈ B(r′,m′). We show that I, (r,m) |= BA
i ϕ. Let (r′,m) ∼i (r,m) and suppose675

that i ∈ A(r′,m). Since A ⊆ B is valid in I, we also have i ∈ B(r′,m), and it follows that676

I, (r′,m′) |= ϕ.677

Similarly, suppose that I, (r,m) |= CKBϕ. Then I, (r′,m′) |= ϕ for all points (r′,m′) of678

I such that (r,m) ∼∗
B (r′,m′). When A ⊆ B is valid in I, we have for all points (r′,m′)679

that (r,m) ∼∗
A (r′,m′) implies (r,m) ∼∗

B (r′,m′), hence I, (r′,m′) |= ϕ. This shows that680

I, (r,m) |= CKBϕ.681

The proof of CBBϕ ⇒ CBAϕ is similar, using instead the characterization in terms of the682

relations ≈∗ A and ≈∗ B. ◀683

▶ Proposition 2. The formulas Kiϕ ⇒ BA
i ϕ, EKAϕ ⇒ EBAϕ and CKAϕ ⇒ CBAϕ are valid.684

Proof. Validity of Kiϕ ⇒ BA
i ϕ is immediate from the fact that BA

i ϕ is Ki(i ∈ A ⇒ ϕ).685

For EKAϕ ⇒ EBAϕ, note that if EKAϕ then
∧

i∈A Kiϕ, which implies
∧

i∈A B
A
i ϕ by the686

previous paragraph, and this is EBAϕ.687

For CKAϕ ⇒ CBAϕ, we show by induction that EKk
Aϕ ⇒ EBk

Aϕ is valid for all k > 0.688

The base case of k = 1 is the result of the previous paragraph. Assuming EKk
Aϕ ⇒ EBk

Aϕ is689

valid, we have that if EKk+1
A ϕ then EKA(EKk

Aϕ), which implies EBA(EKk
Aϕ) by the result of690

the first paragraph, and then EBA(EBk
Aϕ) = EBk+1

A ϕ by the inductive hypothesis. It follows691

that CKAϕ =
∧

k>0 EK
k
Aϕ implies

∧
k>0 EB

k
Aϕ = CBAϕ. ◀692

B Proofs for Section 5 (Crash Failures)693

▶ Proposition 3. Let γ be any context for SBA, and P any protocol for this context, and694

let S and T be indexical sets of agents such that IP,γ |= S ⊆ T . If IP,γ |= SBA(T ) then695

IP,γ |= SBA(S). In particular if IP,γ |= SBA(A) then IP,γ |= SBA(N ).696

Proof. The Unique-Decision is property is independent of the indexical set in the specification,697

so holds trivially. Validity(T ) implies Validity(S) since S ⊆ T is valid. Also, Simultaneous-698

Agreement(T ) implies Simultaneous-Agreement(S) for the same reason. Thus validity of699

SBA(T ) implies validity of SBA(S). The fact that IP,γ |= SBA(A) implies IP,γ |= SBA(N )700

follows directly from the fact that N ⊆ A is valid. ◀701

▶ Proposition 4. Suppose that P is a protocol for the context γ, and let S and T be indexical702

sets of agents in IP,γ , such that703

(a) for all points (r,m), if IP,γ , (r,m) |= i ∈ T ∧ j ∈ T , then there exists a run r′ such that704

(r,m) ∼i (r′,m) and (r,m) ∼j (r′,m), and IP,γ , (r,m) |= i ∈ S ∧ j ∈ S, and705

(b) IP,γ |= S ⊆ T , and706

(c) IP,γ |= T ̸= ∅ ⇒ S ̸= ∅.707

Then IP,γ |= SBA(S) implies IP,γ |= SBA(T ).708

Proof. Assume that IP,γ |= SBA(S). We first show that Simultaneous-Agreement(T ) is709

valid in IP,γ . Suppose IP,γ , (r,m) |= i ∈ T ∧ decidesi(v) and let j ∈ T (r,m). We show that710

IP,γ , (r,m) |= decidesj(v). By (a), there exists a point (r′,m) such that (r,m) ∼i (r′,m)711

and (r,m) ∼j (r′,m) and IP,γ , (r,m) |= i ∈ S ∧ j ∈ S. Since (r,m) ∼i (r′,m), we have712
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Pi(r′
i(m)) = P (ri(m)) = decidei(v), so also IP,γ , (r′,m) |= decidesi(v). Since IP,γ |=713

SBA(S) we have Simultaneous-Agreement(S) and it follows that IP,γ , (r′,m) |= decidesj(v).714

Because (r,m) ∼j (r′,m), we also have IP,γ , (r,m) |= decidesj(v), as required.715

Next, we show Validity(T ) is valid in IP,γ . Let (r,m) be a point where IP,γ , (r,m) |=716

decidesi(v) ∧ i ∈ T . Since Simultaneous-Agreement(T ) is valid in IP,γ , as shown above, we717

have IP,γ , (r,m) |= decidesj(v) for all j ∈ T (r,m). Since S ⊆ T is valid, by (b), we have718

IP,γ , (r,m) |= decidesj(v) for all j ∈ S(r,m). Because S(r,m) ̸= ∅, by (c) and the fact that719

i ∈ T (r,m), there exists j ∈ S(r,m) such that IP,γ , (r,m) |= decidesj(v). It now follows720

from Validity(S) that IP,γ , (r,m) |= initk = v for some agent k.721

The property Unique-Decision is the same in SBA(S) and SBA(T ), so this is immediate.722

◀723

▶ Corollary 5. For crash failures and omissions failure contexts γ and protocols P , with724

IP,γ |= N ̸= ∅, we have IP,γ |= SBA(N ) implies IP,γ |= SBA(A).725

Proof. The result follows using Proposition 4 with S = N and T = A. Condition (b) in726

Proposition 4 follows from the definitions of N and A. Condition (c) is direct, by assumption.727

We show that condition (a) of Proposition 4 holds for these failure models. Suppose728

IP,γ , (r,m) |= i ∈ A ∧ j ∈ A. Let r′ be the run that is identical to r to time m, but in which729

the adversary is modified so that agents i and j never fail after time m. Since these agents730

did not have a failure in run r before time m either, we have IP,γ , (r′,m) |= i ∈ N ∧ j ∈ N731

as required. Because runs are determined by their initial states, the protocol P and the732

adversary, there is no difference between r and r′ in the adversary before time m, we have733

(r,m) ∼i (r′,m) and (r,m) ∼j (r′,m) in particular. ◀734

▶ Proposition 6. Suppose that P is a protocol for the hard crash failures context (E ,Crasht)735

with t < n such that IP,E,Crasht |= SBA(N ). Then decidesi(v) ⇒ CKA(decidesA(v)) and736

decidesi(v) ⇒ CKA(∃v) are valid in IP,E,Crasht
.737

Proof. From Proposition 5, we obtain from IP,E,Crasht |= SBA(N )∧N ≠ ∅ that IP,E,Crasht |=738

SBA(A). Suppose that IP,E,Crasht
, (r,m) |= decidesi(v). Then we cannot have that739

ri(m) = crashed, and thus i ∈ A(r,m). It follows from SBA(A) that IP,E,Crasht , (r,m) |=740

decidesA(v). Let j ∈ A(r,m) and (r,m) ∼j (r′,m). Then rj(m) = r′
j(m) ̸= crashed741

so also j ∈ A(r′,m) and IP,E,Crasht
, (r′,m) |= decidesj(v). Using SBA(A), we obtain742

IP,E,Crasht
, (r′,m) |= decidesA(v).This shows that for all agents i, IP,E,Crasht

|= decidesi(v) ⇒743

EKAdecidesA(v), which implies that IP,E,Crasht
|= decidesA(v) ⇒ EKAdecidesA(v).744

By induction, this gives IP,E,Crasht |= decidesA(v) ⇒ CKAdecidesA(v), and we de-745

rive IP,E,Crasht
|= decidesi(v) ⇒ CKAdecidesA(v). Next, it follows using IP,E,Crasht

|=746

SBA(N ) ∧ ∅ ≠ N ⊆ A and Validity(N ) that IP,E,Crasht |= decidesi(v) ⇒ CKA∃v. ◀747

▶ Lemma 7. Let S be an indexical set of agents and suppose that P is an SBA(S) protocol748

for an information exchange protocol E and failure environment F . Then the formula749

decidei(v) ⇒ BS
i CBS∃v is valid in IP,E,F .750

Proof. For brevity, we write I for IP,E,F . We first show that decidesS(v) ⇒ CBSdecidesS(v)751

is valid in I. Suppose that I, (r,m) |= decidesi(v). Suppose (r,m) ∼i (r′,m) where752

i ∈ S(r′,m). Then Pi(r′
i(m)) = Pi(ri(m)) = decidei(v). Since P is an SBA(S) protocol753

and i ∈ S(r′,m), it follows by Simultaneous-Agreement(S) that I, (r′,m) |= decidesS(v).754

This shows that I |= decidei(v) ⇒ BS
i decideS(v). Since this holds for all i, it fol-755

lows that decidesS(v) ⇒ EBSdecidesS(v) is valid in I. It follows by induction that756

decidesS(v) ⇒ CBSdecidesS(v) is valid in I.757
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Next, notice that (S ̸= ∅ ∧ CBSdecideS(v)) ⇒ EBS(S ≠ ∅ ∧ CBSdecideS(v) ∧ ∃v) is758

valid in I. This is because (i) BS
i (s ̸= ∅) is valid by definition of BS

i , (ii) CBSϕ ⇒ EBSCBSϕ759

is valid for all ϕ, and because (iii) (S ̸= ∅ ∧ decideS(v)) ⇒ ∃v is valid in I by Validity(S).760

By induction, we conclude that S ̸= ∅ ∧ CBSdecideS(v)) ⇒ CBS∃v is valid in I. ◀761

▶ Proposition 8. If P is an SBA(N ) protocol for the hard crash context (E ,Crasht) with t < n762

then CKA(decidesA(v)) ⇔ CBN (decidesN (v)) and i ∈ A ⇒ (KiCKA(decidesA(v)) ⇔763

BN
i CBN (decidesN (v)) are valid in IP,E,Crasht

.764

Proof. Suppose IP,E,Crasht
, (r,m) |= CKA(decidesA(v)). Then we have IP,E,Crasht

, (r,m) |=765

CBA(decidesA(v)) by Proposition 2. Since N ⊆ A is valid, it follows that IP,E,Crasht , (r,m) |=766

CBN (decidesA(v)), and also that decidesA(v) ⇒ decidesN (v) is valid. It follows that767

IP,E,Crasht , (r,m) |= CBN (decidesN (v)).768

Conversely, suppose that IP,E,Crasht
, (r,m) |= CBN (decidesN (v)). Since N ̸= 0 is769

valid, we have IP,E,Crasht
, (r,m) |= decidesi(v) for some i ∈ N (r,m). By Proposition 6,770

IP,E,Crasht , (r,m) |= CKAdecidesA(v).771

This shows validity of CKA(decidesA(v)) ⇔ CBN (decidesN (v)). Validity of the formula772

i ∈ A ⇒ (KiCKA(decidesA(v)) ⇔ BN
i CBN (decidesN (v)) follows from this using the773

fact that Kiϕ ⇒ BN
i ϕ is valid, and that in the hard crash system IP,E,Crasht

, we have774

i ∈ A ⇒ Ki(i ∈ A). ◀775

▶ Proposition 9. Suppose that S and T are indexical sets of agents in an interpreted system776

I, and let ≈ be a synchronous epistemic bisimulation on I with respect to Prop such that777

(a) I |= S ⊆ T , and (b) for all points (r,m) of I there exists a point (r′,m) such that778

(r,m) ≈ (r′,m) and S(r′,m) = T (r,m). If p ∈ Prop then I |= BS
i CBSp ⇔ BT

i CBT p.779

Proof. We have I |= CBTϕ ⇒ CBSϕ and hence I |= (BT
i CBTϕ) ⇒ BS

i CBSϕ by Pro-780

position 1. For the converse, we prove I |= (¬BT
i CBTϕ) ⇒ ¬BS

i CBSϕ. Suppose that781

I, (r,m) |= ¬BT
i CBTϕ. Then there exists a point (r0,m) ∼i (r,m) such that i ∈ T (r0,m)782

and I, (r0,m) |= ¬CBTϕT . Moreover, from the latter we have that there exists a sequence783

(r0,m) ∼i1 (r1,m) ∼i2 . . . ∼ik
(rk,m) such that I, (rk,m) |= ¬p and for j = 1 . . . k we have784

ij ∈ T (rj−1,m) ∩ T (rj ,m). By the assumptions on ≈, there exists for each j = 0 . . . k a785

run ρj of I such that (rj ,m) ≈ (ρj ,m), and S(ρj ,m) = T (rj ,m). Since (rk,m) ≈ (ρk,m)786

we obtain that I, (ρk,m) |= ¬p. Also for j = 1 . . . k we have ij ∈ T (rj−1,m) ∩ T (rj ,m) =787

S(rj−1,m) ∩ S(rj ,m). It follows that I, (ρ0,m) |= ¬CBSp.788

Moreover, i ∈ T (r0,m) = S(ρ0,m), and because (r0,m) ≈ (ρ0,m), we have (r0,m) ∼i789

(ρ0,m). Because (r,m) ∼i (r0,m), we obtain (r,m) ∼i (ρ0,m). It follows that I, (r,m) |=790

¬BS
i CBSp. ◀791

We remark that the above proof does not show that I |= CBSϕ ⇔ CBTϕ.792

▶ Corollary 10. If p is an atomic proposition that depends only on the local states of the agents,793

and F is either a crash or omission failure model, then IP,E,F |= (BN
i CBN p) ⇔ BA

i CBAp794

Proof. Define the relation ≈ on the points of IP,E,F by (r,m) ≈ (r′,m) if for all agents i, we795

have that i has the same initial state in r as in r′, and the behaviour of the adversary of r up796

to time m is the same as the the behaviour of the adversary of r′ up to time m. In particular,797

it follows from (r,m) ≈ (r′,m) that we have A(r,m) = A(r′,m) and (r,m) ∼i (r′,m) for all798

agents i. If we take S = N and T = A then the assumptions of Proposition 9 are satisfied799

with respect to ≈. In particular, note that we can obtain the run r′ required for condition800

(b) by changing the adversary so that there are no new faults after time m. The claim is801

then immediate. ◀802
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C Proofs for Section 7 (A Counter-example)803

▶ Proposition 13. P ′ is an SBA protocol with respect to E and SOt.804

Proof. Unique-Decision holds because an agent performs a decidei(v) action only if donei =805

0, and the variable donei captures whether the agent has performed a decidei(v′) action806

some time in the past. Validity(N ) holds because when agent i performs decidei(v), we807

have v ∈ wi, which can be the case only when some agent j had initj = v, by the initial808

condition and update rule for wi.809

For Simultaneous-Agreement, suppose that i ∈ N performs decidei(v) in round m+ 1810

of run r. By definition of E , the set kf i(r,m) contains only faulty agents. Hence, in the811

case where kf i(r,m) = Agt \ {i}, we have that i is the only nonfaulty agent in run r, and812

Simultaneous-Agreement holds trivially. Otherwise, suppose that m = t+ 1. If any nonfaulty813

agent j ̸= i decided earlier, then j can only have done so because it is the only nonfaulty814

agent, contradicting the assumption that i is nonfaulty. Hence no nonfaulty agent has decided815

earlier. This implies that all nonfaulty agents decide in round m+ 1 also. ◀816

Figure 1 shows a key part of the argument for the fact that a decision cannot be made in817

round three in a failure free run. The figure depicts a sequence of runs for four agents and818

indistinguishability relations at time 2, from a failure free run (at the top of the diagram)819

with both 0 and 1 values to a run (at the bottom of the diagram) with only 0 values. Dashed820

lines indicate messages that are not sent. (We omit messages that are sent in order to avoid821

cluttering the diagram.) N indicates nonfaulty agents. This shows that the first run, at time822

2, is ≈∗
N related to the last (also at time 2). The first run is indistinguishable to the first823

agent from a similar run that has three 1 and one 0 value, and a similar sequence then shows824

that there is also a ≈N path to a run with only 1 values. It follows that, in a failure free run825

such as the first, we do not have either BN
i CBN ∃0 or BN

i CBN ∃1.826
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