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ABSTRACT

This paper addresses the question of how TA-security, a semantics
for intransitive information-flow policies in deterministic systems,
can be generalized to nondeterministic systems. Various defini-
tions are proposed, including definitions that state that the system
enforces as much of the policy as possible in the context of attacks
in which groups of agents collude by sharing information through
channels that lie outside the system. Relationships between the
various definitions proposed are characterized, and an unwinding-
based proof technique is developed. Finally, it is shown that on a
specific class of systems, access control systems with local non-
determinism, the strongest definition can be verified by checking a
simple static property.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow controls
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1. INTRODUCTION

The theory of information flow security has been studied most
extensively with respect to transitive security policies, motivated by
the lattices associated with military multi-level security policies. It
has long been recognised, however, that even in this setting, richer
types of policies are required in order to deal with trusted compo-
nents such as downgraders, which may violate a transitive policy.
An example of this is given in Figure 1 which presents an abstract
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architecture for a system in which two multi-level secure machines
M, and M> communicate across the internet.
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Figure 1: Architecture for a MILS system.

Each machine M; contains a high-level domain H; and a low-
level domain L;, with the usual policy H; +4 L,, intuitively requir-
ing that no high-level information flow to the low level domain,
enforced between the two. The internet is represented by the do-
main N. Additionally, there are two domains E;, E> that represent
downgraders that are responsible for encrypting and decrypting all
communications between the domains Hi, Hs, as well as domains
NI1, Nl2 representing the network interface in each machine.

Globally, the security policy requires that there is no direct flow
of information from the domains H; to the domains N, NI; or L;.
All such flow of information must be mediated by the domains E;.
This does not provide a complete guarantee of all security proper-
ties that one might wish the system to satisfy, but it helps to focus
proofs that high-level information remains secure onto the specific
trusted components E;. The intention of the architecture is to de-
compose the proof of the desired security property that high-level
information does not flow to low domains (even if only the compo-
nents E; are trusted), to the proof that the components E; properly
encrypt all output (and possibly also, that they maintain a traffic
stream to circumvent traffic analysis), and the fact that the archi-
tecture is enforced. We refer the reader to recent work on MILS [4]
for a more detailed explanation of this idea.

In order to provide an account of formal security verification that
captures the intuitions underlying such architectures, we first need
a mathematically precise semantics for policies in the form of in-
transitive relations (note, e.g., that in Figure 1 we have H, — E;
and E; — NIy but not H; — NI;). Compared to classical in-
formation flow theory for transitive policies, this area is much less
studied.

One of the landmarks in the area remains the work of Rushby [21],
which clarified earlier work of Haigh and Young [10]. In particular,
Rushby provides an proof method using unwinding relations that
may be used to show security of a system, and moreover proves
that secure systems can be concretely constructed by using an ac-
cess control discipline satisfying a simple syntactic condition. This
latter result is significant in that it can be understood as providing



a more satisfactory basis for ideas from Bell and La Padula [2],
addressing complaints about the well-foundedness of Bell and La
Padula’s methods [14], by giving semantic meaning to the notions
of read and write.

Recently, van der Meyden [24] pointed to weaknesses in Rushby’s
definitions and provided improvements, including a new definition
of security called TA-security, that yield results similar to Rushby’s
but which make the unwinding proof method and access control
discipline not just sound but also complete for security (showing
that any secure system can be proved to be secure using the method,
or constructed so that security is easily checkable.) This yields a
pleasant theory in which the definition of security, proof methods
and engineering discipline are tightly integrated.

This theory is limited to deterministic systems, however. There
have been proposals for semantics of intransitive policies in non-
deterministic systems [3, 19, 13, 1, 26], but none of these works
deals with access control systems with nondeterminism. Our con-
tribution in this paper is to develop the first such generalization,
taking as our starting point van der Meyden’s formulation of the
deterministic case.

We first investigate how to generalize the notion of TA-security
to the nondeterministic setting. After setting up the semantic frame-
work in Section 2, in Section 3 we carefully tease out a number
of dimensions that are relevant to the formulation of the seman-
tics for intransitive policies in nondeterministic systems. Some
definitions in the literature, we believe, have made inappropriate
choices with respect to these ingredients, and in some, critical is-
sues have been ignored. In particular, we argue that it is impor-
tant in non-deterministic systems to base the definition of security
on the effect of actions on agents’ history of actions and observa-
tions, whereas some definitions in the literature have considered
only their effect on single observations. We also recall from the
literature on noninterference with respect to transitive policies the
notion of persistence, which helps with an important distinction be-
tween deducibility and causality that emerges in nondeterministic
systems. Finally, we present an example showing that while col-
lusion attacks can be ignored in deterministic systems, they need
to be taken into account in nondeterministic systems. Many of the
definitions in the literature do not take such attacks into account.

We give our generalizations of TA-security to the nondetermin-
istic setting in Section 4. We show that there are subtleties in the
formulation of definitions that cover collusion attacks: it makes a
difference, to what the attackers can deduce, whether they share
information during a run of the system, or only at completion of
the run. This leads us to a spectrum of definitions, depending on
whether and, if so, how, collusion is treated, and via application
of persistence or not, whether the definition is causal or deductive.
We discuss some special cases of policies and systems in Section 5,
where we show that our spectrum of definitions collapses to two
well-known definitions of security in the case of deterministic sys-
tems or a two agent policy.

We then proceed, in Section 6, to develop an unwinding proof
technique that is sound for all our definitions. In Section 7, we
present a generalization of access control systems that covers non-
determinism, and identify conditions on such systems that imply
that all our definitions of security hold. We discuss related work
in Section 8 and conclude with a discussion of future directions for
research in Section 9.

2. SYSTEMS MODEL

Goguen and Meseguer [7] developed a theory of information-
flow that has formed a starting point for later research. They intro-
duced the following policy model.

Definition 1. A noninterference policy for a set U of security
domains is a reflexive binary relation — on U, representing the
permitted interferences between domains.

Intuitively, u — v represents that the policy permits information
to flow from domain u to domain v. Another intuition for this is
that actions of domain u are permitted to have causal effects on, or
interfere with, domain v. Conversely, when u +» v, domain u is
not permitted to interfere with v. Reflexivity is assumed since, in
general, nothing can be done to prevent flows of information from a
domain to itself, so it is not sensible for the policy to prohibit this. A
machine with domains U is a tuple M = (S, so, A, —, obs, dom)
with a set S of states, including a designated initial state sg € S,
a set A of actions, a (nondeterministic) transition relation —» C
S x A x S an observation function obs : U — (S — O), for some
set O, and a domain function dom : A — U. We write obs,, for
the function obs(u) : S — O, which represents the observation
that domain u makes at each state of the machine. Following much
of the security literature, we assume that the transition relation is
input-enabled: for all states s and actions a, there exists a state ¢
such that s — ¢. This helps to prevent enabledness of actions
being a source of information. A machine is deterministic if for all
states s, t,t" and actions a, if s — t and s —» ¢/ thent = ¢'.

Notational and diagrammatic conventions.

Sequences play an important role in this paper. Most of the time,
we denote a sequence such as [a, b, c] by just abc, however, if the
sequence elements have structure themselves, or if confusion is
likely to arise, we tend to separate sequence elements with a dot:
a-b-c

A concise way to define A and dom is to list, for each u € U,
the set A, = { a € A | dom(a) = u } of actions of that domain.

Given a domain u, we write ~u for {v €U | v+ u } and
Pufor U\ 7u = {veU| v u}. Wealso write u™ for
{veU| urv}andu” forU\ ~u.

We use the following convention in diagrams representing ma-
chines. States are represented by circles labelled internally by the
state name. The initial state is always named so. A transition
s =%+ ¢ is represented by an edge from s to ¢ labelled by a. To re-
move clutter from diagrams, we elide edges corresponding to self-
loops s —2, s unless we wish to draw attention to them; thus, if
there is no edge from a state labelled by an action a, then using the
input-enabled assumption, we infer that the missing edge is a self-
loop. (Note that if there does exist an edge labelled a from state s,
we do not make this inference.) States are labelled externally by
observations of some of the domains: the details of this depend on
the example and are given with each diagram.

A run is a sequence of the form sg LN $1... = 5. in which
n > 0, the s; € S are states (the first being the initial state) and
the a; € A are actions, such that (s;—1,a;,s;) € — forall i =
1...n. We write R(M) for the set of runs of machine M. The
function last maps a nonempty sequence to its final element. A
state is reachable if it is the final state of some run. The sequence
of all actions in a run r is denoted Act(r). With M implicit, we
also write R(«) for the set of 7 € R(M) such that Act(r) = a.
For a domain u, we write Act, (1) for the subsequence of actions
a in Act(r) with dom(a) = u.

The view of a run obtained by a domain, or group of domains,
records all the actions and observations of the domain or group dur-
ing the run, except that stuttering observations are collapsed to a
single copy to model that the agent/group operates asynchronously,
so does not perceive the passing of time unless some event hap-
pens to it. Let X C U be a nonempty set of domains. We de-



fine the joint observation function of X as obsx : S — O~ by
obsx (s)(u) = obs,(s) for u € X. That is, obsx (s) is the tu-
ple of observations made by the domains v € X on state s. The
view function viewx : R(M) — (O*)T(A(OX)*)* is defined
inductively by viewx (so) = obsx (so) and

viewx(r = q) =

{viewx (r)-a-obsx(q) ifdom(a) € X

viewx (r) 6 obsx (q) otherwise

where “6” denotes absorptive concatenation, that is,
) @ if last(a) = a

ada= .

a-a otherwise.

We write the special case where X = {u} is a singleton as view,.
We note that viewx (r) may contain information about the order
of actions from domains in X that cannot be deduced from the
collection of views (viewy(r))uex. Intuitively, viewx (r) is the
information that the group would obtain in 7 when the members of
the group share their local information with the group at each step
of the run, whereas the collection (view,(r))wcx corresponds to
the information that the group would have if the members shared
their views only after r has completed.

3. BACKGROUND

In this section we review some of the literature on information-
flow security and formulate versions of existing definitions within
our system model. This review will motivate several of the ingre-
dients we use in the new definitions we propose later. This section
is largely a review of the existing literature, however, we do give
new characterizations of some existing definitions, using a notion
of relative information, that helps to clarify the relationship to the
new definitions we introduce later on.

3.1 Noninterference, policy H % L

Goguen and Meseguer’s formal semantics for noninterference
policies is restricted to transitive policies in deterministic machines.
They define for each domain v € U the purge function purge,, :
A* — A” that maps a sequence of actions to the subsequence of
actions a with dom(a) — u.

Definition 2. A machine M satisfies noninterference (NI) w.r.t.
+— if for all domains v and all runs r, 7’ of M with purge,, (Act(r))
purge, (Act(r')), we have obs, (last(r)) = obs, (last(r")).

It can be shown that, in deterministic machines, this is equivalent
to the following: for all runs 7,7’ of M with purge, (Act(r)) =
purge, (Act(r')), we have view (r) = view (r’). This presen-
tation makes it clear that the definition says that the information in
L’s view in a run depends only on the L actions in the run, and are
independent of the H actions.

One of the main questions of study since the seminal work of
Goguen and Meseguer on deterministic systems is how their defi-
nitions should be generalized to nondeterministic systems. A great
deal of the literature on this topic has been concerned with the sim-
ple two domain policy (which we write as H +% L) given by the
relation {(L, L), (H,H), (L,H)} on the set U = {L, H}, comprised
of the low-level (public) domain L and the high-level (classified)
domain H. This is in part because even this simple policy presents
many subtleties in the setting of nondeterministic systems, but also
because there has been a view that it is possible to reduce arbitrary
policies to this special case.

Numerous definitions have been proposed that generalize NI for
the policy H % L to nondeterministic systems. We now discuss a
number of points from this literature that highlight issues that are
relevant to the novel definitions for the more general intransitive
policies that we introduce later.

3.2 Nondeducibility and Relative Information

Sutherland [22] proposed to interpret the policy H % L, as stat-
ing, informally, that L cannot deduce information about H, and gave
a general formal account of deducibility using a relation on func-
tions with domain the state space of the system. A generalization
of (non)deducibility will be useful for what follows, to make ex-
plicit a common logical structure that underlies the definitions we
propose. Definitions similar to the following have been considered
by Halpern and O’Neill [11] and More et al [17].

Definition 3. Let f, g and h be functions, each with domain the
set W of ‘worlds’. We say that in W, the function f contains
no more information than g about h, if for all w,w’ € W such
that g(w) = g(w") there exists w” such that h(w’) = h(w') and

fw") = f(w).

As an application of Definition 3, consider the following definition
of security:

Definition 4. A machine M for the policy H 4 L satisfies cor-
rectability (COR) if for all runs r and sequences @ € A* with
Act (r) = Acti (), there exists a run 7’ with Act(r') = a and
view (r') = view ().

We call this notion correctability in view of its similarity to a no-
tion of that name from [12]. It is easily seen that correctability may
be given a clean characterization using the above notion of rela-
tive information as follows: M satisfies correctability iff in R (M),
the function view, contains no more information about Act than
purge, o Act.

In a special case, we can furthermore formulate relative infor-
mation in a more symmetric way. Using a notation reminiscent
of probability theory, for functions f and g with domain W, and
value v in the range of f, define poss(g | f = v) to be the set
{g(w) | we WA f(w) =v }. Then we have the following re-
sult.

Proposition 1. Let f be a function with domain W,letg : W —
V' be surjective and let h be a function with domain V' (so that
h o g also has domain W). Then in W, the function f contains
no more information than h o g about g iff for all v,v" € V with
h(v) = h(v") we have poss(f | g = v) = poss(f | g =").

Since we work with input-enabled machines, the function Act :
R(M) — A* is surjective. By Proposition 1 and the relative infor-
mation characterization of COR above, an equivalent formulation
of COR is that for all o, &’ € A* with purge, (o) = purge, (o)
we have poss(view, | Act = a) = poss(view, | Act = ). This
states COR in a form that clarifies its relationship to the view-based
formulation of NI, by showing that that COR is obtained by gener-
alizing the single-valued view function of a deterministic machine
used in NI by a set-valued view function in the nondeterministic
setting.

3.3 Observation-based definitions are too weak
in non-deterministic systems
For the policy H 4 L, the definition of noninterference states
that the observation of L in the final state of a run r should depend



only on purge, (Act(r)). As noted above, in deterministic sys-
tems, this is equivalent to the statement that the history view, (r)
of everything that is observable to L in the run should depend only
on purge, (Act(r)). However, as the following example shows, a
similar equivalence between definitions stated in terms of observa-
tions in the final state of a run and definitions stated in terms of the
view on the run does not hold in nondeterministic systems.

Example 1. Consider the security policy H +4 L and the non-
deterministic machine M depicted in Fig. 2, where states are la-
beled externally with L’s observation, A = {¢,h}, dom(¢) =
L, and dom(h) = H. Suppose we define an observation-based
version of correctability: M is obs-COR if in R(M), the func-
tion obsL o last contains no more information than purge, o Act
about Act. Equivalently, by Proposition 1, for all o, o’ € A*, if
purge, (o) = purge, (o) then poss(obs. o last | Act = a) =
poss(obsy o last | Act = '). It can be seen that M satisfies obs-
COR: the only H transition that can affect L observations is that
from sg, but if this is added or deleted from a run, there exists an-
other run with the same subsequent sequence of actions ending in
the same final observation for L. However, the possible views may
differ, depending on whether h occurred: note that purge (h¢¢) =
20 = purge, (¢0), but poss(view, | Act = £0) = {001¢2,002¢1}
whereas poss(view, | Act = hef) = {0€1¢1,0¢2¢2}. Thus, this
machine does not satisfy COR. Intuitively, it is insecure, since L
can determine from its view whether the initial h action occurred.

h
S0
L L
1 2

1 £ 2

Figure 2: Deductions ought to be based on views rather than
observations

This example points to the fact that in defining security in non-
deterministic systems, we need to take the evidence from which an
agent makes deductions to be its view, i.e., all that it could have
observed to the present moment, rather than just its current obser-
vation, as in the definition of noninterference and some of its later
generalizations (e.g., the definition of intransitive noninterference
in deterministic systems [10, 21]). This point has sometimes been
missed in the literature on nondeterministic systems, e.g., see the
discussion of the work of von Oheimb [26] in Section 8 below.

3.4 Persistence

Two different intuitive interpretations of the notion of noninter-
ference can be given: an epistemic interpretation which says that
L is not able to know, or deduce anything about H activity, and a
causal interpretation, which says that H actions may not have any
causal effect on L observations. In deterministic systems, these
interpretations may coincide, but this is no longer the case in non-
deterministic systems, as the following example shows.

Example 2. Consider the machine depicted in Fig. 3 for the pol-
icy H &4 L. States are labeled externally with L’s observation,
except for states on which L observes _L, in which case we elide the
observation. As in the previous example, A = {¢{, h}, dom(¢) = L,
and dom(h) = H. It can be seen that this machine satisfies the epis-
temic notion COR: domain L cannot make any deductions from its

Figure 3: A machine that is COR but not P-COR.

view about H actions, or how these are interleaved with its own.
(Recall that we elide self-loops.) However, it can reasonably be
argued that this machine is not secure on a causal interpretation of
security: note that by performing or not the action h from the state
s1, domain H is able to influence whether L subsequently observes
Oorl.

Examples such as this can be addressed using the notion of per-
sistence, which has been factored into a number of definitions in
the literature [5, 6, 18].

Definition 5. For a security definition X, we say that machine
M = (S, so, A, —, obs, dom) persistently satisfies X (P-X ) w.r.t.
apolicy — if the machine (S, s, A, —, obs, dom) satisfies X w.r.t.
—, for all reachable states s of M.

Note that the machine in Example 2 is not P-COR.

3.5 Collusion

For policies that generalize from the two-domain setting of the
policy H %4 L in nondeterministic systems, the issue of collusion
becomes of concern. As we illustrate in the present section, this is
so even for transitive security policies.

The simplest type of policy for which this point can be made is
the separability policy [20, 15] which says that no domain may in-
terfere with any other. That is, for set of domains U, separability is
the policy Ay = { (u,u) | u € U }. In the case that U consists of
two domains A and B, this seems to say that A may not interfere B,
and vice versa, so one apparently reasonable interpretation of the
policy is to apply a semantics for H +4 L for all domains. This idea
suggests the following definition, when we apply the correctability
semantics for H +4 L to each domain, and use our relative informa-
tion formulation.

Definition 6. A machine M for a set U of domains satisfies mu-
tual correctability (MCOR) w.r.t. — if for all domains v € U, in
R(M), view, contains no more information than purge, o Act
about Act.

In the case of the policy — = Ay, this says that no domain
is able to deduce from its view anything about what actions other

"We remark that in the case of COR, the notion P-COR is in
the spirit of the notion O-forward correctability of Johnson and
Thayer [12], which says that an addition or deletion from a trace
of an H action requires only changes to subsequent H observations
to obtain another trace that looks the same to L. However, P-COR
is stronger, since it requires a correction from a given state, while
O-forward-correctability is a trace-based notion that allows the cor-
rection to pass through different states on the common prefix of
events.




domains have performed, or how those actions were interleaved
with its own.

It turns out that, in some circumstances, this is an insufficient
guarantee. Suppose that we have a system with three separated
domains, i.e., U = {H, L1, L2} and the policy is Ay. However, L1
and Lo are corrupt, and collude by communicating via a channel
that lies outside the system. Under these circumstances, there is
nothing that can be done in practice to prevent information-flow
between L; and Lo, even if the system is secure, so that it is not the
cause of the information-flow. However, we expect that, since the
system enforces the policy, H’s information is still protected from
leakage to L, and Lj. In fact, mutual correctability is too weak to
provide such a guarantee.

Example 3. Consider the machine depicted in Fig. 4 under the
policy A¢n,,,1,3- The domain H observes L at all states. The
two low domains L; and L2 have observations in the set {_L,0,1}.
These are indicated in Fig. 6 by labelling states to the right above
and below by the observations made by L; and Ls, respectively.
We omit the observation L to reduce clutter. It can be verified
that machine M satisfies MCOR. However, H’s information is not
secure against collusion by the coalition L = {Li,L2}. We may
represent the information held by the coalition L in a run r by
view, (r), using the set-based view definition introduced above.
Similarly, we may generalize the purge function to the coalition by
writing purge, («) for the subsequence of actions a in & € A*
with dom(a) € L. Let o = {14 and B = hl1l>. Note that
purge, (o) = a = purge, (§). But

poss(view, | Act =a) = {101 96,5, 1011027}
A{E026S, a1}
= poss(view | Act = ) .

Intuitively, although the policy suggests that the coalition should
not be able to distinguish between the sequences o and S, in fact
they can, using the parity of their final observations.

There has been some informal recognition in the literature of the
relevance of coalitions when dealing with policies beyond H +4 L,
but there appear to have been very few formal studies of the issue.
(We defer discussion of the related literature to Section 8.) One of
our contributions in this paper is to pursue such a formal study in
the general setting of intransitive policies.

3.6 Intransitive Noninterference

The final background we require concerns semantics for intran-
sitive policies: this issue has been studied primarily in the setting
of deterministic systems.

One of the main motivations for
intransitive policies is to repre-
sent the role of trusted components
within an architectural design of a
system. A canonical example of this Figure 5: Policy HDL.
is a downgrader, a trusted component that manages declassifica-
tion of high-level secrets to low-level domains. A policy for such
a system is the policy HDL = {H,D,L}?\ {(H,L)} depicted in
Figure 5. Here D represents a trusted downgrader component.

Even in deterministic systems, NI is not an adequate definition
of security for such intransitive policies, since it implies that L can
learn nothing about H activity (not even when the downgrader per-
mits it). To give a more adequate semantics, Haigh and Young [10]
generalized the definition of the purge function to intransitive poli-
cies; we follow the formulation of Rushby [21]. Intuitively, the in-
transitive purge of a sequence of actions with respect to a domain w

Figure 4: An insecure system that satisfies MCOR.

is the largest subsequence of actions that could form part of a causal
chain of effects (permitted by the policy) ending with an effect on
domain w. More formally, the definition makes use of a function
src: Ux A* — P(U) defined inductively by src, (e) = {u} and
srcy(aa) =

srcy(a) U { dom(a) | Jv € srcy(a) (dom(a) — v) }

fora € Aand o € A*. Intuitively, src, () is the set of domains
v such that there exists a sequence of permitted interferences from
v to w within a. The intransitive purge function ip, : A* — A*
for each domain u € U is then defined inductively by ip, (¢) = €
and, fora € Aanda € A",

ip. () a-ip,(a) ifdom(a) € srcy(aa)
i =
Py ip, (@) otherwise.

Haigh and Young’s definition of security uses the intransitive purge
function in place of the purge function in Goguen and Meseguer’s
definition. Using our relative information formulation, the follow-
ing is equivalent:

Definition 7. A deterministic machine M is IP-secure w.r.t. a
(possibly intransitive) policy — if for all u € U, in R(M), the
function obs,, o last contains no more information than ip,, o Act
about Act.

As with NI, an equivalent statement is that for all w € U, in R(M),
the function view, contains no more information than ip, o Act



about Act. It can be seen that ip,, = purge, when — is transitive,
so IP-security is in fact a generalization of the definition of security
for transitive policies.

It has been argued by van der Meyden [24] that IP-security misses
some subtle flows of information relating to the ordering of events.
A very simple example (from [25]) illustrating the problem is that
there exists an IP-secure system for the policy H — D +— L
with actions h,d, ¢ in domains H, D, L respectively, in which L
makes different observation after the sequence of actions hfd than
after the sequence of actions ¢hd. Since ip, (hfd) = hfd and
ip, (¢hd) = {hd are also distinct, this is not a violation of IP-
security. However, it can be argued that such a system is not secure.
Intuitively, L learns whether or not the h action came before the £
action. But, the system model is asynchronous, and according to
the policy, the only way L is permitted to learn about the h action
is via D. Since D is not permitted to know about the ¢ action, D
cannot securely inform L how action h was ordered with respect to
action /.

In response to this sort of example, van der Meyden proposes
an alternate semantics that is based on a function ta,, for each do-
main u, that is intended to capture the maximal information about
actions that domain » may have, according to the policy. (The
name of the function and the associated notion of security abbrevi-
ate “transmission of information about actions”.) This function is
inductively defined by

ta,(€) = € and

if dom(a) — u

otherwise.

ta,(aa) = {iza:zg))‘)v tagom(a)(Qr), @)

This definition resembles a full-information protocol, in which, when
performing an action a after sequence «, domain dom(a) sends ev-
erything that it knows (as represented by tagom(a) (a)), as well as
the fact that it has performed action a, to every domain « to which it
is permitted to transmit information. The recipient domain v adds
this new information to its existing information ta, (c). Domains
to which dom(a) is not permitted to send information learn noth-
ing when a happens. This function forms the basis for a definition
of security which may be formulated using relative information as
follows:

Definition 8. A deterministic machine M is TA-secure w.r.t. a
policy +— if obs,,olast contains no more information than ta, o Act
about Act.

Again, it proves to be equivalent to say that view, contains no more
information than ta,, o Act about Act. This definition is equivalent
to NI in the case of transitive policies.

4. MAIN DEFINITIONS

We are now positioned to state our new definitions, which give
meaning to intransitive noninterference policies in nondeterminis-
tic machines. As noted above, our focus in this paper is with defi-
nitions that place constraints on the flow of information concerning
the actions that have been performed. We furthermore focus on
generalizing the notion of TA-security from van der Meyden [24].

We characterized TA-security in deterministic machines as stat-
ing that for each domain u, the function obs,, o last contains no
more information than ta, o Act about Act, and noted that it is
equivalent to take view, in place of obs, o last in this definition.
However, in nondeterministic systems, an observation-based defi-
nition of security may be too weak, as shown in Section 3.3. This
suggests the following as an appropriate generalization of the defi-
nition to nondeterministic systems.

Definition 9. A nondeterministic machine M is nTA-secure w.r.t.
a policy — if, for all u € U, the function view, contains no more
information than ta, o Act about Act.

Intuitively, as in the deterministic case, this definition places, in
each run r, an upper bound on the information about the action
sequence Act(r) that is permitted to be contained in each possible
view view, (r): it may be no more than the information contained
in ta,(Act(r)). By Proposition 1, an equivalent statement is that
forall a, B in A*, if tay(a) = tayu(B) then poss(view, | Act =
o) = poss(view, | Act = ).

As we noted above in Section 3.5, a nondeterministic system
may be secure with respect to a definition of security that constrains
flow of information to individual domains, while allowing flows
of information to groups of domains. If the system needs to be
protected against collusion, this means that we require a stronger
definition that takes into account the deductive capability of groups.
One way to approach such a definition is to focus on what the group
would know if agents in the group were, after the completion of a
run of the system, to share what they have observed. We call this
a post-hoc coalition. The state of information of such a coalition
X C U may be represented by the function (view,)uex. We
would like them to be able to deduce no more than they would be
able to deduce if, after the run, they were to share their maximal
permitted information, represented by the terms ta. (Act(r)) for
u in the group. This leads to the following definition.

Definition 10. A nondeterministic machine M is nTA-secure w.r.t.
post-hoc coalitions (PCnTA) for a policy +— if, for all nonempty
sets X C U, (viewy)uex contains no more information than
(tau)uex o Act about Act.

By Proposition 1, an equivalent statement is that for all X C U and
a,fin A", if Vu € X (tay(a) = ta,(B)) then

poss((viewy)uex | Act = )
= poss({viewy,)uex | Act = ) .

One situation in which this attack model is appropriate is a sys-
tem in which multiple agents submit computations to a cloud server,
and receive output only after the computation is complete. In a
more interactive setting, the colluding coalition X may be able to
do more than share information at the end of the run: they may
be able to share information at each step of the run. We may call
this a runtime coalition. Since our systems model is asynchronous,
agents in X are typically not able to deduce a linear ordering on
the actions performed by members of X from the set of views
view,(r) for u € X. However, if they are able to communicate
each time that an action is performed by one of them, then at the
end of the run their information is the joint view viewx (r), which
does contain the order of actions in domains X. This means that
reasoning based on viewx represents a stronger attack model. The
following definition attempts to state that the system is resilient to
this stronger type of attack.

In order to formulate it, we need to characterize the maximal
permitted information for a group X, if they are colluding by shar-
ing information at each step. In the previous definition, the group’s
maximal permitted information in a run 7 is represented by the col-
lection of terms ta, (Act(r)) for v € X. In general, this will be
too weak to allow deduction of the order of the actions performed
in domains X, whereas as we just noted, the group can deduce
this from its joint view viewx (r). This suggests that we need a
stronger definition of the maximal permitted information on this
attack model. We take the approach here that if the group cannot



be prevented from sharing information through channels lying out-
side the system, its maximal permitted information in the event of
such collusion is represented by sharing of the maximal permitted
information at each step of the computation. This leads us to gener-
alize the definition of ta to take as a parameter, in place of a single
agent u, a nonempty set X C U. Inductively, we define tax by
tax(e) = eand, fora € A* and a € A,

tax (aa) = (tax (@), tagm() (@), a) if X Ndom(a)™ # 0
axioa) = tax (@) otherwise

It is easily seen that tag,)(a) = tau(a), so this is in fact a gen-
eralization of the previous notion. Using this notion, we obtain the
following definition.

Definition 11. A nondeterministic machine M is nTA-secure
w.r.t. runtime coalitions (RCnTA) for a policy + if for all nonempty
sets X C U, viewx contains no more information than tax o Act
about Act.

By Proposition 1, an equivalent statement is that for all X C U and
a,Bin A, if tax (o) = tax () then poss(viewx | Act = a) =
poss(viewx | Act = f3).

We have the following straightforward implications between these
notions:

Proposition 2. RCnTA implies nTA; PCnTA implies nTA.

These containment relationships are strict, as is shown by the fol-
lowing two examples.

Example 4. For a machine that is RCnTA but not PCnTA, con-
sider M as given in Fig. 6 under the security policy Ay, n,}- The
two domains have observations in the set {_L, 0, 1}. Each domain
H; has one ac/:tior(l,)hi. Below each state s of M there is a label
obsy, (s
()bsH; (s)
domains in s.

Machine M is not only nTA but also RCnTA for Ay, n,3-
For instance, for &« = hiha, 8 = h2hi, and the coalition H =
{H1,H2} we have that tan(a) = (tan(hi),tan,(h1),h2) =
((e,€,h1),€, h2) # ((e,€,h2),€ h1) = tan(B) and thus it is con-
sidered secure that

of the form to indicate the observations made by the two

poss(viewn | Act = «)
={ihiTheg, Thiiheg, thilhey}
£{thabhd, thathi, thathil)
= poss(viewy | Act = ) .

On the other hand, we have that M is not PCnTA. The individual
tan, (o) = tan, (h;) = tan,(8), fori = 1,2. Butr = s¢ L,

s3 22 sg € R(«) gives the pair (viewn, (7), viewn,(r)) =
(Lh11, Lh20) of views. There is no run in R(/3) with this pair of
views.

We next show that PCnTA does not imply RCnTA.

Example 5. Consider the security policy HNLL consisting of a
High domain H and two Low domains L, and L2 who are all al-
lowed to interfere with each other, except that H is not permitted
to interfere with any Low domain. (See Fig. 7b.) Let M be the
machine depicted in Fig. 7a where the only actions are ¢ in do-
main Lo and A in domain H. Only L; has non-trivial observations,
in {0, 1}, as indicated by the external labels below states. Machine
M 1is not only nTA but also PCnTA for HNLL. That it is not RC-
nTA for HNLL can be seen by comparing o = f2h and § = {2

Lo
(b) Policy HNLL

(a) A system that is PCnTA
but not RCnTA for HNLL.

Figure 7: Example 5.

for the coalition X = {Lq,L2}. We have tax(a) = tax(3), by
definition, but

poss(viewx | Act = a)
={061, 161,067 1}
£1060, 061
= poss(viewx | Act = ) .

Note that this problem does not show up in the views considered
separately:

poss((viewy)uex | Act = )
= {(0, Ll 1),(01, Les 1)}
= poss({viewy)uex | Act = B)

Checking the other cases, it can be verified that machine M is PC-
nTA for HNLL.

Evidently, like the machine of Example 2, the machine of Exam-
ple 5 should not be considered to be secure on a causal interpreta-
tion of security, since at state s1, the occurrence of the H action h
causes a change to the L, observation, whereas H is not supposed
to interfere with L.

To obtain notions of security that avoid this difficulty, we can
apply the persistence construct of Definition 5. This yields sev-
eral further notions of security: P-nTA, P-PCnTA and P-RCnTA.
Plainly the latter two imply the former, and each P-X implies the
source notion X from which it is derived. We now present some
examples that show that these notions are all distinct.



Example 6. Reconsider the machine of Example 5, but with an
additional edge H — Lo in the security policy. That is, we have
an instance of the well-known downgrader policy where D hap-
pens to be called L. Making the policy more liberal plainly cannot
turn a secure system to an insecure system (for any of our defini-
tions) so M is still PCnTA. Moreover, now the counter-example to
this from Example 5 no longer works because now we have that
tax (CM) = (taX (62)5 tay (62)5 h) = ((67 € 62)7 (Ea €, 52)7 h’) dif-
fers from tax(8) = (e, ¢,£2). It can be verified that M now
satisfies RCnTA. However, it is immediate that this example does
not satisfy any of the persistent notions of security (in particular, it
does not satisfy the weakest of these, P-nTA) because the H action
h changes the L1 observation from state s;.

Example 7. We show that P-nTA does not imply P-RCnTA, and
at the same time that P-PCnTA also does not imply P-RCnTA. Re-
call the policy HNLL (see Fig. 7b) and let M be as depicted in
Fig. 8. Only L, has non-trivial observations in {0, 1}, indicated by
labels below states. The other domains observe L at all states. Ac-
tions £2 and h belong to domains L, and H, respectively. Machine
M is P-nTA for HNLL, and also P-PCnTA.

Figure 8: A system that is P-nTA and P-PCnTA but not P-
RCnTA.

That it is not P-RCnTA can be seen by comparing o = hfs/ls
and 3 = (24, for the coalition X = {Li,L2}. We have tax (a) =
((67 €, £2)v (67 €, 62)7 ‘62) = taX(/B) but

poss(viewx | Act = «)
={0606Y, 2bit]}
A{06I6Y, 060nY, 0alal)
= poss(viewx | Act = f) .

This problem vanishes when considering the views separately: both
poss((viewy)uex | Act = &) and poss((view,)ucx | Act = B)
are equal to {(0, Llx L0y 1), (01, Ll 101}

Finally, P-RCnTA implies neither PC-PCnTA nor PCnTA. For
this, note that the machine in Example 4 (Fig. 6) is P-RCnTA. We
have already argued that it is RCnTA, so the verification of this
claim amounts to checking RCnTA on each of the very simple ma-
chines that result from choosing any state other than s0 as the ini-
tial state. This is easily done by inspection. We have already noted
above that this machine is not PCnTA, so, a fortiori, it is also not
PC-PCnTA.

S. SPECIAL CASES

In this section we reconsider some simple special cases of poli-
cies and systems and show that our new definitions of security re-
duce to some of the existing notions of security discussed above.
This lends credibility to the definitions and helps clarify their posi-
tioning with respect to the existing literature.

We have started with the aim of generalizing the notion of TA-
security on deterministic systems, and introduced a variety of dis-
tinct definitions in the more general setting of nondeterministic sys-
tems. The following result shows that all of these notions collapse
to TA-security in the deterministic setting.

Proposition 3. Given a security policy, the classes of determin-
istic machines that are nTA-, PCnTA-, or RCnTA-secure are all
equal to the class of TA-secure machines. Moreover, the persis-
tent versions of these notions in deterministic machines are also all
identical to TA-security.

We have built our definitions of security for intransitive poli-
cies using ingredients from prior work on nondeterministic systems
with respect to the simple policy H +4 L. The following result
characterizes our definitions in the special case of this policy (in
nondeterministic systems) as collapsing to variants of the notion of
Correctability.

Proposition 4. For the policy H +4 L, we have that nTA = PC-
nTA = RCnTA = COR and P-nTA = P-PCnTA = P-RCnTA = P-
COR.

We showed in Example 2 that COR and its persistent version P-
COR are distinct. Thus, we have a collapse to two distinct notions
in the case of this policy.

6. UNWINDING

Unwinding is a useful technique for security proofs, which re-
duces the verification of security to checking the existence of bi-
nary relations on states. In deterministic systems, unwinding is a
sound and complete technique for the proof of NI, and the exis-
tence of a weak form of unwinding relations is a sound technique
for IP-security and TA-security [8, 21, 24]. We define a generaliza-
tion of this method that is sound for our definitions of security in
nondeterministic systems.

Definition 12. Let M = (S, so, A, —>, obs, dom) be a machine
for a security policy (U,+—); let S = (~u)uev be a family of
equivalence relations on S. For X C U define ~x = ﬂue x ~u-

We say that S is a generalized weak unwinding on M with re-
spect to — (or GWU) if the following conditions are met for all
s,5',t €S,u €U, nonempty X CU,and a € A:

§ ~oy t = 0bsy(s) = obsy(t) ocC
s—t=s ~dom(a)? LR

$~X TS ~dom(a) EN S s =3 (tinf'As' ~x t')
GWSC

Condition OC (for “output consistency”) implies that coalition X
can distinguish states that some member can tell apart based on
its observation. Condition LR (for “local respect”) implies that
actions that are not allowed to interfere with anyone in the coali-
tion cannot change a state to another state that is distinguishable
to the coalition. According to GWSC (“generalized weak step
consistency”), if two states s and ¢ can be distinguished neither by
coalition X nor by the domain of action a, then each state reach-
able from s by performing a is indistinguishable to X from some
state reachable via a from ¢. This condition is the main point of dif-
ference with the notion of weak unwinding from [21]: it adds to the
condition WSC the universal quantification over X (which is just
a single domain u in WSC) and the existential quantification over
t’ (this corresponds to the nondeterminism of the system, whereas
WSC is designed for deterministic systems.)



P-PCnTA — PCnTA
-7 ~ ~
GWU P-nTA — nTA
~ — —7
P-RCnTA RCnTA

Figure 9: Implications between notions defined in this paper.

THEOREM 1. Ifthere isa GWU on M w.r.t. —, then M is PC-
nTA and RCnTA w.r.t. +>.

We may note that the definition of GWU is insensitive to the initial
state of the machine. Thus, if the existence of a GWU is sound
evidence for X-security, then it is also sound evidence for P-X-
security. Thus, we also have the following.

Corollary 1. If there is a GWU on M w.r.t. —, then M is both
P-PCnTA-secure and P-RCnTA-secure w.r.t. .

Thus, by the corollary above and our previous results, the existence
of a GWU implies every single one of the security notions defined
in this paper.

Fig. 9 summarizes the relationships we have found to hold be-
tween the various security definitions discussed above.

7. ACCESS CONTROL SYSTEMS

In the preceding sections, we developed definitions of security,
and showed that the notion of generalized weak unwinding pro-
vides a sound proof technique for showing that these definitions
hold in a system. Neither the definitions nor this proof technique
provide much concrete guidance for the engineer seeking to con-
struct a secure system, however. A result by Rushby [21] (and
refined in [24]) shows that, in deterministic systems, intransitive
noninterference is guaranteed to hold in a system built from a col-
lection of objects subject to an access control discipline that satis-
fies a simple static check that is essentially Bell and La Padula’s [2]
information flow condition. In the present section, we show that it
is possible to generalize this result to nondeterministic systems.

We first recall the notion of a machine with structured state [21].
This is a machine M (with states S) together with (we rename
some of the components) a set Obj of objects, a set V' of values,
and functions contents : S X Obj — V, with contents(s,n)
interpreted as the value of object n in state s, observe, alter :
U — P(0bj), with observe(u) and alter(u) interpreted as the
set of objects that domain w can observe and alter, respectively.
For brevity, we write s(z) for contents(s,z). We call the pair
(observe, alter) the access control table of the machine.

Rushby introduced reference monitor conditions on such ma-
chines in order to capture formally the intuitions associated with
the pair (observe,alter) being an access control table that re-
stricts the ability of the actions to “read” and “write” the objects
0bj. In order to formulate a generalization of these conditions in
nondeterministic systems, we first need to introduce some further
structure that constrains the nondeterminism in the system.

Define a choose-resolve characterization of nondeterminism in
a machine M with states S and actions A to be a tuple (N, n,r),
where Nisaset, n: Ax S — P(N)andr: AxSx N — S,
such that the following properties hold:

Vs € S,a € A, cen(a,s) (s - r(a, s, c)) CR1

Vs,t € S,a€ A (s > t=3cen(a,s)(t= r(a,s,c)))
CR2

Intuitively, N represents the set of all possible nondeterministic
choices that can be made in the process of executing an action, n
restricts those choices as a function of the particular state and ac-
tion being executed, and 7 deterministically resolves the transition,
as a function of the state, action and nondeterministic choice made
in that context. Condition CR1 says that the resolution of every
possible nondeterministic choice, allowed in the context of a given
state and action, is in fact a state to which a transition is possible.
Conversely, CR2 says that every transition can be obtained by re-
solving some allowed nondeterministic choice.

Trivially, every nondeterministic machine has a choose-resolve
characterization of nondeterminism. (For, we can simply take N =
S, and define n(a, s) as {t|s -+t }, and r(a, s,t) = t, and CR1
and CR2 are then satisfied.) The following restrictions on the struc-
ture of the characterization make this notion more interesting.

Suppose the machine M has structured state, with objects 0bj
and access control table (observe, alter). Write Val(x) for the
set of all possible values of x € Obj. Say that the choose-resolve
characterization of nondeterminism (N, n,r) has local choices if
for each x € 0Obj there exists a set N, and a function n, : A X
Val(z) — P(Ng) such that N = Il,covjNo, and n(a, s) is the
set of ¢ € N such that for all z € Obj, we have ¢, € ne(a, s(z)).
That is, a choice of nondeterminism on performing action a in state
s is obtained by independently making a choice of nondetermin-
ism at each of the objects € Obj. Say that a machine has local
nondeterminism if it is a machine with structured state that has a
choose-resolve characterization with local choices.

For states s,¢t and u € U define s ~$° ¢ to hold if s(z) =
t(z) for all z € observe(u). Intuitively, s ~9° ¢ says that u
could not distinguish s from ¢ if all it knew were the content of
objects that it is permitted to observe. Similarly, for choices ¢, ¢’ €
HzeconjNoy and uw € U we write ¢ ~3° ¢ if ¢z = ¢, forall z €
observe(u). The following conditions generalize the reference
monitor conditions to machines with local nondeterminism.

s~y t = 0bsy(s) = obsy(t) LC-RM1

cenla,s) N €nla,t) A
oc oc /

s ~dom(a) thc ~dom(a) c A

s(z) =tlx) Aew =

= r(a,s,c)(z) = r(a,t,c)(z)

LC-RM2

s s t Az ¢ alter(dom(a)) = t(z) = s(z)  LC-RM3

Intuitively, LC-RM1 says that the observations of domain u de-
pend only on the values of objects v is permitted to observe. Con-
dition LC-RM2 says that the value of object = after performing
action a depends only on the previous values of objects observable
to dom(a), nondeterministic choices made locally at those objects,
the previous value of x, and the nondeterministic choice made at
z. Condition LC-RM3 says that, for an action a, if dom(a) is not
permitted to alter the value of object x, then the value of z is in fact
unaffected when a is performed.

We also have a condition that relates the policy to the access
control structure, essentially that identified by Bell and La Padula
[2].

alter(u) N observe(v) A0 = ur v AOI

Intuitively, if there is an object x that can be altered by w and ob-
served by v, then x provides a channel through which information
can flow from w to v. Thus, for the system to be secure, this flow
must be permitted by the policy. The following result shows that
access control provides a design discipline that suffices to enforce
our definitions of security.



THEOREM 2. If M is a machine with local nondeterminism
satisfying LC-RM1-LC-RM3 and AOI w.r.t. — then there exists
a GWU on M w.rt. —.

It follows that such a machine M satisfies all the security prop-
erties identified in this paper.

Example 8. Consider a system comprised of three domains, for
a sender S, a receiver R, communicating through an unreliable chan-
nel B. We have four objects Obj = {xS, xI, x0, xR}, representing
the state of the sender memory, buffer input queue, buffer output
queue, and receiver memory, respectively. That the channel is mod-
eled by two queues is motivated by the desire to separate the access
rights to the head of the queue from those for the tail. The function-
ality of the channel is thus limited to the transportation within the
buffer, shipping messages from the input queue to the output queue.

Letting Msg be a set of messages, we may suppose that Val(xS) =
Val(xR) = Msg, so that the memory of the sender or receiver
consists of a single message, and Val(xI) = Val(x0) = Msg”,
so that the states of the buffer queues are sequences of messages.
A state of the system as a whole may be represented as a tuple
(ms,w,v,mz) € Msg X Msg* X Msg" x Msg. We suppose that the
sender has actions set(m) (setting its memory to message m) and
put (enqueue the current memory value to the buffer input queue),
the buffer has an action trans (dequeue a message from the input
queue and enqueue that message on the output queue), and the re-
ceiver has an action get (dequeue a message from the buffer output
queue and store it in the receiver’s memory).

We suppose that only the channel is unreliable. It may drop mes-
sages in transit from the head (modelled as xI) to the tail (x0). To
that end, we take Ny = {ok,drop} consisting of two choices
representing normal performance of the transmission action and
dropping off the associated message. This is the only nondeter-
mism we need, so we set Nyt = Nys = Ny = {0}. Further-
more, we make all the nz(a, s) = {0} except for nyo(trans,s) =
{ok,drop}. The only interesting case of the resolve function is
r(trans, (ms,w - m,v,mg), (0,0, f,0)), which is defined as the
value (ms,w,m - v,mg) if f = ok, and as (ms,w,v, ms) if
f = drop.

We define observations of the domains by obss((ms, w, v, mz)) =

ms, obss((ms, w,v,mg)) = (w,v), and obsy((ms, w, v, mp)) =
(v, mg). (We omit the discussion of minor issues such as no effects
will take place if R performs get in case the output queue is empty.)

Let the access control structure for the system be given by the
following table

| observe alter

S xS xS, xI
B xI,x0 xI,x0
R| x0,xR  x0,xR

which is derived from the descriptions of the actions. Then we

have (ms,w,v,mg) ~§° (mg,w’,v’, my) just when (v, mg) =

(v', mg), from which it follows that obsg ((ms, w, v, mr)) = (v, mg)

= (v',mi) = obsz((mg,w’,v’,my)), confirming part of LC-
RM1. The reader may verify that the remainder of LC-RM1 holds
in this system, as do conditions LC-RM2 and LC-RM3. It is clear
from the access control structure that the system also satisfies con-
dition AOI for the policy > defined by S — B <+ R.

Thus, by Theorems 2 and 1 the system is P-RCnTA-secure and
P-PCnTA-secure w.r.t. —.

We now give a sketch of how our results might apply to the ex-
ample of the introduction (Figure 1).

Example 9. Within each machine M, access control (monitored,
e.g., by a security kernel and by hardware access control features)
can be used to enforce the local portion of the policy. At this lower,
access control level, the system might contain objects chan,, , rep-
resenting communication channels for each of the pairs (u,v) in
{(Li, Hi), (Hq, Bd), (Eq, NIi), (Li, NI, (NI, N) 1.

The details of the channels might be reliable or resemble the
lossy buffer of Example 8. (For example, one expects that E; and
L, will place their output in a buffer read by the network interface
NI1, and that domain N consists of a network of lossy buffers.)
Some of the operations by a domain v on its data components D,
may also involve nondeterminism, e.g., E; may draw on a local
source of nondeterminism to generate random nonces to be used as
padding in the encrypted messages it constructs.

Suitable access control settings on such nondeterministic com-
ponents that reside within each machine M; suffice to enforce the
policy. In particular, consider the access control setting for M;

depicted in Figure 10.

Hi j—{chanuy &, Jo—| E:

e

chanLl’Hl .
chang, NI, ‘

Ly |«—{chan, ni, ‘ NIy chanyi, N <—> N

©

Figure 10: Access Control within machine 1/;. A bidirectional
arrow u <> d between a domain v and a data object d denotes
d € observe(u) N alter(u) whereas a unidirectional arrow
u — d denotes d € alter(u).

Note that all edges indicated are bidirectional, except the edge
from domain L; to object chany, n,. This ensures that L; may
pass information to Hy, but not vice versa. It is straighforward to
check that this access control policy ensures satisfaction of AOI
with respect to the policy in Figure 1.

8. RELATED WORK

The original work on semantics of intransitive noninterference [10,
21] was confined to transitive policies and deterministic systems.
We have already noted, in Section 3, some of the main points of
connection between our contributions in this paper and the volumi-
nous literature on the transitive policy H +% L in nondeterministic
systems. We focus here on comparing our work to that of some oth-
ers who have considered semantics for intransitive policies specifi-
cally in the setting of nondeterministic systems.

The earliest work in this vein appears to be that of Bevier and
Young [3]. Unlike most of the subsequent work, Bevier and Young
are alert to the issue of collusion: they present an example to jus-
tify a component of their definition as necessary in order to deal



with inferences by groups of agents. Moreover, their definition im-
plies a type of persistence, in that it places requirements on future
views from all pairs of states related by an equivalence relation
(hence also from all individual states compared to themselves.)
The equivalence relations used are the concrete relations defined
by s ~x tiff obs.(s) = obs.(t) forall u € X, where X is a set
of domains. Additionally, their definition refers to versions of the
intransitive purge functions ip, and the equivalence relation and
view,(r) = view,(r’) that generalize the single domain u to a
list of domains. Unfortunately, a definition of neither generaliza-
tion is provided. Our distinction between post-hoc and run-time
coalitions shows that there are in fact several plausible candidates
for such a generalization — it is unclear which approach was in-
tended by Bevier and Young. They also give a corresponding def-
inition of unwinding, which is also based on the specific concrete
equivalence relation of observation identity (although they discuss
the fact that the analyst might tailor the definition of observation).
Thus, although this work is close ours in the mix of concerns fac-
tored into the definition of security, it differs in the use of a specific
concrete equivalence relation and its basis in ip rather than ta, and
failed to notice subtleties concerning the treatment of coalitions.

Roscoe and Goldsmith [19] considered the application of the no-
tion of local determinism within the setting of the process algebra
CSP to give semantics to intransitive policies: they give two ver-
sions, one using a lazy abstraction operator, the other using a mixed
operator that gives special treatment to signal events. It is shown
in [23] that, in the special case of deterministic systems, the lazy
abstraction approach corresponds to the application of the purge
function of NI to nondeterministic systems, and the mixed abstrac-
tion approach corresponds to a notion of security van der Meyden
calls ITO-security: this differs from TA security in that it uses func-
tions that are like ta,,, but which track information about observa-
tions as well as information about actions. Thus, both definitions
differ from the TA-based definitions we have presented. The issue
of collusion is not considered in [19], however, semantics of a pol-
icy is given by checking for flows of information to each individual
domain u from the noninterfering domains ”* u, considered jointly.

Mantel [13] enriches the type of security policies we have con-
sidered (by distinguishing between observable, deducible and non-
interfering events) and studies the extension of his (trace-based)
Basic Security Property compositional approach to definitions of
security for H +4 L to this richer policy setting. His definitions
make use of a restricted quantification over sets of domains. How-
ever, the intended effect of this quantification is not to capture col-
lusion attacks, but to spread the local purge-like effect of the basic
security properties to simulate ip-like noninterference conditions.
He also proves soundness of an unwinding proof technique.

Another definition of intransitive noninterference in nondeter-
ministic systems is given by von Oheimb [26]. His approach is
also based on the ip function, but relates this to final observations
in a run. As we noted in Section 3.3, this may be inappropriate in
nondeterministic systems. A notion of unwinding is also presented
that is similar to ours, in that it quantifies over sets of domains.
However, the motivation for this appears to have been to obtain a
soundness result for unwinding, rather than an overt recognition
of the possibility of collusion attacks, since these are not acknowl-
edged in the definition of security.

Bismulation-based definitions of security (an approach that is
closely related to unwinding) are considered in the context of the
very specific intransitive policy HDL in [5]. This work deals with
the persistence dimension, but it is not clear how to generalize the
definitions to policies richer than HDL. Gorrieri and Vernali [9]
define similar notions of noninterference for the H 4 L and HDL

policies on labelled transition systems and elementary Petri nets:
the emphasis here is on the particularities of these semantic mod-
els rather than essential novelty in the semantics of security, where
they essentially follow [5].

Finally, Backes and Pfitzman [1] go beyond the nondeterministic
setting to consider intransitive policies in systems with probabilistic
transitions and cryptographic notions of information-flow. They
give a number of definitions that take a rather different approach
from the rest of the literature, focussing on whether information
about an initial bit can be transmitted from one party to another,
in some sense "only via particular intermediaries". It would take
some research to clarify relationships to any of the definitions in
the literature, but, prima facie, it would seem that these definitions
do not constrain information flow after the first transmission by the
intermediaries, as do all the other definitions.

Of the works discussed above, only von Oheimb applies his re-
sults to a class of Access Control systems, but these are just Rushby’s
deterministic Access Control systems, whereas we have introduced
a more general non-deterministic class of such systems.

9. CONCLUSION

Our focus in this paper has been to present a set of general-
izations of the TA-security semantics for intransitive noninterfer-
ence in nondeterministic systems. We have teased out a number
of parameters of such generalizations, leading to a range of defini-
tions. We characterize the relationships between these definitions
and provide an unwinding proof technique that is sound for all.

Several issues are left open by this work. The TA style of seman-
tics concentrates of the possibility for attackers to make deductions
about the actions that have been performed. In a nondetermin-
istic setting, the observations nondeterministically resulting from
these actions may also need to be protected against inference at-
tacks (e.g., when these observations are randomly generated keys).
Some TA-like definitions (TO-security and ITO-security) that take
observations into account have been presented by van der Mey-
den [24]. It remains to work out how these definitions should be
generalized to the nondeterministic setting.

Another concern is that whereas unwinding proof techniques
should preferably be complete as well as sound (and some in the
literature achieve both) our technique is just sound. It would be of
interest to have sound and complete proof techniques for each of
our definitions, in order to cover examples that lie outside of their
intersection. Given the connection we establish between P-nTA
and O-forward correctability, ideas from Millen’s sound and com-
plete unwinding for forward correctability [16] may be appropriate
in this case.
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