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Abstract

We adopt the knowledge-based approach to distributed systems’ analysis. Close examination
of a class of practical algorithms for distributed mutual exclusion leads to a knowledge-based
specification of the class. The specification is obtained by focusing on the knowledge content
of what needs to be communicated at each stage of the protocol. Correctness results are
outlined, including our main result on liveness. We discuss how this work sheds light on the
subtle nature of the standardly presented algorithms and so provides further evidence of the
value of the knowledge-based approach.

1 Introduction

Fagin, Halpern, Moses and Vardi [1995] laid the groundwork for the knowledge-theoretic ap-
proach to distributed systems: a high-level approach to distributed system analysis that en-
ables a more abstract, and more insightful, perspective on the design of distributed protocols.
The approach focuses on knowledge and, in particular, on how communication changes the
states of knowledge of each of the processes. Advantages include: enabling a deeper under-
standing of why a distributed algorithm is correct; facilitation of the redesign of distributed
algorithms for varying environments; and facilitation of the implementation and optimisation
of distributed algorithms [Vardi, 1996]. Several distributed system problems have been suc-
cessfully studied using this approach (e.g., [Halpern and Zuck, 1992]). However, the number
of examples remains small and it is crucial for the continued development of the knowledge-
theoretic approach that it be applied to the specification and design of additional pragmatic
distributed system problems [Moses, 1997]. In this paper, we develop an additional applica-
tion of the knowledge-based approach.



We provide a knowledge-based specification for an important subclass of algorithms for
the distributed mutual exclusion (DME) problem. The specification is of a class of algorithms
introduced earlier [Bonollo and Sonenberg, 1996], and related to the work on information
structure DME algorithms by Sanders [1987]. The key to this work is to carefully identify the
interrelationships between various properties of the processes (e.g. Sections 2.3, 3.2 and 3.3
below), the various assumptions as to ‘who goes next’ (Sections 3.4 and 4.2) and the memory
requirements (Section 4.3).

The existing presentation [Bonollo and Sonenberg, 1996] of the class of algorithms we
study is standard, in the sense that it is cast in terms of processes with a set of states
described by a concrete set of typed variables and an imperative program describing the
behaviour of the processes. Our contribution in this paper is to lift this description to a
much higher level of abstraction, where we focus on the flow of information in the system.
In place of messages with concretely given syntax, we focus on the semantic content of what
needs to be communicated at each state of the protocol, using a “notify” primitive similar
to that introduced by Moses and Kislev [1993]. We also express the conditions under which
certain actions are taken (specifically, entering the critical section) in terms of the knowledge
that a process must have to safely execute that action. This yields an abstract knowledge-
based description of the protocol for which we may then seek concrete implementations.
Developing such implementations remains to be undertaken, but our hope is that the effort
of abstraction will be repaid by allowing the discovery of implementations that provide some
significant optimizations of the concrete protocol with which we started (like identification of
situations in which some messages need not be sent, or in which action can be taken based on
receipt of a smaller set of messages than expected.) Whether or not such benefits eventuate,
the abstract specification has already given us better insight into the protocol.

Below we review relevant work on DME algorithms, then in the next section, we present
the definitions for an epistemic temporal logic for describing properties of distributed systems.
This is followed by a knowledge-theoretic specification of DME algorithms with timestamps,
which includes a proof of mutual exclusion. We then present a knowledge-theoretic specifica-
tion of the topology and protocol for DF-ISDME algorithms. The main result of the paper,
a liveness proof that any process trying to enter the CS will eventually do so, is outlined.
We then discuss how the knowledge-theoretic approach yields a deeper understanding for this
pragmatic class of algorithms, and point to future work.

1.1 Distributed Mutual Exclusion

To achieve distributed mutual exclusion, a set of distributed processes must coordinate their
actions such that at any time at most one process has access to a shared resource: for
example, a network printer, or a tuple in a distributed database. A process may only be
within its critical section (CS) whenever it has gained exclusive access to the shared resource.
Typically, processes can only communicate with each other by message passing - there is no
shared memory.

Several well known distributed mutual exclusion algorithms have been published and a
taxonomy of algorithms appears in the survey by Singhal [1993]. Generally, these algo-
rithms can be classed as either token-based or information structure (ISDME) algorithms.
In token-based algorithms, a unique token is passed among the processes. Possession of the
token guarantees mutual exclusion. The token-based algorithm of Suzuki and Kasami is a
well known example. Information structure algorithms are instances of a general algorithm
(GEN-ISDME) proposed by Sanders [1987] as a means of classifying several non-token-based
algorithms. Among the advantages of information structure algorithms is their potential for



local handling of process failure and process recovery while, by comparison, token-based al-
gorithms require global cooperation for handling process failure which can be quite complex
[Sanders, 1987].

In an ISDME algorithm, each process has a pair of sets called the request set and the inform
set, which form the local information structure. The collection of these pairs defines the global
information structure. For the GEN-ISDME algorithm, each process requests permission to
enter its CS by sending Request messages to the processes which are members of its request
set followed by waiting for Grant messages to be received from them. Upon exiting its CS,
the process will then send Release messages to the processes which are members of its inform
set. Mutual exclusion is only guaranteed when the request sets and the inform sets satisfy a
certain condition on the global information structure. It turns out that the request sets and
inform sets can describe the topology of several well known and practical mutual exclusion
algorithms [Sanders, 1987].

Unfortunately, due to arbitrary communication delays, the GEN-ISDME algorithm can
deadlock under certain information structures [Sanders, 1987] and so is impractical. Sanders
proposed a deadlock-detecting algorithm (DDGEN-ISDME) which detects and avoids poten-
tial deadlock situations: it uses a deadlock recovery scheme requiring the exchange of Inquire,
Yield, and Fail messages. The deadlock recovery scheme is quite complex. Our earlier work
identified a class of Deadlock-free ISDME algorithms (DF-ISDME) which do not require any
deadlock recovery scheme. These algorithms operate on a more restricted class of information
structures than the class introduced by Sanders for GEN-ISDME, but their performance (via
conventional measures such as message performance and synchronisation delays) is acceptably
good [Bonollo and Sonenberg, 1996]. Below we present a formal specification of the class of
systems which describe DF-ISDME algorithms.

The contribution of the present paper is to provide a knowledge-based specification of
this practical class of algorithms, and in doing so both to shed light on the subtle nature of
the algorithms, and to provide further evidence of the value of the knowledge-based approach
to distributed systems’ analysis. For example, the impact of the most complex axiom in
our specification, the Dictate axiom, allows a process holding a lower priority timestamp to
sometimes “jump ahead” of a higher priority process when messages from the higher priority
process are delayed in transit—but this behaviour isn’t mentioned at all in the standard
algorithm proofs in the conventional literature. Instead, the standard algorithm proofs tend
to imply (by omission) that all requesting processes will enter the CS in timestamp order.

2 Definitions

2.1 Knowledge and Temporal Properties

We use a first-order modal logic of knowledge and time along with the usual S5 axioms
[Fagin et al., 1995]. Our until U and waiting-for VW temporal operators are as in

[Manna and Pnueli, 1992]. We use ¢ and j to denote rigid variables which are quantified over
the set of processes.

2.2 Edge Formulas

Often, we are interested in time points where a condition has just become true, or alternately
we are interested in time points where a condition has just become false. The following
definitions represent such “edge formulas:” The proposition that “¢ has just become true” is

def;
represented as enter(¢) and is defined as follows: enter(¢) = ©-¢AN¢. The proposition that



def;
“¢ has just become false” is represented as exit(¢) and is defined as follows: exit(¢) ezn@qﬁ/\—w;&.
We define the proposition first such that it is true only at the initial point of an execution
(or run).

2.3 Perfect Recall

Intuitively, perfect recall means that the local state of a process encodes everything that
has happened—ifrom the point of view of the process—thus far in the run. Thus the state
of the process at time m + 1 contains at least as much information as its state at time m
[Fagin et al., 1995].

For a process i, the following properties are valid in systems with perfect recall
[Halpern et al., 1997]:

Vi (K (¢) SK; (¥)=K; (Ki (¢) SK; ())) (Perfect Recall)

Vi (K; (O0¢)=0K; (¢)) (KT1)

2.4 Notify

Moses and Kislev [1993] introduced the concept of the notify formula. This formula repre-
sents a way of abstracting the details of how two processes communicate by focusing on the
transition of knowledge which must occur between them. Here:

=

defn

notify;;(¢) = Ki (9)ACK; (¢) (Notify)

3 Distributed Mutual Exclusion

This section presents a knowledge-theoretic specification (Properties 1 to 13) for the class of
systems which describes DME algorithms using timestamps (DMET'). From this specification,
we provide a proof that mutual exclusion follows.

3.1 Timestamps

Each process of a DMET system which is trying to enter its critical section (CS) will make
use of a timestamp. A timestamp (i,x) is an ordered pair consisting of a process identifier

i€ A={1,...,n} and a natural number z € N. Timestamps are elements of a well-ordered

domain such that (i,z) < (j,y) defe (x < y)V((z = y)A(z < j)). We use t and t’ to denote

rigid variables which are quantified over the set of timestamps.

3.2 Process States

Processes in a DMET system are at any time in at most one of the following three local states:
These states are called Noncritical (N), Trying (T), or Critical Section (CS). A process i
always uses a timestamp ¢ whenever it is in its Trying state or in its CS state. We define
several primitive local propositions to represent these concepts—intuitively, a proposition p
is local to a process if its truth depends entirely on the local state of that process. Hence
we write, p is local to i if and only if Vi(K; (p)VK; (—p)) is valid. The local proposition that
“process 7 is currently in a Noncritical state” is represented as N;. The local proposition that
“process i is currently in a Trying state with a timestamp ¢” is represented as T;(t). The local



proposition that “process i is currently in the CS with a timestamp ¢” is represented as CS;(t).
The local proposition that “process i is currently in a trying state [with some timestamp]”

defl ..
is represented as T; and is defined as follows: T; = 3t(T;(t)). The local proposition that

“process i is currently in the CS [with some timestamp)|” is represented as CS; and is defined as

def; . . .
follows: CS; =" 3t(CS;(t)). These propositions are related by the following general properties.

Property 1 For a process j, at any time, at most one of N;, T}, or CS; holds.
Vi((NjA-TjACS;)V(~N;AT; A= CS;)V(—N; A= T; A CSj)) (NTC)
Initially, every process starts in the Noncritical state as shown by the following property.

Property 2 If this is the first state of a run then process j is in the Noncritical state.
Vj(first=Nj) (Initial)

The states of a process happen in a cycle that repeats in the sequence N, T and CS. This
cycle is captured by the following state transition axioms.

Property 3 If a process j is in the Noncritical state then it remains in the Noncritical state
indefinitely or until it enters the Trying state.

vi(Nj=NWT;) (NT)

Property 4 If a process j is in the Trying state with a timestamp ¢’ then it remains in the
Trying state with timestamp ¢’ indefinitely or until it enters the CS with timestamp ¢'.

Vi, (T;()= T; ()W C8;(t')) (TC)

Property 5 If a process j is in the CS with a timestamp #' then it remains in the CS with
timestamp ¢’ indefinitely or until it enters the Noncritical state.

V4, ¢'(CS;(t")= CS;(t')WN;) (CN)
The time spent by a process j in the CS is bounded.

Property 6 If a process j is in the CS with a timestamp ¢’ then eventually it will reach a
state where it is in the CS with timestamp ¢’ and in the next time point it will be in the
Noncritical state.

V3, t(CS;(#")=>0(CS;(t)AON;)) (Bounded-CS)

3.3 Timestamp Properties

Each process generates its own unique set of timestamps as described by the following prop-
erty.

Property 7 It’s always the case that distinct processes ¢ and j have distinct timestamps.
Vi t, 5,1 (i # j=>t # ) (UT)

The following two properties cover the fact that, at any time, a process ¢ is using only a single
timestamp within a process state.



Property 8 At each point in time, each process is in the Trying state with at most one
timestamp (if at all).

Vi, t, ' (T;())AT;(t) =t = t') (EQTT)

Property 9 At each point in time, each process is in the CS with at most one timestamp (if
at all).

Vi, t, ' (CS; (1) NCS;(t)=>t = t') (EQTCS)
Monotonicity of timestamps is a key property which is expressed as follows:

Property 10 Given (NTC), whenever a process revisits the Trying state after having vis-
ited the CS, it will use a timestamp greater than the timestamp it used previously (so the
timestamps used always increase).

Vi, t, t' (T; () AO(N;AO T ()=t > t) (Monotonicity)
A process knows how to compare known timestamps as described by the following property.

Property 11 If a process j knows it is in the Trying state with a timestamp ¢’ and if 7 knows
that a process ¢ is in the Trying state with a timestamp ¢ and if timestamp #' is less than
timestamp ¢ then process j knows that timestamp ¢’ is less than timestamp ¢

Vi, ¢, t (K (Ti)AK; (Ti(¢)A[E < t]=K; [t' < t]) (K-Compare)

3.4 Knowledge-Theoretic Mutual Exclusion

Fundamental to distributed mutual exclusion (DME) is the idea that a process j will hold
back until another process ¢ is done with the CS.

Definition 1 The proposition that “process j will not enter the CS before a process ¢ with
timestamp ¢ is done with the CS” is represented as blocked(j,i,t) and is defined as follows':

blocked(j, i,t) “S" ~C8; W (~C8;A CSi(t) AON;) (Blocked)
As a convenience, we will say that process j is blocked on process ¢ with timestamp ¢.

The key to capturing a knowledge-theoretic condition which ensures process ¢ has mu-
tual exclusion using timestamp ¢ is the condition captured in ¢EKMZ (i t) together with the
following two properties:

Definition 2

=

defn

¢FMEB(i,t) = \jyi Ki (blocked(j, 4,t)) (% ME)

Property 12 For any process i, if 7 is trying with a timestamp ¢ and and the knowledge
guard for mutual exclusion ¢®ME(j t) also holds then at the next point process i will enter
its CS with a timestamp t.

Vi, t(T; (1) AEME (3, 8) = CS;(t)) (CS-Guard)

1This relatively simple formula disguises considerable subtleties.



Property 13 For any process ¢, if ¢ is trying with a timestamp ¢ and at the next point
process ¢ will enter its CS with a timestamp ¢ then the knowledge guard for mutual exclusion
¢EME(j t) holds at the current point.

Vi, t(T; (1) ANO CS;(t) = pEME (4, 1)) (KME)

Given only the properties defined so far, we now show that mutual exclusion is guaranteed
for the class of DMET systems.

Theorem 1 (Knowledge-Theoretic Mutual Exclusion) For every point (r,m) of a
DMET system, KME implies mutual exclusion, i.e.

if KME then for all i, t, j #1i, t' (=(CS;(t)ACS;(t'))) (KMET)

Proof: The proof is by contradiction. Suppose for processes ¢ and j that at some point
CS;(t")ACS;(t). Given the allowable process state transitions (Section 3.2), there exists a point
(r,n) such that T;(t)AQ(CS;(¢')ACSi(t)). Now by KME, it follows that (r,n) = ¢KME(4 t).

Using the definition of blocked(j,,t) and noting that (r,n) = O CS;(t'), we have (r,n) =
O(=CS;U(=CS;ACS; () ANON;)). With p = =CS; and ¢ = (- CS;ACS;(t)ANON;) and using an
expansion for until [Manna and Pnueli, 1992] the formula can be rewritten, yielding (r,n) &=
O(gV[pAO(pUq))).

Note that both p and ¢ contain —CS; as a conjunct and at the point (r,n + 1), we have
that ¢Vp holds. If ¢ holds then there is a contradiction with CS;(¢'), whereas p true also leads
to a contradiction with CS;(¢'). Hence, mutual exclusion holds. B

4 DF-ISDME Systems

We are now ready to proceed to a knowledge-theoretic specification for a class of systems
corresponding to DF-ISDME protocols. For this paper, we assume that the processes in a
DF-ISDME system have perfect recall (Section 2.3). In later work we are able to relax this
assumption.

4.1 Topology of DF-ISDME Systems

As discussed above, the DF-ISDME protocol is an information structure algorithm restricted
to a certain topology involving the Request and Inform sets. In a message passing environment
it is this restricted topology which allows the standard implementation to be deadlock-free
in the sense of using an efficient exchange of messages [Bonollo and Sonenberg, 1996]. This
reliance on message exchange is abstracted away in our specification.

Property 14 We require the Request and Inform sets to satisfy:

Vie A(1 € 1) (IINI)
Vie A(I; CRy) (ISUBR)
Vi,je Ai #j((1 € R —I;)Aj € (Ri —L))V(i € I;)V(j € Ly)) (DF-ISDME)

The disjunctive conditions of the DF-ISDME property are usually abbreviated by the following
labels: Case I: i € (R; —I;)Aj € (R; — I;); Case II: ¢ € I;; or Case III: j € I,.



4.2 Protocol for DF-ISDME Systems

The following seven properties involving knowledge-theoretic conditions and actions serve
to constrain the behaviour of the protocol being specified. The form of these axioms was
suggested by a detailed analysis of the standard DF-ISDME protocol.

Property 15 Whenever a process i enters the Trying state with a timestamp ¢, it will notify
those processes j which are members of its request set R; (“i requests j”):

Vi, t,j € Rq(enter(Ti(t))=notify;;( Ts(t))) (Request)

Property 16 For any process j that is a member of 7 ’s request set, if j is in the Noncritical
state and if j knows that process ¢ is trying with timestamp ¢ then j will notify ¢ that j
will not enter the CS before ¢ with ¢ (“j grants to ¢” since j isn’t trying to enter the CS at
present).

Vi,t,j € Ri(N;AK; (Ti(t))=notify;;(blocked(j,i,t))) (Noncritical Grant)

Property 17 For any process j that is a member of i’s request set, if j is in its CS with a
timestamp ¢ and at the next point j is in the Noncritical state and if 5 knows that process
i is trying with timestamp ¢ then j will notify ¢ that ;7 will not enter the CS before ¢ with ¢
(“j grants to i since j is about to exit the CS).

Vi, t,t',j € Ri(CS; () ANON;AK; (T;(t))=notify;;(blocked(j,i,t))) (Last CS Grant)

Property 18 For any process i that is a member of j’s inform set, whenever j is exiting the
CS with timestamp ¢/, j will notify ¢ that it will never again enter the CS with timestamp ¢/
(“j releases the CS for 7).

Vi, t',i € L;(CS; (") AONj=notify;;,(( CS;(t' ) AON;))) (Release)

Property 19 For any process j that is a member of i’s request set, if j is in the Trying
state with its associated timestamp ' and where j knows that a process 7 is also trying with
a timestamp t and given that there is a losing arbitration for j with ¢ compared to 7 with ¢
then j will notify ¢ that j will not enter the CS before i with ¢ (“j grants to i” since j is the
loser in the arbitration with 7).

Vi, t,t',j € Ri(Tj(t')AK; (Ti(t))A[t' > t]=notify;;(blocked(j,i,t))) (Lose)

Property 20 For any process j such that a process ¢ is a member of j’s request set, if ¢ is
trying with timestamp ¢ and where ¢ knows that process j is trying with timestamp ¢ and
given that there is a winning arbitration for ¢ with ¢ compared to j with ¢’ then i knows that
J will not enter the CS before ¢ with ¢ (here 7 is the winner in the arbitration with j).

Vi, t' 0 € Rj(Ti(A)AK; (T;(#"))A[t < t']=K; (blocked(j,i,t))) (Win)

Property 21 For any process j such that a process ¢ is a member of j’s inform set, if ¢ is
trying with timestamp ¢ and where 7 doesn’t know that process j is trying with timestamp ¢'
and given that the following two conditions hold:

1. for any other process k not equal to 7,7 that is a member of 7 ’s request set, 7 knows that
k will not enter the CS before ¢ with ¢;



2. for any other process k not equal to 7,5 such that ¢ is a member of k’s inform set, if ¢
knows that process k is trying with timestamp ¢” then 7 knows that k will not enter the
CS before i with t;

then ¢ knows that j will not enter the CS before i with ¢ (here ¢ has enough knowledge from
the other processes k to assert its right to enter the CS despite not knowing about j).

Vit t,1 € Ii(
[Ti(t)A—K; (Tj(t'))AVE # 4,5, k € Ri(K; (blocked(k, i,t)))A
Vk #£1,7, 1 € Lg(K; (Te(t"))=K; (blocked(k,1,t)))]
= K; (blocked(j,i,t))) (Dictate)

4.3 Knowledge-Theoretic DF-ISDME Memory Lemmas

In this section, we derive knowledge-theoretic DF-ISDME memory lemmas which highlight,
for a sequence of points in a run, the relationships between processes and their mutually
allowable process states. Apart from the description and proof for Lemma 3, which is typical,
we omit the descriptions and proofs of the other memory lemmas from this section. We
also omit all corollaries of the other memory lemmas in this section, but we note that their
knowledge-theoretic form is similar to the form of Corollary 1.

Lemma 1
Vi,t, 7,1 (CS; (') S(CS; (") ATi(t))= Ti(t))
Lemma 2
Vi, t',t0 € Ry((T;(¢)V CS;(t) S(T;(#)AK; (Ti(t))Alt' < t])=Ti(t))))

Lemma 3 The following proposition is valid in the class of DF-ISDME systems: If a process
i is still in the Trying state with a timestamp t since a point in the past when a process j
was blocked on process i with timestamp t then process j is still blocked on process i with
timestamp t.

Vi, t, j(T;i(t) Sblocked(j, i,t)=blocked(j,1,t))

Proof: Assume T;(t) Sblocked(j,i,t) is true at some point (r,v). Then from the definition
of the S operator, there exists a point in the past (r,n), n < v, such that blocked(j, i,t) holds.
Now if n = v then blocked(j,1,t) follows directly. O

In the case where n < v, it follows that (r,n + 1..v) = T;(¢) holds. Now since (r,n) |=
blocked(j,i,t), it follows that there are two cases arising from the definition of blocked. In
the first case, (r,n + 1) = O-CS; holds. Since O-CS; holds forever from (r,n + 1) and since
n < v, it follows that (r,v) = blocked(j,,t)). O

In the second case, (r,n + 1) = = CS; U (- CS;ACS;(t)NON;) holds. It follows from the
definition of the U operator, that there exists the earliest point (r,s), s > n + 1, such that
(r,8) = ~CS;ACS;(t)AON; holds. This means that —=CS; holds from (r,n + 1) through to
(r, s) inclusive. Therefore, it follows that, in this case, blocked(j,,t) holds from (r,n) through
to (r,s — 1).

Given CS;(t) at the point (7,s) and given TC, there must exist the point (r,u) which is
the last point where T;(t) holds prior to CS;(t) holding at (r,u + 1). Now, using the fact that
(r,n + 1..v) = T;(¢;) must hold, it must be that case that n+1 < v < w. From this, it follows
that the interval (r,n + 1..u) lies within the interval (r,n..s — 1) where blocked(j,¢,t) holds.
Hence, blocked(j,1,t) holds at the point (r,v). B



The following corollary follows immediately from validity in Sb:

Corollary 1 The following proposition is valid in the class of DF-ISDME systems:
Vi, t, j(K; (Ti(t) Sblocked(j, i,t) )= K; (blocked(j,,t)))
Lemma 4
Vi, t, j,t' (Ti(t) S(blocked(j, i, t) A T;(t'))=blocked(j, i, t) A Tj(t'))
Lemma 5
Vi, t, j, ' ((Ti(t) A= (CS; (¢ ) AON;)) S( Ti(t)Ablocked(i, j, t'))=>blocked(i, j, ')
Lemma 6

Vi, t, j, t' (©(CS;j(t')AQN;)=0(=blocked(i, j, t' ) A\—T;(t')))

5 Liveness

We are now ready to establish the liveness result for DF-ISDME systems that any process ¢
which is trying to enter the critical section will eventually do so, i.e.

Vi, ¢ Ty(t)=© CSi(t))

This can be seen to follow immediately from the CS-Guard property (Property 12, which
describes a guard condition for entry to the critical section) and a liveness result for the guard
condition (Theorem 2) which establishes that a trying process will eventually achieve the
guard condition. This last is the main result of the paper.

Theorem 2 (Knowledge-Theoretic DF-ISDME Liveness) For any given point in a run
(r,m) of a DF-ISDME system, if process i is trying to enter its CS with timestamp t, denoted
Ti(t), then eventually $*ME(i,t) holds:

Vi, t( Ti(t)=CpEME (5 1)) (K-Live)

Proof: The full proof runs to several pages so we provide only an outline here: We fix a
run 7 of a DF-ISDME system and consider a series of points in = at which key conditions
crucial to our liveness argument hold. These conditions are summarised in Figure 1 for
reference. Overall, the proof proceeds in four stages as follows: In Stage 1, we assume, by
way of contradiction, that the set of halted processes contains those processes which, in a
run r of a DF-ISDME system, eventually try forever but never enter their respective CS. We
choose a timestamp ¢ that is the minimum timestamp from the set of timestamps associated
with this set of halted processes. Following on from this, we choose the point (r,m) as the
earliest such point in the run r such that the condition that i is trying forever with timestamp
t holds true.

In Stage 2, we consider all processes j that have a Case I or a Case III DF-ISDME topology
relationship with respect to process ¢ which is trying with ¢. We show that there exists a
point (r,m'), m' > m, such that ¢ knows that all these processes j are blocked on i trying
with timestamp t.

10



T:(t)ANO-CS;(t)
| | | |
m m/ m/l m/”
choose I|II1 IT I ..
t blocked last 7/ all “releases” —» contradiction

Figure 1: Liveness proof - key points in run r of a DF-ISDME system.

For Stage 3 of the proof, we consider the remaining topology case, i.e. all processes j that
have a Case II DF-ISDME topology relationship with respect to process i which is trying
with ¢t. Our argument proceeds in two parts: For the first part, we show that there exists a
point (r,m), m" > m/  where all these processes j have tried, or are trying, with their last
generated timestamp 7’. This requires us to show that the set of timestamps t' generated by
the Case II processes j is finite. For the second part, we show that there exists a point (r, m"’),
m"" > m", where ¢ knows that all Case II processes j, which had been granted precedence to
enter the CS ahead of i, have now released the CS.

In Stage 4, the final stage of the proof, we show that at the point (r,m'), arrived at in
Stage 3, ¢ knows that all the Case II processes j are blocked waiting on 7 trying with timestamp
t by virtue of the Win or Dictate properties. This proposition, together with the proposition
established in Stage 2 at the point (r,m'), means that 7 will achieve the knowledge-theoretic
guard condition ¢%MFE (i t) and hence enter its CS. This is in contradiction with what was
assumed initially, that ¢ was a member of the set of halted processes, hence the theorem is
proved.

The following key observations should be noted concerning the liveness proof. The
monotonicity of the timestamps generated in a run is used repeatedly. In particular, mono-
tonicity is used to show the finiteness of the set of candidates which have precedence over
t. The careful choice of ¢ associated with the concept of the minimal halted process is used
to ensure: that the Case I or Case III processes j whose timestamps have precedence over ¢
eventually exit their CS (Stage 2); and that the Case II processes j whose timestamps have
precedence over ¢t and receive “grants” from i will also eventually exit their CS (Stage 3).
As a further remark, we note that the proof makes use of the memory lemmas defined in
Section 4.3 together with repeated application of the perfect recall properties (Section 2.3).
|

6 Conclusion

Our knowledge-theoretic specification allows us to gain a deeper understanding of pragmatic
classes of algorithms such as DF-ISDME. For example, the Dictate axiom is the most complex
axiom in our specification—and yet its behavioural impact isn’t obvious at all when looking
at a standard DF-ISDME algorithm implementation [Bonollo and Sonenberg, 1996]. Given
such an implementation of processes in a message passing environment, the Dictate axiom
allows a process holding a lower priority timestamp to sometimes “jump ahead” of a higher
priority process when messages from the higher priority process are delayed in transit—but
this behaviour isn’t mentioned at all in the standard algorithm proofs in the conventional
literature. Instead, the standard algorithm proofs tend to imply (by omission) that all re-
questing processes will enter the CS in timestamp order. Interestingly, the conjuncts of the
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Dictate axiom premise are very similar to the “while loop test condition” of the standard
DF-ISDME algorithm. In the standard DF-ISDME algorithm, a process waits for this test
condition to become true to decide when mutual exclusion has been achieved.

This deeper understanding of DF-ISDME algorithms can be exploited in a practical way.
For DF-ISDME, the knowledge-theoretic specification leads to plug-ins of different imple-
mentations. For example, our specification highlights the fact that monotonicity is the key
requirement for timestamp implementations. Thus, unlike many standard algorithms, we can
easily claim that Lamport timestamps [Lamport, 1978] are not necessary to implementations
of our specification. Hence, for example, a simple integer count of the number of times a CS
has been visited will suffice.

The knowledge-theoretic approach allows us to “abstract out” the environment in various
ways. For example, during the proof of our main result for liveness, we discovered and applied
several memory lemmas (Section 4.3). Whenever a memory lemma was applied in the proof,
it was followed by the application of a perfect recall property (Section 2.3). Thus using this
method, we have collected a set of process memory usage requirements for the DF-ISDME
class of algorithms.

In future work, we plan to recast the specification by modifying the current memory
lemmas so as to make the memory assumptions used explicit whilst dropping the global
perfect recall assumption. This will also allow us to rewrite the specification beyond the
conventional knowledge-theoretic approach using new developments based on a logic of local
propositions [Engelhardt et al., 1998].
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