Symbolic Synthesis for Epistemic Specifications with
Observational Semantics

Xiaowei Huang and Ron van der Meyden

School of Computer Science and Engineering
UNSW Australia
{xiaoweih, meyden}@cse.unsw.edu.au

Abstract. The paper describes a framework for the synthesis of protocols for
distributed and multi-agent systems from specifications that give a program struc-
ture that may include variables in place of conditional expressions, together with
specifications in a temporal epistemic logic that constrain the values of these vari-
ables. The epistemic operators are interpreted with respect to an observational
semantics. The framework generalizes the notion of knowledge-based program
proposed by Fagin et al (Dist. Comp. 1997). An algorithmic approach to the syn-
thesis problem is developed that computes all solutions, using a reduction to epis-
temic model checking, that has been implemented using symbolic techniques. An
application of the approach to synthesize mutual exclusion protocols is presented.

1 Introduction

In concurrent, distributed or multi-agent systems it is typical that agents must act on the
basis of local data to coordinate to ensure global properties of the system. This leads
naturally to the consideration of the notion of what an agent knows about the global
state, given the state of its local data structures. Epistemic logic, or the logic of knowl-
edge [9] has been developed as a formal language within which to express reasoning
about this aspect of concurrent systems. In particular, knowledge-based programs [10],
a generalization of standard programs in which agents condition their actions on for-
mulas expressed in a temporal-epistemic logic, have been proposed as a framework for
expressing designs of distributed protocols at the knowledge level. Many of the inter-
esting analyses of problems in distributed computing based on notions of knowledge
(e.g. [13]]) can be cast in the form of knowledge-based programs.

Knowledge-based programs have the advantage of abstracting from the details of
how information is encoded in an agent’s local state, enabling a focus on what an agent
needs to know in order to decide between its possible actions. On the other hand, this
abstraction means that knowledge-based programs do not have an operational seman-
tics. They are more like specifications than like programs in this regard: obtaining an
implementation of a knowledge-based program requires that concrete properties of the
agent’s local state be found that are equivalent to the conditions on the agent’s knowl-
edge used in the program.

This gap has meant that knowledge-based analyses have been largely conducted as
pencil and paper exercises to date, and only limited automated support for knowledge-
based programming has been available. One approach to automation that has emerged

in the last ten years is the development of epistemic model checking tools [11416].
These give a partial solution to the gap, in that they allow a putative implementation
of a knowledge-based program to be verified for correctness (for examples, see [2/3]).
However, this leaves open the question of how such an implementation is to be obtained,
which still requires human insight.

Our contribution in this paper is to develop and implement an approach that auto-
mates the construction of implementations for knowledge-based programs for the case
of the observational semantics for knowledge-based programs. (In earlier work [14]]
we dealt with stronger semantics for a more limited program syntax, see Section /| for
discussion). Our approach is to reduce the problem to model checking, enabling the
investment in epistemic model checking to be leveraged to automatically synthesize
implementations of knowledge-based programs. In particular, we build on symbolic
techniques for epistemic model checking.

We in fact generalize the notion of knowledge-based program to a more liberal
notion that we call epistemic protocol specification, based on a protocol template to-
gether with a set of temporal-epistemic formulas that constrain how the template is
to be instantiated. This enables our techniques to be applied also to cover ideas such
as the sound local proposition generalization of knowledge-based programs [8]]. We
illustrate the approach through an application of the knowledge-based programming
methodology to the development of protocols for mutual exclusion. We give an abstract
knowledge-based specification of a protocol for mutual exclusion, and show how our
approach can automatically extract different protocols solving this problem.

2 A Semantic model for Knowledge and Time

For brevity, we present the theory of our approach at the level of semantic structures,
since the symbolic algorithms we use work at this level. However, the input to our
synthesis system is given in a programming notation, and, for clarity of exposition, we
use this notation to present examples. For motivation, the reader may prefer to read
the example in Section @] first. Details of the mapping from programming syntax to the
semantic structures are fairly standard, and left to the reader’s intuition.

Let V be a finite set of boolean variables and Ags be a finite set of agents. The
language CTLK(V, Ags) has the syntax:

¢=v|=g|d1Véo | EXG| E(p1Upr) | EGo | Kidp

where v € V and i € Ags. This is CTL plus the construct K;¢, which says that agent i
knows that ¢ holds. We freely use standard operators that are definable in terms of the
above, e.g., AF¢ = "EG-¢ and AG¢ = ~E(true U-¢).

A (finite) model is a tuple M = (S, I, —, {~i}icags» F,m) Where S is a (finite) set of
states, I C S is a set of initial states, »C S X S is a transition relation, ~;: § X S —
{0, 1} is an indistinguishability relation of agent i, component ¥ is a fairness condition
(explained below), and 7 : § — P(V) is a truth assignment (here £ (V) denotes the
powerset of V.) A path in M from a state s € S is a finite or infinite sequence s = 5o —
s1 — s — ... We assume that — is serial, i.e. for each s € S there exists # € S such
that s — 7. We model fairness using the condition ¥ by taking this to be a generalized

Biichi fairness condition, expressed as a set of sets of states: ¥ = {ay,...,a;} where
each @; C §. An infinite path s = 59 — s — s, — ... is fair with respect to F if,
for each i = 1...k, there are infinitely many indices j for which s; € a;. Let rch(M) be
the set of fair reachable states of M, i.e., the set of states s,, (for some n) such that there
exists a fair path s — s — ... — 5, — s,41 — ... with sy € I an initial state.
We assume that I C rch(M), i.e., all initial states are the source of a fair path.

The semantics of the language is given by a satisfaction relation M, s = ¢, where
s € rch(M) is a fair reachable state. This relation is defined inductively as follows:

M,s Evifven(s),

M,s = —¢ifnot M, s E ¢,

M,sE @1V o if M,s = ¢y or M, s E ¢,

M, s = EX¢ if there exists t € rch(M) such that s — t and M, t = ¢,

M, s |E E(¢1Ugpy) if there exists a fair path s = 59 — 51 — ... — s, — ... such

that M, s; = ¢y fork=0...n—1and M, s, E ¢>,

6. M,s | EG¢ if for there exists a fair path s = 50 — 51 — ... with M, s} = ¢ for
allk >0,

7. M,s E K;¢ if for all t € rch(M) with s ~; t we have M, t = ¢.

EAEIR S B

We are interested in models in which each of the agents runs a protocol in which it
chooses its actions based on local information. To this end, we describe how a model
may be obtained from the agents running such protocols in the context of an environ-
ment, which provides shared structure through which the agents can communicate.

An environment for agents Ags is a tuple E = (Var,, I, Acts,—., F.), where

—_

Var, is a finite set of variables, from which we derive a set of states S, = P(Var,),

2. I, is a subset of S, representing the initial states,

3. Acts = IlieagsActs; is a set of joint actions, where each Acts; is a finite set of actions
that may be performed by agent i,

4, —,C S, XActs X S, is a transition relation, labelled by joint actions,

5. F. is a generalized Biichi fairness condition over the states S .

Intuitively, a joint action a represents a choice of action a; for each agent, performed
simultaneously, and the transition relation resolves this into an effect on the state. We
assume that —, is serial in the sense that for all s € S, and a € Acts there exists € S,
such that s — t.

Semantically, a concrete protocol for agent i € Ags in such an environment £ may
be represented by a tuple Prot; = (PVar;, LVar;, OVar;, I;, Acts;, —;), where

1. PVar; C Var, is a subset of the variables of E, called the parameter variables of the
protocol,

2. LVar; is a finite set of variables, understood as the local variables of the agent,

3. OVar; C PVar; U LVar; is the set of variables of the above two types that are observ-
able to the agent, and on the basis of which the agent computes what it knows,

4. I; is a subset of P(LVar;), representing the initial states of the protocol,

5. Acts; is the set of actions that the agent is able to perform (this must match the set
of actions associated to this agent in the environment),

6. —; C P(PVar; U LVar;) X Acts; X P(LVar;) is a serial labelled transition relation.

We assume that the sets Var, and LVar;, for i € Ags, are mutually disjointE]

Note that the transition relation —; indicates how an agent’s local variables are
updated when performing an action, which may depend on the current values of the pa-
rameter variables in the environment. This transition relation does not specify a change
in the value of the parameter variables: changes to these are determined in the envi-
ronment on the basis of the actions that this agent, and others, perform in the given
step.

Given an environment £ and a collection {Prot;}icags of concrete protocols for the
agents, we may construct a model M(E, {Prot;}icags) = (S, I, —, {~i}ieags, ¥,) as fol-
lows. The set of states is S = P(Var,UUeqa s LVar:), i.€., the set of all assignments to the
environment and local variables. We represent such states in the form s = s, U {;eags Lis
where s, C Var, and each [; C LVar;. Such a state s is taken to be an initial state in [if
s. € I, and [; € [; for all agents i. That is, I is the set of states where the environment
and each of the agents is in an initial state. The epistemic indistinguishability relations
for agent i over the states S is defined by s ~; ¢ iff s N OVar; = t N OVary, i.e., the states
s and t have the same values for all of agent i’s observable variables. The transition
relation — is given by s, U Ujeags i — 5, U Ujeags I/ if there exists a joint action a

such that s, i>e s, and (s, N PVar;) U [; Li I} for each agent i. We take the fairness
condition ¥ to contain

{s, U U li|s, € a,l; € P(LVary),...,1, € P(LVar,)}

icAgs

for each a € ¥,. That is, we impose the environment’s fairness constraints on the envi-
ronment portion of the state. The assignment r is given by 7(s) = s.

3 Epistemic Protocol Specifications

Protocol templates generalize concrete protocols by introducing some variables that
may be instantiated with a boolean expression in the observable variables in order to
obtain a concrete protocol. Formally, a protocol template for agent i € Ags is a tuple
P; = (KVar;, PVar;, LVar;, OVar;, I;, Acts;, —;)

1. KVar; is a set of variables, disjoint from all the other sets of variables, that we call
the template variables,

2. PVar;, LVar;, OVar;, Acts; are, respectively, a set of parameter variables, local vari-

ables, observable variables and actions of agent i, exactly as in a concrete protocol;

as in concrete protocols, we obtain a set of local states P(LVar;),

I; € P(LVar;) is a set of initial local states,

4, —,;,C P(KVar; U PVar; U LVar;) X Acts; X P(LVar;) is a transition relation that
describes how local states are updated, depending on the value of the template
variables, parameter variables, local variables and action performed.

e

! We could also include a fairness condition, but exclude this here for brevity. We do not assume
that LVar; € OVar;: this allows the impact on knowledge of particular local variables to be
studied, and helps in managing the complexity of our technique, which scales exponentially in
the number of observable variables.

An epistemic protocol specification is a tuple S = (Ags, E, {P;}icags, @), consisting
of a set of agents Ags, an environment E for Ags, a collection of protocol templates
{Pi}icags for environment E, and a collection of epistemic logic formulas & over the
agents Ags and variables Var, U Ujea,,(KVar; U LVar;).

Epistemic protocol specifications generalize the notion of knowledge-based pro-
gram [9l10]. Essentially, these are epistemic protocol specifications in which, for each
agent i € Ags and each template variable v € KVar;, the set @ contains a formula of
the form AG(v & K). That is, each template variable is associated with a formula of
the form Ky, expressing some property of agent i’s knowledge, and we require that the
meaning of the template variable be equivalent to this property.

Epistemic protocol specifications also encompass the sound local proposition inter-
pretation of knowledge-based programs proposed by Engelhardt et al [8]: these asso-
ciate to each template variable v a formula ¢ and require that v be interpreted by a local
proposition (under the observational semantics, this is just a condition on the observable
variables), such that the system satisfies AG(v =). (By the assumption of locality of
v, this is equivalent to satisfying AG(v = Ku).)

To implement an epistemic protocol specification with respect to the observational
semantics, we need to replace each template variable v in each agent i’s protocol tem-
plate by an expression over the agent’s observable variables, in such a way that the
specification formulas are satisfied in the model resulting from executing the resulting
standard program. We now formalize this semantics.

Let 6 be a substitution mapping each template variable v € KVar;, fori € Ags, to a
boolean expression over the observable variables OVar; of agent i’s protocol P;. If we
apply this substitution to P;, we obtain a standard protocol P;6 = (PVar;, LVar;, OVar;, I;,
Acts;, —>f>, where the template variables KVar; have been removed, and all the other
components are as in the protocol template, except that we derive the concrete transition
relation —>f C P(PVar; U LVar;) X Acts; X P(LVar;) from the transition relation —; C
P(KVar; U PVar; U LVar;) X Acts; X P(LVar;) in the protocol template, as follows.

Since, for each v € KVar;, the value 6(v) is an expression over the variables OVar;,
which is a subset of PVar; U LVar;, we may evaluate 8(v) on states in P(PVar; U LVar;).
Given a state s € P(PVar; U LVar;), define s° € P(KVar;) by s° = (v € KVar; | s E 6(v)}.
We then define —¢ by s i>l.9 I when s U s =, I, for s € P(PVar; U LVar;) and
a € Acts; and [} € P(LVar;).

The substitution # may also be applied to the specification formulas in @. Each ¢ €
@ is a formula over variables Var, U | J;eaqs(KVar; U LVar;). Replacing each occurrence
of a variable v € | J;eaqs KVar; by the formula 6(v) over Var, U |;eq,5 LVar;, we obtain a
formula ¢6 over Var, U |jeqqs LVar;. We write @0 for {¢0 | ¢ € @}.

We say that such a substitution 8 provides an implementation of the epistemic pro-
tocol specification S, provided M(E, {P;0}icaqs) E @6. The problem we study in this
paper is the following: given an environment E and an epistemic protocol specification
S, synthesize an implementation 6. This is an inherently complex problem. To provide
a fair comparison with the performance of our implementation, we measure it here as a
function of the size of a succint representation (by means of boolean formulas for the
environment and protocol components, or programs PTIME encodable by such formu-
las). Since the size of the output implementation 6 could be of exponential size in the

number of observable variables, we measure the complexity of determining the exis-
tence of an implementation: even this is already hard, as the following result shows:

Theorem 1. The problem of determining the existence of an implementation of a given
epistemic protocol specification is NEXPTIME-complete.

4 Example: Mutual Exclusion

To illustrate our approach we use a running example concerned with mutual exclusion.
Mutual exclusion protocols [7] are intended for settings where it is required that only
one of a set of agents has access to a resource (e.g. a printer, or a write access to a
file) at a given time. There exists a large literature on this topic, with many different
approaches to its solution [[17].

To model the structure of a mutual exclusion protocol, we suppose that each agent
has three states: waiting, trying, and critical. Intuitively, while in the waiting
state, the agent does not require the resource, and it idles for some period of time until
it decides that it needs access to the resource. It then enters the trying state, where
it waits for permission to use the resource. Once this permission has been obtained, it
enters the critical state, within which it may use the resource. Once done, it exits
the critical state and returns to the waiting state. The overall structure of the protocol
is therefore a cycle waiting — trying — critical — waiting. To ensure fair
sharing of the resource, we assume that no agent remains in its critical state forever.

To avoid the situation where two agents are using the resource at the same time,
the specification requires that no two agents are in the critical state simultaneously.
In order for a solution to the mutual exclusion problem to satisfy this specification, the
agents need to share some information about their state and to place an appropriate
guard on the transition from the trying state to the critical state. Mutual exclusion
protocols differ in their approach to these requirements by providing different ways for
agents to use shared variables to distribute and exploit information about their state.

Our application of our synthesis methodology assumes that the designer has some
intuitions concerning what information needs to be distributed, and writes the protocol
and environment in so as to reflect these ideas concerning information distribution.
However, given a pattern of communication, it may still be a subtle matter to determine
what information an agent can deduce from some particular values of its observable
variables. We use the epistemic specification to relate the information distributed and
the conditions used by the agent to make state transitions.

A general structure for a mutual exclusion protocol is given as a protocol template
in Figure[I] The code uses a simple programming language, containing a Dijkstra style
nondeterministic-if constructif e; — P[] ... [] ex — P, fi which nondeterministically
executes one of the statements P; for which the corresponding guard e; evaluates to
true. The final ¢; may be the keyword otherwise which represents the negation of the
disjunction of the preceding e;. If there is no otherwise clause and none of the guards in
a conditional are true then the program defaults to a skip action. Evaluation of guards in
if and while statements is assumed to take zero time, and a transition occurs only once
an action is encountered in the execution. This applies also to an exit from a while loop.

/* protocol for agent 7; initially state[i] = waiting */;
while True do
begin
/* waiting section: wait for some amount of time before entering the trying section */
while state[i] = waiting do
if True — skip [] True — EnterTry fi;
/* trying section: wait until the condition represented by template variable x; holds */
while state[i] = trying do
if x; — EnterCrit [] otherwise — skip fi;
/* critical section: stay critical for a random amount of time,
return to waiting when done */
while state[i] = critical do
if True — skip [] True — ExitCrit fi
end

Fig. 1. Protocol template for a mutual exclusion solution

Variables in the programming notation are allowed to be of finite types (these are
boolean encoded in the translation to the semantic level. We assume that a vector of vari-
ables state indexed by agent names records the state in {waiting, trying, critical}
of each agent. Thus, mutual exclusion can be specified by the formula

AG /\ —(state[i] = critical A state[j] = critical). (D)
i,jEAgs, i#]

The protocol template also uses three actions for the agent: EnterTry, EnterCrit and
ExitCrit, which correspond to entering the trying, critical and waiting states respec-
tively. We take the variables statel[i] to be included in the set of environment variable
Var,. When there are n agents, with Ags = {0...n — 1}, we assume the code for the
environment transition always includes the following:

fori=0...n-1do
if i.EnterTry — statel[i] := trying
[]i.EnterCrit — state[i] := critical
[1iExitCrit — state[i] := waiting
fi

(Here i.a is a proposition that holds during the computation of any transition in which
agent i performs the action a.) Additional code describing the effect of these actions
may be included, which represents the way that the agents distribute information to
each other concerning their state. A number of different instantiations of this additional
code for these actions are discussed below.

In our epistemic specifications, we include in @, for each agent i, the following
constraint on the template variable x; that guards entry to the critical section:

AGX; © K;i(AX(/\ (j #1= state[j] # critical))) 2)
JjeAgs

Intuitively, this states that agent i enters its critical section when it knows that, after
next transition, no other agent will be in its critical section. Note that this formula falls

within the structure of the specifications for knowledge-based programs as discussed
above. We also include in @ the formula

/\ AG(state[i] = trying = AF'state[i] = critical) 3
i€Ags

which requires that the protocol synthesized ensures that whenever an agent starts try-
ing, it is eventually able to enter its critical section.

One of the benefits of knowledge-based programs is that they enable the essential
reasons for correctness of a protocol to be abstracted in a way that separates the infor-
mation on the basis of which an agent acts from the way that this information is encoded
in the state of the system. This, it is argued, allows for simpler correctness proofs that
display the commonalities between different protocols solving the same problem.

This can be seen in the present specification: if the agents follow this specification,
then they will not violate mutual exclusion. The proof of this is straightforward; we
sketch it informally. Suppose that there is a violation of mutual exclusion, and let ¢
be the earliest time that we have state[i] = critical A state[j] = critical for
some pair of agents i # j. Then either i or j performs EnterCrit to enter its critical
section at time 7 — 1. Assuming, without loss of generality, that it is agent i, we have x;
attime t — 1, so by , we must have Kj(AX(Ageaqs(k # i = state[k] # critical)))
at time ¢ — 1. But then (since validity of K;¢ = ¢ is immediate from the semantics
of the knowledge operator), it follows that AX(state[j] # critical) at time ¢ — 1,
contradicting the fact that the protocol makes a transition, in the next step, to a state
where state[j] = critical.

We note that only the implication from left to right in (2)) is used in this argument,
and it would also be valid if we removed the knowledge operator. This is an example of
a general point that led to the “sound local proposition” generalization of knowledge-
based programs proposed in [8]. However, weakening (Z) to only the left to right part
allows the trivial implementation 6(x;) = False, where no agent ever enters its critical
section. The implication from right to left in (2) amounts to saying that rather than this
very weak implementation, we want the strongest possible implementation where an
agent enters its critical section whenever it has sufficient information. Here the knowl-
edge operator is essential since, in general, the non-local condition inside the knowledge
operator will not be equivalent to a local proposition implementing X;.

The description above is not yet a complete solution to the mutual exclusion prob-
lem: it remains to describe how agents distribute information about their state, and
how the data structures encoding this information are related to a local condition of
the agent’s state that can be substituted for the template variable so as to satisfy the
epistemic specification. We consider here two distinct patterns of information passing,
based on two overall systems architectures. In both cases KVar; = {x;} for all agents i.

Ring Architecture: In the ring architecture we consider n agents Ags = {0,...,n—
1} in a ring, with agent i able to communicate with agent i + 1 mod n. This communica-
tion pattern is essentially that of token ring protocols. In this case we assume that com-
munication is by means of a single bit for each agent 7, represented by a variable bit[i].
We take Var, = {bit[i],state[i]|i = 0...n — 1} and let PVar; = {bit[i], state[i]}
and LVar; = 0 and OVar; = {bit[i]}. Agent i is able to affect its own bit as well as the

bit of agent i + 1 mod n through its actions. More precisely, we add to the above code
for the environment state transitions the following semantics for the ExitCrit actions:

fori=0...n—1do
if . ExitCrit then begin bit[i] := -bit[i]; bit[i + | modn] := —bit[i + 1 modn] end

That is, on exiting the critical section, the agent flips the value of its own bit, as well
as the value of its successor’s bit. To ensure fairness, we also add to the environment,
for each agent /, the Biichi fairness constraint state[i] # waiting, which says that the
agent does not remain forever in the waiting state, but eventually tries to go critical. This
ensures that this agent takes its turn and does not forever block other agents who may
be trying to enter their critical section. We also add the fairness constraints state[i] #
critical to ensure that no agent stays in its critical section forever. (However, we do
not include state[i] # trying as a fairness constraint: it is up to the protocol to ensure
that an agent is eventually able to enter its critical section once it starts trying!)

Broadcast architecture: In the broadcast architecture, we assume that the n agents
broadcast their state to all other agents. In this case, no additional variables are needed
and we take Var, = {state[j]| j=0...n— 1}. Also, for each agent i, we take PVar; =
OVar; = Var, and LVar; = (. The only code required for the actions EnterTry, EnterCrit
and ExitCrit is that given above for updating the variables state[i]. We do not need to
assume eventual progression from waiting to trying in this case (we allow an agent to
wait forever, in this case) so the only fairness constraints are state[i] # critical to
ensure that no agent is forever critical.

Implementation Example: We describe an example of an implementation in the
case of the ring architecture for mutual exclusion described above. We assume that ini-
tially, bit[i] = O for all agents i. Consider the substitution defined by 6(x;) = —bit[i]
if i = 0 and 6(x;) = bit[i] if i # 0. (Note that these are boolean expressions in the
observable variables OVar; = {bit[i]}.) It can be shown that this yields an implemen-
tation of the epistemic protocol specification for the ring architecture (we discuss our
automated synthesis of this implementation below.) Intuitively, in this implementation,
agent 0 initially holds the token, represented by bit[0] = 0. After using the token to
enter its critical section, it sets bit[0] = 1 to relinquish the token, and bit[1] = I in
order to pass the token to agent 1. Thus, for agent 1, holding the token is represented
by bit[1] being true. The same holds for the remaining agents. (Obviously, there is an
asymmetry in these conditions for the agents, but any solution needs to somehow break
the symmetry in the initial state.) Intuitively, specification formula (2)) holds because the
implementation maintains the invariant that at most one of the conditions 6(x;) guarding
entry to the agents’ critical sections holds at any time, and when it is false, the agent is
not in its critical section. Thus, the agent i for which 6(x;) is true knows that no other
agent is in, or is able to enter, its critical section. Consequently, it knows that no other
agent will be in its critical section at the next moment of time.

S Reduction of Synthesis to Model Checking

We now show how the synthesis of implementations of epistemic protocol specifica-
tions S can be reduced to the problem of epistemic model checking. The approach

essentially constructs a model that encodes all possible guesses of the environment, and
then uses model checking to determine which guesses actually yield an implementation.
The consideration of all guesses is done in bulk, using symbolic techniques.

For each agent i, let O; be the set of boolean assignments to OVar;; this represents
the set of possible observations that agent i can make. We may associate to each o € O;
a conjunction Y, of literals over variables v in OVar;, containing literal v if o(v) = 1 and
—v otherwise.

Since an implementation 6(v) for a template variable v is a boolean condition over
observable variables, we may equivalently view this as corresponding to the set of ob-
servations on which it holds. This set can in turn be represented by its characteristic
mapping from O; to boolean values. To represent the entire implementation 6, we intro-
duce for each agent i € Ags a set of new boolean variables X;, containing the variables
Xioyv, Where o € O; and v € KVar;. Let X = UieAgs X;. We call X the implementation
variables of the epistemic protocol specification S.

A candidate assignment 6 for an implementation of the epistemic protocol specifi-
cation, can be represented by a state yy over the variables X, such that for an observation
o € O; and variable v € KVar;, we have x;,, € yy iff 8(v) holds with respect to assign-
ment o. Conversely, given a state y over the variables X, we can construct an assignment
6, mapping, for each agent i, the variables KVar; to boolean conditions over OVar;, by

0)(W) = \/ Yo .

0€0;, XiovEX

To reduce synthesis to model checking, we construct a system in which the state
space is based on the variables X as well as a state of a model for the implemen-
tation. Given an environment £ = (Var,,I,,Acts,—,), we define an environment
EX = (VarX, IX, Acts, —¥) as follows. The variables making up states are defined to be
Varf = Var, U X. The initial states are given by If ={sUx|sel, y e PX)},ie. an
initial state is obtained by adding any assignment to variables X to an initial state of E.
The set of actions Acts is the same as in the environment E. Finally, the transition rela-
tion —% is given by s Uy —X s’ Uy iff s —, 5" and y = x’ where s, s’ € P(Var,)
and y, x’ € P(X).

Additionally, for each agent i, we transform its protocol template P; = (KVar;, PVar;,
LVar;, OVar;, I;, Acts;, —;) into a concrete protocol PIX = (PVarlX ,LVar;, OVarlX , I, Acts;,
—>ZX y for the environment EX. The local variables LVar; and the initial states I; are
exactly as in the protocol template. The parameter variables are given by PVarIX =
PVar; U X, and the observable variables are given by OVar = OVar; U X. The tran-
sition relation —>lX C P(PVar; U X U LVar;) X Acts; X P(LVar;) is derived from the
transition relation —; C P(KVar U PVar; U LVar;) X Acts; X P(LVar;) as follows. For
s € P(PVar; U LVar;) and y € P(X), define «(s, y) € P(KVar) by

Kk(s,x) = {v € KVar; | sUx \/ Yo A Xioy} -

0€0;

For I/ € P(LVar;) and a € Acts;, we then let s U y ——X I/ iff s U k(s,x) —; [} .
Intuitively, since the assignment y to the variables X encodes an implementation 6,
we make these variables an input to the transformed protocol, which uses them to make

decisions that depend on the protocol template variables when executing the protocol
template. In particular, when an observation o = s N OVar; € O; (equivalently, s =)
satisfies x;,, € x, this corresponds to the template variable v taking the value true on
state s according to the implementation 6(v). We therefore execute a transition of the
protocol template in which v is taken to be true.

Note that the definition of the sets OVarlX makes the variables X observable to all the
agents: this effectively makes the particular implementation being run common knowl-
edge to the agents, as it is in the system that we obtain from each concrete imple-
mentation. However, the combined transformed environment and transformed protocol
templates represent not just one implementation, but all possible implementations. This
is stated formally in the following result.

Theorem 2. Let S = (Ags, E, {Pi}icags,) be an epistemic protocol specification, and
let X be the set of implementation variables of S. For each implementation 6 of S, we
have M(EX, {P,X}ieAgs)» s | D6 for all initial states s of M(EX, {Pf}ieAgx) with sNX = yy.

Conversely, suppose that x € P(X) is such that M(EX, {PX}icaqs), s E @0, for all initial
states s of M(EX, {PX},-eAgS) with s N X = x. Then 6, is an implementation of S.

1

This result gives a reduction from the synthesis problem to the well understood
problem of model checking. Any algorithm for model checking specifications express-
ible in the framework can now be applied. In particular, symbolic model checking tech-
niques apply. We have implemented the above approach as an extension of binary-
decision diagram (BDD) based epistemic model checking algorithms already imple-
mented in the epistemic model checker MCK [[11]], which handles formulas in CTL*K,,
with fairness constraints using BDD based representations. The model checking tech-
niques involved are largely standard, as in [6], with a trivial extension to handle the epis-
temic operators (these just require BDD’s representing the set of reachable states and an
equivalence on observable variables.) We make one optimization, based on the obser-
vation that the variables X encoded in the state do not actually change on any given run.
We can therefore reduce the number of BDD variables required to represent the transi-
tion relation by retaining only one copy of these variables. Also, we first compute the
observations o € O; that can occur at reachable states in any putative implementation,
to reduce the set X to variables x;,, where o is in fact a possible observation.

We note that the reduction does entail a blowup in the number of variables. Suppose
we have n agents, with the number of observable variables of agent i being k;. Then the
size of the set X; could be as large as 2%|KVar|, so that |X| = 3., ,2%|KVar,]| is the
number of new variables that need to be included in the BDD computation. With BDD-
based symbolic model checking currently typically viable for numbers of the BDD
variables in the order of 100’s, this places an inherent limit on the size of example that
we can expect to handle using our technique. Evidently, the technique favours examples
in which the number of observable variables per agent is kept small. This is reflected in
the results obtained for our running example, which we now discuss.

6 Solutions to the mutual exclusion example

We have applied our implementation of the above reduction to the epistemic protocol
specifications for mutual exclusion described in Sectiond] Our technique computes the

[No.of Agents [[2] 3 [4[5] 6 | 7 [8]
Ring (time)|[0.3| 1.7 [5.5.{17.2|157.7|509.1|597
(No.BDD vars) |[22| 33 [44|55| 66 | 77 |88
Broadcast (time)||0.2|194.2
(No. BDD vars) ||34| 105 (356

Table 1. Running times (s) of Synthesis Experiments

set of all possible implementations. We now describe the implementations obtained for
the two versions of this specification.

We note that, as defined above, two implementations, corresponding to substitu-

tions 6, and 6, for the template variables, may be behaviorally equivalent, yet for-
mally distinct. Define the equivalence relation ~ on such substitutions by 6, ~ 6, if
M(E, (P }icags) and M(E, {P;6;}iea,s) have the same set of reachable states, and for all
such reachable states s, and all template variables v, we have M(E, {P;0; }icags), s E 61(V)
iff M(E, {P;i62}icags), s = 62(v). Intuitively, this means that 6; and 6, are equivalent, ex-
cept on unreachable states. We treat such implementations as identical and return only
one element of each equivalence class.
Ring Architecture: We have already discussed one of the possible implementations
of the epistemic protocol specification for the ring architecture as the example in Sec-
tion] viz., that in which 6(x¢) = —bity and 6(x;) = bit; for i # 0. Our synthesis
system returns this as one of the implementations synthesized. As discussed above, this
implementation essentially corresponds to a token ring protocol in which agent 0O ini-
tially holds the token. By symmetry, it is easily seen that we can take any agent k to
be the one initially holding the token, and each such choice yields an implementation,
with 8(x;) = —bit; and 6(x;) = bit; for i # k. Our synthesis system returns all these
solutions, but also confirms that there are no others. Thus, up to symmetry, there is
essentially just one implementation for this specification.

We note that, whatever the total number of agents n, the number of variables ob-
servable to agent i is just one, so we have |X;| = 2 and we add |X| = 2n variables to
the underlying BDD for model checking in order to perform synthesis. This gives a
slow growth rate in the number of BDD variables as we scale the number of agents, and
enables us to deal with moderate size instances. Table [I] gives the performance results
for our implementation as we scale the number of agentsE] The total number of BDD
variables per state (i.e., the environment variables, local protocol and program counter
variables and X) is also indicated.

Broadcast Architecture: In case of the broadcast architecture, the number of variables
that need to be added for synthesis increases much more rapidly. In case of n agents,
we have |X;| = 2% (since we need two bits to represent each agent’s state variable
state[j]), and |X| = n2?". Accordingly, the approach works only on modest scale
examples. We describe the solutions obtained in the case of 3 agents. Our synthesis
procedure computes that there exist 6 distinct solutions, which amount essentially to
one solution under permutation of the roles of the agents. To understand this solution,

2 Our experiments were conducted on a Debian Linux system, 3.3GHz Intel i5-2500 CPU, with
each process allocated up to 500M memory.

TTT:0

WTT-1 < TTW:0

Fig. 2. Structure of a ME protocol synthesized (3 agents, broadcast architecture)

note first that if any agent is in its critical section, all others know this, but cannot know
whether the agent will exit its critical section in the next step. It follows that no agent
is able to enter its critical section in the next step. It therefore suffices to consider the
behavior of the solution on states where no agent is in its critical section, but at least one
agent is in state trying. We describe this by means of the graph in Figure[2] Vertices
in this graph indicate the protocol state inhabited by each of the agents, as well as the
agent that the protocol selects for entry to the critical state, e.g., WTT:1 indicates that
agent 0 is in state waiting, and agents 1 and 2 are in state trying, and that agent
1 enters its critical state in the next step. The edges point to possible successor states
reached at the time the selected agent next exits its critical state. (Note that, at this time,
no other agent has had the opportunity to enter its critical state, but another agent may
have moved from waiting to trying, so there is some nondeterminism in the graph.)
It can be verified by inspection (a focus on the upper triangle suffices, since only one
agent is trying in states in the lower triangle) that the solution is fair: there is no cycle
where an agent is constantly trying but never selected for entry to the critical section.

7 Related Work

Most closely related to our work in this paper are results on the complexity of verifying
and deciding the existence of knowledge-based programs [20l10], with respect to what
is essentially the observational semantics. The key idea of these complexity results is
similar to the one we have used in our construction: guess a knowledge assignment that
indicates at which observations (local states, in their terminology) a knowledge formula
holds, and verify that this corresponds to an implementation. However, our epistemic
specifications are syntactically more expressive than knowledge-based programs, and
some of the details of their work are more complex, in that a labelling of runs by sub-
formulas of knowledge formulas is also required. In part this is because of the focus on
linear time temporal logic in this work, compared to our use of branching time temporal
logic. This work also does not consider any concrete implementation of the theoretical

results using symbolic techniques. The complexity bounds for determining the exis-
tence of an implementation of a knowledge-based program in [20010] (NP-complete
for atemporal knowledge-based programs and PSPACE-complete for programs with
LTL-based knowledge conditions) are lower than our EXPTIME bound in Theorem [I]
because they are based on an explicit-state rather than variable-based representation.

Our focus in this paper is on the observational semantics for knowledge. Other se-
mantics have been studied from the point of view of synthesis. Van der Meyden and
Vardi [18]] consider, for the synchronous perfect recall semantics, the problem of syn-
thesizing a protocol satisfying a formula in a linear time temporal epistemic logic in a
given environment (with no limitations on the program structure of the solution). They
show the problem to be decidable only in the case of a single agent. Some restrictions
on environments and specifications are identified in [[19] under which the problem be-
comes decidable. The problem can also be shown to be decidable for knowledge-based
programs that run only a finitely bounded number of steps: a symbolic technique for
implementing such programs with respect to synchronous semantics including perfect
recall and clock based semantics is developed in [14].

A number of papers have also applied model checking of knowledge properties
to synthesize distributed control strategies [4/12I15]. These works do not deal with
knowledge-based programs per se, however, and it is not guaranteed that the imple-
menting condition is equivalent to the desired knowledge property in the protocol syn-
thesized. However, these solutions would be included in the space of solutions of spec-
ifications expressible in our more general framework.

Bonollo et al [5] have previously proposed knowledge-based specifications for dis-
tributed mutual exclusion. However, this work deals only with the specification level,
and does not relate the specification developed to any concrete implementations.

Bar-David and Taubenfeld [1]] considered the automated synthesis of mutual ex-
clusion protocols. In some respects their approach is more general than ours, in that
they synthesize the entire program structure, not just the implementations of conditions
within a program template. However, they do not consider epistemic specifications.
Also, compared to our symbolic approach, they essentially conduct a brute force search
over all possible implementations up to a given size of program code, (with some opti-
mizations to avoid redundant work) and they use explicit state model checking to verify
an implementation. This limits the number of agents to which their approach can be
expected to scale: they consider only two-agent systems. They mention a construction
by which a two-agent solution can used to construct an n-agent solution, but this does
not amount to generation of all possible solutions for the n-agent case.

8 Conclusion

Our focus in this paper has been to develop an approach that enables the space of all
solutions to an epistemic protocol specification to be explored. Our implementation
gives the first tool with this capability with respect to the observational semantics for
knowledge, opening up the ability to more effectively explore the overall methodology
of the knowledge-based approach to concurrent systems design through experimenta-
tion with examples beyond the simple mutual exclusion protocol we have considered.

Applications of the tool to the synthesis of fault-tolerant protocols, where the flow of
knowledge is considerably more subtle than in the reliable setting we have considered,
is one area that we intend to explore in future work. Use of alternative model checking
approaches to the BDD-based algorithm we have used (e.g., SAT-based algorithms) are
also worth exploring.

References

1.

2.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual exclusion algorithms. In
Proc. Int. Conf. Distributed Computing, Springer LNCS 2848, pages 136—150, 2003.

O. A. Bataineh and R. van der Meyden. Abstraction for epistemic model checking of dining-
cryptographers based protocols. In Proc. TARK, pages 247-256, 2011.

. K. Baukus and R. van der Meyden. A knowledge based analysis of cache coherence. In

Proc. 6th Int. Conf. on Formal Engineering Methods, pages 99-114, 2004.

. S. Bensalem, D. Peled, and J. Sifakis. Knowledge based scheduling of distributed systems.

In Time for Verification, Essays in Memory of Amir Pnueli, pages 26—41. LNCS 6200, 2010.

. U. Bonollo, R. van der Meyden, and E. Sonenberg. Knowledge-based specification: Investi-

gating distributed mutual exclusion. In Bar llan Symposium on Foundations of Al, 2001.

. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
. E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun. ACM,

8(9):569, 1965.

. K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of local proposi-

tions. In Proc. Conf. Theoretical Aspects of Knowledge and Rationality, pages 29-41, 1998.

. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge MIT Press, 1995.
. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs. Distributed

Computing, 10(4):199-225, 1997.

P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In Proc.
Conf. on Computer Aided Verification, pages 479-483, 2004.

S. Graf, D. Peled, and S. Quinton. Achieving distributed control through model checking.
Formal Methods in System Design, 40(2):263-281, 2012.

J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: Knowledge-based deriva-
tions and correctness proofs for a family of protocols. J. ACM, 39(3):449-478, 1992.

X. Huang and R. van der Meyden. Symbolic synthesis of knowledge-based program imple-
mentations with synchronous semantics. In Proc. TARK, pages 121-130, 2013.

G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowledge accu-
mulation. In Proc. Int. Conf on Computer Aided Verification, pages 510-525, 2011.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of
multi-agent systems. In Proc. CAV’09, pages 682—688. Springer LNCS 5643, 20009.

P. Srimani and S. R. Das, editors. Distributed Mutual Exclusion Algorithms. IEEE, 1992.
R. van der Meyden and M. Y. Vardi. Synthesis from knowledge-based specifications. In
Proc. CONCUR’98, Springer LNCS 1466, pages 34-49, 1998.

R. van der Meyden and T. Wilke. Synthesis of distributed systems from knowledge-based
specifications. In Proc. Int. Conf. on Concurrency Theory, CONCUR, pages 562-576, 2005.
M. Y. Vardi. Implementing knowledge-based programs. In Proc. Conf. on Theoretical As-
pects of Rationality and Knowledge, pages 15-30, 1996.

	Symbolic Synthesis for Epistemic Specifications with Observational Semantics
	Xiaowei Huang, Ron van der Meyden (UNSW Australia)

