
A Linear Time Algorithm for Pricing European Sequential Barrier

Options

Peng Gao Ron van der Meyden

School of Computer Science and Engineering, UNSW
and Formal Methods Program, National ICT Australia

{gaop, meyden}@cse.unsw.edu.au

Abstract

Financial derivatives are contracts concerning rights
and obligations to engage in future transactions on
some underlying financial instrument. A major con-
cern in financial markets is to compute an expected
value of such contracts as a basis for trading decisions.
The Cox, Ross and Rubinstein (CRR) binomial tree
model is a popular discrete approach to such compu-
tations, which requires time quadratic in the number
of discrete temporal steps to contract termination.
Lyuu has shown that barrier options can be valued
with respect to the CRR model in linear time, us-
ing a combinatorial method. The paper develops a
generalization of Lyuu’s result, showing that a class
of more complex options comprised of a sequence of
barriers can be valued in linear time.

1 Introduction

Financial derivatives are contracts concerning rights
and obligations to buy or sell certain underlying finan-
cial assets during some specified period. Option con-
tracts are one simple kind of financial derivative. For
example, a 3-month crude oil option contract states
an agreed price for a crude oil transaction 3 months
in the future of the date of issue. Such contracts
can be traded, and the value of such a contract at a
time prior to the expiry date depends on the current
crude oil market price and expectations concerning
price movements.

Although the history of financial derivatives can
be dated back to 16th century, a mathematical pric-
ing methodology was not created until the early 1970s
(Black & Scholes 1973), drawing on the theory of
Brownian motion from physics. This “Black-Scholes”
pricing theory enabled widespread adoption of deriva-
tive instruments, which have developed into a funda-
mental part of modern finance and microeconomics.

The Black-Scholes theory uses stochastic differen-
tial equations, so is difficult to compute. A discrete
approximation method called the CRR Binomial Tree
(or, more accurately, “Binomial Lattice”) method was
proposed by Cox, Ross and Rubinstein (Cox, Ross &
Rubinstein 1979). This lattice method is extremely
popular in option pricing as this model can handle
the investor’s nondeterministic choices during the life
cycle and can be easily implemented in computer pro-
grams. A binomial lattice of depth n consists of a

Copyright copyright 2007, Australian Computer Society, Inc.
This paper appeared at Computing: The Australian The-
ory Symposium(CATS2007), Ballarat, Australia. Conferences
in Research and Practice in Information Technology(CRPIT),
Vol. 65. Joachim Gudmundsson and Barry Jay, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included. National ICT Australia is funded
through the Australian Government’s Backing Australia’s Abil-
ity initiative, in part through the Australian Research Council.

tree-like lattice structure of n2 nodes, and the valua-
tion of a contract on such a lattice is by a dynamic
programming technique that uses a backward induc-
tion from the leaf nodes to the root to compute the
expected payoff of the contract. Thus, the time and
space complexity of this computation is O(n2).

Certain special classes of derivative contracts can
be priced more efficiently with respect to the bino-
mial tree model. Barrier option contracts are a gen-
eralization of basic options contracts that state that
an option to buy or sell at a given price becomes
valid provided the market price of the underlying as-
set reaches a particular “barrier” value. In European
options the transaction must occur on the date of ex-
piry of the option. (In American options it can occur
on any date up to expiry.) Lyuu (Lyuu 1998) gives
a linear time algorithm based on CRR binomial lat-
tices for the valuation of European barrier options.
Lyuu’s algorithm uses a combinatorial “lattice path-
counting” technique. In this paper, we show that
Lyuu’s technique can be generalized to yield a linear
time valuation algorithm for a larger class of deriva-
tive contracts: European sequential barrier options,
(Pfeffer 2001), which state that the option becomes
valid after the market price has traversed a given se-
quence of barrier values.

For the proof of this result, we develop a nota-
tion for binomial lattice path properties that draws
on ideas from process logic, a type of modal logic de-
veloped in computer science. We show that the prob-
lem of counting the number of paths satisfying certain
properties expressed in this notation can be solved
symbolically by means of logical transformations of
the path counting expressions. We also give some ex-
perimental results to compare the performance of the
resulting pricing algorithm with the standard back-
ward induction method.

The structure of the paper is as follows. Section 2
gives some background on derivates and the binomial
lattice method. In Section 3 we formally represent
binomial lattices and options contracts using proba-
bilistic automata. We define sequential barrier op-
tions in this model in Section 4. Section 5 defines our
path notation and gives the symbolic path counting
transformation rules. Section 6 gives the pricing algo-
rithm based on these rules, and discusses its complex-
ity. Correctness proofs for the pricing rules are given
in Section 7. Section 8 gives some empirical perfor-
mance results of an implementation of the method,
compared to the backward induction method. We
discuss possible future work in Section 9.

2 Background

In this section, we give a basic classification of option
contracts and related value and position issues.

2.1 Classification

In the over-the-counter derivative market, investors
can agree on arbitrarily customized option contracts
for their own specific risk and reward needs, but some
basic parameters can be used to classify well stan-
dardized contract structures.

Call and Put Options A call option gives the
holder the right to buy the underlying asset by a cer-
tain date for a certain price, while a put option gives
the holder the right to sell the underlying asset by
a certain date for a certain price. The price in the
contract is known as the exercise price or strike price,
the date in the contract is known as the expiration
date or maturity.

European and American style American op-
tions can be exercised at any time up to the expi-
ration date. European options can only be exercised
on the expiration date itself. Most of the options that
are traded on exchanges are American style. In the
exchange-traded equity options market, one contract
is usually an agreement to buy or sell 100 shares.

Option Positions There are two sides to every
contract. On one side is the investor who has taken
the long position (i.e., has bought the option). On
the other side is the investor who has taken a short
position (i.e., has sold or written the option). The
writer of an option receives cash when the agreement
comes into being, but has potential liabilities later.
The writer’s profit or loss is the reverse of that for
the purchaser of the option. There are four types of
option positions:

1. A long position in a call option.

2. A long position in a put option.

3. A short position in a call option.

4. A short position in a put option.

2.2 Contract Payoff and Profit

It is often useful to characterize European option po-
sitions in terms of the terminal value or payoff to the
investor at maturity. The initial cost of the option is
then not included in the calculation. If K is the strike
price ST is the final price of the underlying asset, the
payoff from a long position in a European call option
is

max(ST −K, 0)

And the payoff to the holder of a short position in the
European call option is:

−max(ST −K, 0)

Similarly, the payoff to the holder of a long position
in a European put option is

max(K − ST , 0)

and the payoff from a short position in a European
put option is

−max(K − ST , 0)

Also notice that, the sum of the payoff from the holder
of a long position of an option and the payoff from
the holder of a short position in the same contract is
always zero. This is called put-call parity.

2.3 Barrier Options

A barrier option is a path-dependent exotic option
whose payoff is dependent on whether the underlying
asset price breaks certain barrier(s) during (part of)
the life time of the contract or not. Options with a
single barrier can be classified into four categories:

1. up-and-in

2. up-and-out

3. down-and-in

4. down-and-out

Consider a portfolio which consists of one up-and-
in barrier option and one up-and-out option with the
identical underlying asset, barrier price, exercise price
and expiration date. Then in any circumstance, there
will be exactly one barrier option in the money and
thus the portfolio replicates a vanilla option, without
the barrier condition. This is called in-out parity.

The Black-Scholes pricing methodology assumes
that the underlying asset price follows a geometric
Brownian motion. With respect to this assumption,
a closed form formula for a European style down-and-
in call exists, due to (Merton 1994):

Se−qτ (H/S)2λN(x) −Xe−rτ(H/S)2λ−2N(x− ρ
√
τ)

where

x =
ln(H2/(SX)) + (r − q + ρ2/2)τ

ρ
√
τ

λ =
r − q + ρ2/2

ρ2

and S is the current price of the underlying asset, H
is the barrier with S ≥ H , q is the stock’s dividend
yield, τ is the time to maturity and X is the exercise
price. The value of a European up-and-in put is

Xe−rτ(H/S)2λ−2N(−x+ρ
√
τ−Se−qτ (H/S)2λN(−x))

for S ≤ H . The down-and-out call and up-and-out
call can be priced via the in-out parity.

Many derivative contracts do not admit closed
form solutions, and a common technique for their val-
uation is based on a discrete approximation to the
continuous dynamics known as a binomial tree or,
more accurately, a binomial lattice. This is a grid-like
structure of the form depicted in Figure 1. Here the
horizontal dimension represents time and the vertical
dimension represents the stock price. At each time
step, the stock price either increases, with probabil-
ity Pu, by a factor u, or decreases, with probability
Pd = 1−Pu, by a factor d. It is assumed that ud = 1,
so that an upwards move followed by a downwards
move reaches the same price level as a downwards
move followed by an upwards move, creating the lat-
tice structure.

Although a closed form formula for European-style
barrier options exists, algorithms based on the lat-
tice model are still important, since they provide a
method for pricing more complicated options such as
the American-style counterparts, for which analytical
solutions are not known.

3 Definitions and Semantics

In this section we present an automaton theoretic
framework within which we may define the class of

Figure 1: A binomial lattice

contracts we study in this paper, as well as more gen-
eral contracts. We use a timed probabilistic transi-
tion system to model the market behavior of the un-
derlying asset (the binomial lattice) and a standard
finite state automaton to model the derivative con-
tract. These two systems form a two-level hierarchy
structure. The contract automaton is like a monitor:
it reads in the output from the underlying market
automaton and makes a state transition according to
the definition of the contract. Thus the payoff of the
contract is determined by both the state of the price
automaton (price level and time) and the contract
automaton.

We model the market in the underlying asset using
binomial trees, captured formally using a probabilis-
tic transition system. Formally, a market automaton
is a tuple M = 〈M,m0, δm, price〉, where

• M = Z× N is the set of states of the market,

• m0 = (0, 0) is the initial state,

• δm : M × M → [0, 1] is a transition proba-
bility function, such that for some probability
p ∈ (0, 1),

δm((l, t), (l′, t′)) =
{

p if (l′, t′) = (l + 1, t+ 1)
1 − p if (l′, t′) = (l − 1, t+ 1)
0 otherwise

• price : Z → R is a price function which maps an
integer market level to a real value market price.

The first component l of state (l, t) ∈ M repre-
sents a price level within the binomial tree; the sec-
ond component t represents a time. The actual price
of the asset associated to a market level l is the value
price(l) specified by the price function. Generally, we
take, price(n) = Sun where

u = eσ
√

δt,

(where σ is the volatility of the asset and δt is the
time increment) which is a popular way to match the
stock price volatility (Hull 2002).

The probability p is determined by a risk-neutral
analysis. The basic idea for risk-neutral analysis is the
assumption that in a risk-neutral world, all individu-
als are indifferent to risk (Hull 2002). Thus investors
require no compensation for risk, and the expected
return on all securities is the risk-free interest rate.

In the binomial tree, after one time step δt, the ex-
pectation of the asset price S is pSu+(1−p)Sd, where
d = 1/u. By risk-neutrality, this should be equal to
the value obtained had the initial value S been in-
vested at the risk-free interest rate r, viz. Serδt. We
can now deduce that

p =
er·δt − d

u− d
.

In fact, this is correct not just in a risk-neutral world
but in the real world as well (Hull 2002).

A run of a market automaton M is a sequence
ρ = s0s1 . . . sn of states of M such that for all
k = 0, . . . , n − 1 we have δ(sk, sk+1) > 0, i.e., the
probability of a transition from sk to sk+1 is non-
zero. For n ≥ 0, we write Runsn(M) for the set of
runs of the market automaton of length n+ 1.

An initialised run is a run s0 . . . sn with s0 equal
to the initial state q0 of the automaton. If ρ is a
finite sequence, define fin(ρ) to be its last element
and init(ρ) to be its first element. A state s ∈ M
is reachable if there exists an initialised run ρ with
fin(ρ) = s. For a time T ∈ N, we write reachT (M)
for the set of reachable states of M with the sec-
ond component equal to T . Clearly, not all states of
the market automaton are reachable. For example,
reach1(M) = {(1, 1), (−1, 1)}. Thus the state (0, 1)
is not reachable. More generally,

reachT (M) = {(l, T) | − T ≤ l ≤ T, T + l even}.

We have defined the state space to be larger than
the set of reachable states in order to facilitate later
constructions in which we consider runs, commencing
at states other than initial state, that lie outside the
binomial tree.

For each n ≥ 1, let IRunsn(M) be the set of
initialised runs of M of length n. The function
P : IRunsn(M) → [0, 1] defined by

P (s0s1 . . . sn−1) = Πn−2
k=0 δ(sk, sk+1)

gives a probability distribution on IRunsn(M).
We model financial contracts using deterministic

automata that take states of a market automaton as
input.1 Formally, a contract automaton is a tuple
C = 〈Q, q0, δc, F, pay〉, where

• Q is a set of contract states,

• q0 ∈ Q is the initial contract state,

• δc : Q×M → Q is a transition function,

• F ⊆ Q is the set of final states of the automaton,

• pay : F ×M → R is a payoff function.

Let ρ = s0s1 . . . sn be a run of a market
automaton M. The run of the contract au-
tomaton C on input ρ is the sequence of pairs
C(ρ) = (s0, q0), (s1, q1), . . . (sn, qn) defined by qk+1 =
δc(qk, sk+1) for k = 0 . . . n− 1. If qn is a final state of
C, but qk is not final for k < n, then we say that the
run is terminated. The payoff on a terminated run
ρ, denoted pay(ρ), is defined to be the payoff in the
final state, i.e., pay(qn, sn).

1More generally, one could also allow inputs corresponding to
decisions of the parties to the contract. We omit these because we
are primarily interested in this paper in European options, where
they are not needed.

Example 1

A standard European “down-and-in” option is an
exotic option which gives an ordinary European op-
tion iff the price barrier (which should be lower than
the initial asset price) was touched by the asset price
from above in the life circle of the option. Con-
sider a European “down and in” call barrier option
with a termination time T , strike price X , and bar-
rier B < X corresponding to a level lB in the bi-
nomial tree (i.e., lB is the greatest level l such that
price(l) ≤ B). Such a contract can be represented by
a contract automaton with

• states Q = {out, in, exp out, exp in},
• initial state out,

• final states F = {exp out, exp in},
• transition function defined by

δc(out, (l, t)) =











out if l > lB and t < T
in if l ≤ lB and t < T
exp out if l > lB and t ≥ T
exp in if l ≤ lB and t ≥ T

and

δc(in, (l, t)) =

{

in if t < T
exp in if t ≥ T

and δc(exp out, (l, t)) = exp out and
δc(exp in, (l, t)) = exp in.

• payoff function defined for q ∈ F by:

pay(q, (l, t)) =
{

price(l) −X if q = exp in and price(l) ≥ X
0 otherwise

where X is the exercise price of the option.

Intuitively, the states of the contract could be cur-
rently in-the-money/out-of-the-money but before the
expiry date in, out, or expired in-the-money/out-
of-the-money (i.e., exp in, exp out). Initially, the
option is out-of-the-money, and the only way it can
change the state to being in-the-money is by reaching
the barrier. The option is expired when t ≥ T , after
which it cannot change state. If the option expired
in-the-money, we have the choice to exercise the op-
tion if the market price is higher than the strike price.
Otherwise, the option is worthless.

We say that a contract expires at time T ∈ N if all
runs of length T + 1 are terminated. In what follows,
we confine ourselves to contracts that expire at some
fixed time T . A sufficient condition for this is that
the transition function satisfy that δc(q, (l, t)) is final
iff t ≥ T , for all q ∈ Q \ F and (l, t) ∈M .

For contracts expiring at a fixed time T , it is
convenient to use a slightly different form of con-
tract automata, defined as tuples C = 〈Q, q0, δc, pay〉,
in which we omit the set of final states, and take
pay to be a function from Q to R. Each such au-
tomaton generates a contract automaton C(T) =
〈Q′, q′0, δ

′
c, F

′, pay ′〉 in the above form, defined by
Q′ = Q× {0, 1}, q′0 = (q0, 0), F ′ = Q× {1} and

δ′c((q, x), (l, t)) =






(δc(q, (l, t)), 0) if x = 0 and t < T
(δc(q, (l, t)), 1) if x = 0 and t ≥ T
(q, 1) if x = 1

Intutively, in this form, the payoff function gives the
payoff to be received at a given contract state if the
contract were to expire in that state.

Example 2

European barrier options as defined in Example 1 can
be represented more succinctly with

• states Q = {out, in}
• initial state out,

• transition function defined by

δc(q, (l, t)) =

{

out if q = out and l ≥ lB,
in otherwise

• payoff function defined for q ∈ Q by:

pay(q, (l, t)) =
{

price(l) −X if q = in and price(l) ≥ X,
0 otherwise

For contracts C expiring at time T , we can define
the expected payoff in a market M, to be the expected
value of the payoff in terminated runs, i.e.,

E(M, C) = Σρ∈IRunsT (M) pay(ρ) · P (ρ) (1)

where the probabilities p(ρ) on runs ρ arise from the
distribution on IRunsT (M) described above. The
price of the contract is the value which, invested at
time 0 at the risk-free rate of interest r, gives a payoff
equivalent to the expected payoff of the contract. For
contracts expiring at time T , this can be expressed
as D(T) ·E(M, C), where D(T) = e−r·T ·δt is the dis-
counting factor.

4 Sequential Barrier Options

Now we introduce the multiple barrier options, which
are an extension of the single barrier options de-
scribed above.

Example 3

Suppose we have a sequence of barriers B0, B1,
B2... Bm, given as levels in the binomial lattice. Con-
sider a call option which comes into existence if and
only if the stock price level hits B0 and then B1 and
so on, eventually reaching Bm. The rest of the defini-
tion remains as in Example 2. We call this a multiple-
barrier hit-and-in call option.

• states Q = {out, out0, out1, · · · , outm−1, in}
• initial state out,

• transition function defined by

δc(q, (l, t)) =


























out if q = out and l 6= B0
out0 if q = out and l = B0
out0 if q = out0 and l 6= B1
out1 if q = out0 and l = B1
· · ·
outm − 1 if q = outm − 1 and l 6= Bm

in if q = outm − 1 and l = Bm

Figure 2: A multiple barrier contract automaton

Figure 2 gives an illustration of this automaton.

The multiple barrier option, which consists of ar-
bitrary number of barriers, generalize the sequential
barrier options of Pfeffer (Pfeffer 2001), which con-
sists of only two barriers. Sequential barrier options
have recently become popular in the Japanese over-
the-counter equity and foreign exchange derivative
markets.

5 Partial Symbolic Pricing Rules

To develop the efficient pricing calculation, we work
with the expected payoff function. We first note that
all runs ending at a given level in the binomial tree
have the same probability. For, consider a run ρ with
fin(ρ) = (l, T). Let lu be the number of “up” moves
in this run, and ld the number of “down” moves. By
definition, the probability of the run is P (ρ) = plu(1−
p)ld . Then we have lu + ld = T and lu − ld = l. Thus,
lu = (T+l)/2 and ld = (T−l)/2, so the probability of
the run depends only on T and l. (Recall that T + l
must even for (l, T) to be reachable, hence T − l is
even also.) We write this probability as P (l, T).

Thus, we may write the expected payoff
E(M, C(T)) of the contract as

∑

l ∈ [−T, T]
T + l even

∑

q∈Q

pay(q, (l, T)) ·N(q, l, T) · P (l, T) (2)

where N(q, l, T) is given by

|{ρ ∈ IRunsT (M) | fin(C(T)(ρ)) = (q, (l, T)))}|.

Since the number of levels l in reachable states of the
market automaton at time T is T + 1, it will follow
that the payoff can be calculated in time linear in
T , provided that we can establish that the numbers
N(q, l, T) can be calculated in constant time.

In order to establish this, we develop a formal cal-
culus within which we can determine the numbers
N(q, l, T), based on a logical language for expressing
properties of runs. The language is similar to the path
expressions of process logic (Pratt 1979).

We define the syntax of the expression language
as follows. There are two types of expressions: state
expressions and path expressions. A state expression
has the form L = k where k ∈ N. A path expression
has one of the forms first(φ), last(φ), φ ⊲ ψ (read
‘φ up to first ψ’), or α;β (read ‘α chop β’), where φ, ψ
are state expressions, and α, β are path expressions.
For brevity, we write φ0 ⊲ φ1 ⊲ . . . ⊲ φm for (φ0 ⊲
φ1); (φ1 ⊲ φ2); . . . ; (φm−1 ⊲ φm).

The semantics of these expressions is defined as
follows. In each case, we define a semantic relation
o |= e between a semantic object o and an expression
e, that intuitively holds when the expression e is true
of the object o. For state expressions, the semantic
objects are states (l, T) of the contract automaton,
and we define the relation (l, T) |= L = k to hold
when l = k. For path expressions, we take the se-
mantic objects to be runs ρ = s0 . . . sn of the market
automaton, and define

• ρ |= first(φ) if init(ρ) |= φ,

• ρ |= last(φ) if fin(ρ) |= φ,

• ρ |= α ; β if there exists k ≤ n such that
s0 . . . sk |= α and sk . . . sn |= β,

• ρ |= φ ⊲ ψ if s0 |= φ and sn |= ψ and sk 6|= ψ for
0 < k < n.

Example 4

Given a contract automaton with multiple strike-
and-in barriers B0, B1, . . . , Bn, as in Figure 2,
together with the initial price level l0 of the market
automaton, we can construct a formula expressing
that a run of the automaton ends in the final state in
with the final market price at level l: (L = l0) ⊲ (L =

B0) ⊲ (L = B1) ⊲ . . . ⊲ (L = Bn); last(L = l).

For path expressions α, define NT (α) to be the
number of runs ρ of M with |ρ| = T + 1 such that
ρ |= α. In order to use the representation of the
number N(q, l, T) in the form NT (α) to calculate its
value, we use the following properties of the functions
NT .

1. Reflection Rule:

NT ((L = a ⊲ L = b);α) =
NT ((L = 2b− a ⊲ L = b);α)

2. Reduction Rule 1:

NT ((L = a ⊲ L = b); last(L = x)) =
NT (first(L = a); last(L = x))

where a ≥ b ≥ x or a ≤ b ≤ x.

3. Reduction Rule 2:

NT ((L = a ⊲ L = b ⊲ L = c);α) =
NT ((L = a ⊲ L = c);α)

where a ≥ b ≥ c or a ≤ b ≤ c.

4. Counting rule:

NT (first(L = a); last(L = b)) =

(

T
T−(b−a)

2

)

We give the proof of soundness of these rules in Sec-
tion 7. The reflection rule captures in a pleasant log-
ical form the reflection principle from combinatorial
path counting (Mohanty 1980), which has previously
been used by Lyuu (Lyuu 1998) to obtain a linear-
time algorithm for (single) barrier option valuation.

6 Algorithms and Time Complexity

6.1 Simplification of the Path Formula

Consider a path expression α0 of the form

(L = l0) ⊲ (L = l1) ⊲ (L = l2) ⊲ · · · ⊲ (L = lm); last(L = l).

We show that there exists a sequence α1, . . . , αm of
path expressions such that NT (αi) = NT (αi+1) for
all i = 0 . . .m − 1 and such that NT (αm) can be
evaluated explicitly using the counting rule. More
specifically, αi has the form (L = ai) ⊲ (L = li+1) ⊲
· · · ⊲ (L = lm); last(L = l) for i < m, and αm has the
form (L = am); last(L = l), for constants a1 . . . am,
defined inductively as follows. For convenience, we
let a0 = l0.

1. If αi = (L = ai) ⊲ (L = li+1) ⊲ (L = li+2) ⊲ . . . ⊲
(L = lm); last(L = l) contains more than one
occurrence of the ⊲ operator, we may eliminate
one occurrence of the ⊲ operator as follows. If
ai ≤ li+1 ≤ li+2 or ai ≥ li+1 ≥ li+2, we define
ai+1 = ai, otherwise ai+1 = 2li+1−ai, which will
satisfy either ai+1 ≤ li+1 ≤ li+2 or ai+1 ≥ li+1 ≥
li+2. It then follows using the Reflection Rule
and Reduction Rule 1 that NT (αi+1) = NT (αi).

2. For αm−1 = (L = am−1) ⊲ (L = lm); last(L = l),
we again consider two cases: If am−1 ≤ lm ≤ l or
am−1 ≥ lm ≥ l, we define am = am−1, otherwise,
we define am = 2lm − am−1. In this case, it
follows using the Reflection Rule and Reduction
Rule 2 that NT (αm−1) = NT (αm).

The counting rule may now be applied to NT (αm) to
yield a value forNT (α0). To capture this as a function
of l, we write this value in the form

NT (α0) =















(

T
f+(l)

)

if am−1 ≤ Bm ≤ l
or am−1 ≥ Bm ≥ l,

(

T
f−(l)

)

otherwise

where f+(l) = (T − (am−1 − l))/2 and f−(l) = (T −
(2Bm − am−1 − l))/2.

6.2 Option Pricing

To price the multiple barrier strike-and-in call op-
tion, consider the terms in equation (2). The prob-

abilities are given by P (l, T) = p
T+l
2 · (1 − p)

T−l
2 .

However, many of the terms are zero, since the pay-
off pay(q, (l, T)) is zero except when q = in and
price(l) > X , when it equals price(l) − X . Now
N(in, l, T) = NT (αl), where αl is the path expression
(L = 0) ⊲ (L = B0) ⊲ . . . ⊲ (L = Bm); last(L = l)).
Using the procedure of the previous section, we obtain
the following pricing formula for the derivative:

E(M, C(T)) =
∑

l∈S+ (price(l) −X) ·
(

T
f+(l)

)

· pT+l
2 · (1 − p)

T−l
2

+
∑

l∈S− (price(l) −X) ·
(

T
f−(l)

)

· pT+l
2 · (1 − p)

T−l
2

where S = {l | [−T, T], T + l even, price(l) ≥ X}
and S+ = S∩C and S− = S \C, for C = {l | am−1 ≤
Bm ≤ l or am−1 ≥ Bm ≥ l}. This sum can be com-
puted with a number of additions and multiplications
linear in T .

A European strike-and-out call barrier option is
defined by an automaton that has the same states
and transitions as the strike-and-in option depicted

in Figure 2, but payoff 0 when the automaton is in
state in at time T and payoff price(l)−X at all other
states. This contract can be valued in linear time by
a very similar approach, based on the equation

E(M, C(T)) =
∑

l∈S

(price(l) −X) · (NT (0, l)−N(in, l, T)) · P (l, T)

in which the term (NT (0, l)−N(in, l, T)) counts the
number of paths on which a payoff is obtained as the
complement of the N(in, l, T) paths on which a payoff
is not obtained. The corresponding put options can
also be priced by similar equations.

7 Soundness Proofs

In this section we give the correctness proofs for the
rules introduced above.

7.1 Reflection Rule

To prove the Reflection Rule:

NT ((L = a) ⊲ (L = b);α) = NT ((L = 2·b−a) ⊲ (L = b);α)

we establish that there exists a 1-1 correspondence
from the set

S1 = {ρ ∈ RunsT (M) | ρ |= (L = a) ⊲ (L = b);α}

to the set

S2 = {ρ ∈ RunsT (M) | ρ |= (L = 2b−a) ⊲ (L = b);α}.

To show this, it is convenient to define f :
RunsT (M) → RunsT (M) as follows. Let ρ =
s0, . . . , sT ∈ RunsT (M), where si = (li, i) for i =
0 . . . T . We define f(ρ) to be (2b − l0, 0), . . . , (2b −
lt−1, t−1), st, . . . , sT where t ∈ [0, T] is the least num-
ber such that lt = b, if such a t exists, and f(ρ) = ρ
otherwise. Since l = b iff 2b−l = b and 2b−(2b−l) = l,
it is immediate that f◦f is the identity on RunsT (M).
It therefore suffices to show that f maps S1 into S2
and f maps S2 into S1. We show the former, the
latter is similar. Suppose that ρ = s0 . . . sT |= (L =
a) ⊲ (L = b);α, where si = (li, i). Then there exists
a k ≤ T such that s0 . . . sk |= (L = a) ⊲ (L = b)
and sk . . . sT |= α. In particular, s0 |= L = a
and k is the least number such that sk |= L = b.
Thus f(ρ) = (2b−a, 0), . . . , sk, sk+1, . . . , sT , for which
(2b − a, 0), . . . , sk |= (L = 2b − a) ⊲ (L = b) and
sk, . . . sT |= α. from which it follows that f(ρ) ∈ S2.

7.2 Reduction Rule 1

To prove the Reduction Rule 1:

NT ((L = a ⊲ L = b); last(L = x)) =
NT (first(L = a); last(L = x))

where a ≥ b ≥ x or a ≤ b ≤ x, it suffices to note
that for ρ = s0, . . . sT ∈ RunsT (M), we have ρ |=
(L = a ⊲ L = b); last(L = x) iff ρ |= NT (first(L =
a); last(L = x)). From left to right this is immediate.
From right to left, note that if s0 |= L = a and sT |=
(L = x), then since a ≥ b ≥ x or a ≤ b ≤ x, and
the levels increment or decrement by one each step,
there must exist k such that sk |= L = b. Taking
the least such k, we obtain that s0, . . . , sk |= (L =
a ⊲ L = b) and sk, . . . , sT |= last(L = x), hence
ρ |= (L = a ⊲ L = b); last(L = x).

7.3 Reduction Rule 2

To prove Reduction Rule 2:

NT ((L = a ⊲ L = b ⊲ L = c);α) =
NT ((L = a ⊲ L = c);α)

where a ≥ b ≥ c or a ≤ b ≤ c, we consider the case
where a ≥ b ≥ c, the other case is similar. We show
that if s0 . . . sk is a prefix of an element of RunsT (M),
where si = (li, i), we have s0, . . . , sk |= (L = a ⊲ L =
b); (L = b ⊲ L = c) iff s0, . . . , sk |= (L = a ⊲ L = c).
From right to left, this follows from the fact that levels
increment or decrement by one at each step. From
left to right, suppose that s0, . . . , sk |= (L = a ⊲ L =
b); (L = b ⊲ L = c). Then there exists m ≤ k such that
s0, . . . , sm |= (L = a ⊲ L = b) and sm, . . . , sk |= (L =
b ⊲ L = c). Thus li > b for i = 0 . . .m− 1, and li > c
for i = m. . . k − 1. Since b ≥ c, it follows that li > c
for i = 0 . . . k− 1, hence s0, . . . , sk |= (L = a ⊲ L = c).

7.4 Counting Rule

To prove the counting rule, consider a path of
RunsT (M) from level a to level b. Let u be the
number of upward moves along this path, and d the
number of downward moves. Then u + d = T and
u−d = b−a, so there are exactly d = (T − (b−a))/2
downwards moves. Since a choice of such a path corre-
sponds to a choice of d times from T for the downward
moves to occur, we obtain that there exist

(

T
T−(b−a)

2

)

such paths.

8 Empirical Performance

We implemented both the backward induction pric-
ing method and the combinatorial pricing method dis-
cussed above in MATLAB. In order to compare the
performance of the two methods, we randomly gener-
ate sequential barrier options with 4,5 and 6 barriers.
The barrier prices are generated in the following way.
For a sequential barrier option with k barriers, we
first generate k random numbers between 0 and N
where N is the lattice depth. We sort these num-
bers as n1 ≤ n2 ≤ . . . nk, then take the barriers to be
S0·un1 , S0·un1 ·d(n2−n1), S0·un1 ·d(n2−n1)·u(n3−n2) . . . ,
where S0 is the initial price (a randomly generated
real number between 0 and 30), u is the up-rising ra-
tio of the asset and d is u−1. Generally speaking, the
ith barrier will be:

bi = S0 · (u2·
Pi−1

j=1(−1)j+1·nj+(−1)i+1ni)

This guarantees that there is in fact a path that
reaches the final state of the option, so the contract
makes some sense. The exercise price of these options
is randomly set to a real number between 0 and 30,
and the option is randomly set to be either a put or
a call. The rest of the parameters are given below:

• riskless interest rate : 0.05 per annum

• volatility : 0.02

• life cycle : 30 days

We tune the lattice depth from 25 to 250. For each
lattice depth, we randomly generated 100 sequential
options and run both pricing functions in MATLAB
7 on a 2.80 GHz Pentium(R) 4 CPU with 1.0 GB
main memory. The average running time for back-
ward induction pricing is compared with the average
running time for combinatorial pricing in Figure 3.
The curve for backward induction pricing presents a

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
Performance Comparison

Backward Induction

Combinatorial

Lattice Depth

R
un

 T
im

e(
se

co
nd

s)

Figure 3: Performance Comparison of both backward
induction and combinatorial pricing algorithms

0 50 100 150 200 250
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

R
un

 T
im

e(
se

co
nd

s)

Lattice Depth

4 barriers

6 barriers

5 barriers

Combinatorial Pricing for Sequential Barriers

Figure 4: Computation time(in second) of combina-
torial pricing for sequential barrier options with 4, 5
and 6 barriers.

clear quadratic profile. The performance of combi-
natorial pricing is depicted at greater resolution in
Figure 4: it is expected to be linear, but the lack of
smoothness in the curve appears to be due to a lack
of accuracy of MATLAB runtime profiling at this low
scale. The computation time always remains below
0.024 second even for large lattice depth.

Convergence It is known that barrier options dis-
play a slow sawtooth convergence pattern with re-
spect to CRR binomial tree (Lyuu 2002), due to
rounding errors in relating barriers to a price level
in the binomial tree. The convergence pattern is
smoother with respect to choices of lattice depth that
ensure that barrier values fall near price levels in the
tree. We run our pricing algorithm with one particu-
lar randomly generated sequential barrier option with
other parameters stated above and tune the lattice
depth from 1 to 250. The convergence of the com-
puted price is depicted in Figure 5. The algorithm
demonstrates reasonable precision when the lattice
depth is more than 100.

9 Conclusion and Future work

We have generalized Lyuu’s work on linear time pric-
ing of European barrier options based on the binomial
lattice to a class of European derivatives consisting of
a sequence of barriers. In doing so, we have developed
a representation for the general contract pricing prob-
lem using probabilistic finite state automata, and in-
troduced a path expression language within which we
may express useful rules for path counting. Several
directions suggest themselves:

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Lattice Depth

O
pt

io
n

P
ric

e

Price Convergence

Figure 5: Price convergence for a sequential barrier
option with 5 barriers

• There are many more exotic contract types, and
it would be interesting to investigate the extent
to which the sorts of mixed symbolic and numer-
ical computation techniques used in this paper
can be applied to obtain efficient pricing algo-
rithms.

• The algorithmic verification literature has intro-
duced some richer types of automata than we
have considered in this paper, such as proba-
bilistic timed automata (Kwiatkowska 2003). It
would be interesting to find applications of anal-
ysis techniques for such automata to derivative
pricing.

• Morgan and McIver (McIver & Morgan 2002)
have introduced a quantitative µ calculus to rep-
resent a game between two players. The elvalu-
ation of the µ calculus formula gives the player’s
expectation of the payoff from this game. This
kind of turn-based game could be applied to rep-
resenting and pricing the American-style options
since the option price in this case is related to
an optimal option trading strategy. The qMµ
calculus can specify connectives like maxjunc-
tion (which returns the max expectation of the
two subformula), and has an operator for recur-
sion, using which the backward induction algo-
rithm can be specified. It would be interesting
to find efficient pricing algorithms based on logi-
cal transformations of the formulas representing
a contract price in this calculus.

We leave exploration of these ideas for future re-
search.

References

Black, F., Scholes, M. (1973), The Pricing of Options
and Corporate Liabilities, in ’Journal of Political
Economy’, Vol. 81, No.3, pp. 637-654.

Cox, J., Ross, S. & Rubinstein, M. (1979), Option
Pricing: A Simplified Approach, in ’Journal of
Financial Economics’, Vol. 7, pp. 229-264.

Lyuu, Y.D. (1998), Very Fast Algorithm for Barrier
Option Pricing and the Ballot Problem, in ’The
Journal of Derivatives’, Vol. 7, No.1, pp. 79-90.

Merton, R.C. (1994), Continuous-Time Finance,
Blackwell.

Lyuu, Y.D. (2002), Financial engineering and com-
putation : principles, mathematics, algorithms,
Cambridge University Press.

McIver, A.K. &Morgan C.C. (2002), Results on the
Quantitative µ-calculus qMµ*, in the 9th Int’l
Conference on Logic for Programming and Au-
tomated Reasoning.

Pfeffer, D. (2001), Sequential Barrier Options, in
’Algo Research Quarterly’, Vol. 4, No.3, pp. 65-
74.

Hull, J. (2002), Options, futures and other deriva-
tives, Prentice Hall.

Mohanty, G. (1980), Lattice Path Counting and Ap-
plications, Academic Pr.

Pratt, V.R. (1979), Process Logic, in 6th Annual
ACM Symposium on Principles of Programming.

Kwiatkowska, M. (2003), Model checking for proba-
bility and time: from theory to practice, in Proc.
Logic and Computer Science.

