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abstract.

Sound and complete axiomatizations are provided for two differ-

ent logics involving modalities for knowledge and both past and future

time modalities. The logics considered allow for multiple agents with

unique initial state and synchrony. The synchrony restriction gives

every agent access to a system clock. Such semantic restrictions are

of particular interest in the context of past time modalities since both

synchrony and unique initial state restrictions are not expressible us-

ing future time modalities.

1 Introduction

There has been significant interest in multi-modal logics combining opera-
tors for knowledge and time in recent years [1, 3, 4, 7]. With only a few
exceptions [3], this literature deals with future time temporal operators. In
this paper we consider the effect of adding past time operators to such logics.

There are some compelling reasons to consider this extension. One of the
topics of interest in the literature has been the interaction between knowl-
edge and time when a variety of semantic properties are assumed, such as
uniqueness of initial states, synchrony, perfect recall and no learning (a dual
of perfect recall) [8]. These properties lead to interaction axioms, which in-
volve both epistemic and temporal operators. Halpern, van der Meyden and
Vardi [7] provide complete axiomatizations of logics of knowledge and linear
future time for all the axiomatizable cases arising out of combinations of
these assumptions. However, their results indicate that in some cases, some
of the properties have no impact on the axiomatization. For example, [7]
obtains identical complete axiomatizations for the cases of no assumptions,
synchrony alone, unique initial states alone, and for both synchrony and
unique initial states. This indicates that the logic with future time axioms
is too weak to fully express the unique initial states and synchrony prop-
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erties. It has also been noted that past time operators allow for a much
cleaner axiom for perfect recall in an asynchronous setting [13].

Another reason to consider knowledge in combination with past time op-
erators is that knowledge-based programs [2] are better behaved with past-
time operators than with future time operators. A knowledge-based pro-
gram is like a standard program with formulas expressing the knowledge
of the agent allowed to occur as conditions in conditional statements. A
concrete implementation of such a program replaces the knowledge condi-
tions by concrete conditions of the agent’s local state. Knowledge-based
programs behave somewhat like specifications, and in general, may have
zero, one, or many different implementations. However, it is possible to
provide conditions under which there is guaranteed to be a unique imple-
mentation [2]. One of these conditions is when the system is synchronous,
and all knowledge tests involve only past time operators.

We would like to have an interaction axiom for each of the properties
mentioned above, such that combinations of properties can be handled by
combining their corresponding axiom. In this paper, we take a step in this
direction by providing axioms which individually characterize the properties
of unique initial states and synchrony. (We will deal with combinations in
future work.) As already remarked, a past time axiom for perfect recall is
already given in [13]. The property of no learning is best captured by the
future time axiom in [7].

The synchrony restriction is particularly interesting since the axiomati-
zation appears to require a complex automaton-based rule. We sketch the
rather interesting completeness proof here, based on completeness proofs
given in [7]. We show we can construct a canonical model for any consistent
formula by induction over the nestings of knowledge operators. To enforce
the synchrony constraint we introduce transducers to represent sufficiently
detailed information about the time. This transducer can be encoded in a
characteristic formula, and we use the new rule, SYNC, to show that the
synchrony constraint is maintained.

2 Syntax and Semantics

The language is given by the abstract syntax:

α = x | ¬α | α ∧ α′ | ©α | αU α′ | ©w α | α S α′ | Kiα

where x ∈ V is some propositional atom, and 1 ≤ i ≤ k is the index of
an agent. The operators are respectively not, and, tomorrow, until, weak

yesterday, since and i-knows, and have their usual meaning. Along with the
usual propositional abbreviations (true, false, ∨, →) we will also use the
temporal abbreviations: ©−α = ¬©w ¬α; 3α = trueU α; 3− α = trueS α;
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α = ¬3¬α; and α = ¬3− ¬α, and the epistemic operator, Liα =
¬Ki¬α.

For the semantics, we suppose a model is given by a set of runs, and each
formula is evaluated with respect to some time in some run. Given sets Li
representing the possible local states of agent i, for i = 1 . . . k, we define a
run to be an element of the set

(1) R = {r | r : ω −→ ℘(V) ×L1 × . . .×Lk}.

We define a model to be a subset of R.
Given, M ⊆ R we give the semantic interpretation of formulas with

respect to one run r ∈ M and one moment of time, n ∈ ω. We inductively
define M, r, n |= α as follows:

M, r, n |= x ⇔ x ∈ r(n)0

M, r, n |= ¬α ⇔ M, r, n 6|= α

M, r, n |= α ∧ α′ ⇔ M, r, n |= α and M, r, n |= α′

M, r, n |= ©α ⇔ M, r, n+ 1 |= α

M, r, n |= αU α′ ⇔ ∃m ≥ n, M, r,m |= α′ and n ≤ j < m⇒M, r, j |= α

M, r, n |= ©w α ⇔ n = 0 or M, r, n− 1 |= α

M, r, n |= αS α′ ⇔ ∃m ≤ n, M, r,m |= α′ and m < j ≤ n⇒M, r, j |= α

M, r, n |= Kiα ⇔ ∀r′ ∈ M, ∀m ∈ ω, r(n)i = r′(m)i ⇒M, r′,m |= α

for each agent i.
This gives the most general description of a language that describes

knowledge and past time. However there are several useful restrictions we
will consider:

• We say a model has unique initial states if for all runs r, r′ ∈ M , for
all i ∈ {1, . . . , k}, we have r(0)i = r′(0)i;

• We say a model is synchronous if for all runs r, r′ ∈ M , for all n,m ∈ ω,
for all i ∈ {1, . . . , k}, we have r(n)i = r′(m)i =⇒ n = m;

There are several other semantic restrictions that can be applied to com-
binations of temporal and modal logic, including perfect recall and no learn-

ing [1]. We have chosen to focus on the synchrony and unique initial state
restrictions in this paper as they are especially relevant to temporal logics
with past. The synchrony and unique initial state restrictions have little
effect in logics without past operators, as these restrictions do not alter the
set of valid formulas.

The unique initial state restriction requires that no agent can initially
distinguish between the possible initial states of the system. This restriction



4 Tim French, Ron van der Meyden, Mark Reynolds

can have significant consequences for the language. In [8] it was shown that
when the unique initial state restriction is combined with the no learning
restriction the resulting language is highly undecidable. We also note that
in the presence of past operators the unique initial state restriction allows
us to express a universal modality [12, 6]. Specifically, for any formula α,
we can define the formula 3− (©w false∧Li3α) which is satisfied by a model
M with the unique initial state restriction if and only if there is some run
r ∈M and some n such that M, r, n |= α.

Once past operators are added to the language, the synchrony restriction
has a dramatic affect on the set of valid formulas. Since every agent knows

the time, an axiomatization must allow reasoning about which formulas can
be true at which times. For example, if there is some formula, α, that is
true at only even times, then, if at some time an agent even suspects that α
might be true, then that agent should know that every formula that is true
at only odd times must be false. This situation is captured in the following
formula, which is a validity in the synchronous semantics.

(2) Li(x ∧ (x ↔ ©w ¬x)) → Ki( (y ↔ ©w¬y) → y)

Here, Li(x ∧ (x ↔ ©w ¬x)) means that agent i considers it possible that
x is currently true, and up to (and including) now, x has only been true at
even moments of time. Since agent i knows the time, agent i knows that
the time must be even. Hence agent i knows that if up to and including
now y has only been true at even moments of time, then y must currently
be true, or Ki( (y ↔ ©w ¬y) → y).

3 Axioms

In this section, we describe the axioms and inference rules that we need
for reasoning about knowledge and time for various classes of systems, and
state the completeness results.

For reasoning about knowledge alone, the following system, with axioms
K1–K5 and rules of inference R1–R2, is well known to be sound and com-
plete [1, 9]:

K1. All propositional tautologies
K2. Kiϕ ∧Ki(ϕ→ ψ) → Kiψ, i = 1, . . . , k
K3. Kiϕ→ ϕ, i = 1, . . . , k
K4. Kiϕ→ KiKiϕ, i = 1, . . . , k
K5. ¬Kiϕ → Ki¬Kiϕ, i = 1, . . . , k
R1. From ϕ and ϕ→ ψ infer ψ
R2. From ϕ infer Kiϕ, i = 1, . . . , k

This axiom system is known as S5m.



Axioms for Logics of Knowledge and Past Time: Synchrony and Unique Initial States 5

For reasoning about pure temporal formulas (or formulas not containing
knowledge operators), the following axioms and rules (together with K1 and
R1), can be shown to be sound and complete [10]:

F1. ©(ϕ→ ψ) → ©ϕ→ ©ψ
F2. ©(¬ϕ) ↔ ¬©ϕ
F3. ϕU ψ ↔ ψ ∨ (ϕ ∧©(ϕU ψ))
P1. ©w (ϕ → ψ) → ©w ϕ→ ©wψ
P2. ©−¬ϕ → ¬©−ϕ
P3. ϕS ψ ↔ ψ ∨ (ϕ ∧©− (ϕS ψ))
P4. trueS ©w false

FP. ϕ→ ©©−ϕ
PF. ϕ→ ©w©ϕ

RT1. From ϕ infer ©ϕ
RT2. From ϕ′ → ¬ψ ∧©ϕ′ infer ϕ′ → ¬(ϕU ψ)
RP1. From ϕ infer ©w ϕ.
RP2. From ϕ′ → ¬ψ ∧©w ϕ′ infer ϕ′ → ¬(ϕS ψ)

This set of axioms gives a sufficient axiomatization of knowledge with
past time. To allow for the unique initial states restriction, we add the
following axiom:

UIS. (©w false → Kiα) → Kj (©w false → α), i, j = 1, . . . k.

For the rules required for synchrony, we must first define a characteristic
formula for a transducer. A transducer is deterministic finite automaton
over a one letter alphabet, and can be described by the tuple (Q, q0, δ)
where Q is a finite set of states, q0 ∈ Q is the initial state, and δ : Q −→ Q
is the transition function.

DEFINITION 1. A characteristic formula is a formula of the form

3−


©w false ∧ a0 ∧

∧

a⊆X

(a → ©δ(a))


 ,

where: X is an arbitrary finite set of propositional atoms; a0 ⊆ X ; for each
a ⊆ X , a is the formula

∧
x∈a x ∧ ¬

∨
x∈X\a x; and δ : ℘(X) −→ ℘(X) is

some function.

A characteristic formula describes the operation of a transducer in linear
temporal logic. Specifically we can take ℘(X) to be the set of states, a0 to
be the initial state and δ to be the transition function. It should be clear
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that a characteristic formula is always satisfiable. It simply declares which
atoms should be true at which times in a deterministic manner.

In the case of synchronous systems we require two new rules:

AUT. From χ → β infer β, where var(χ) ∩ var(β) = ∅ and χ is a
characteristic formula.

SYNC. From α → β infer α → Kiβ, where var(α) ∩ var(β) = ∅ and
i = 1, . . . , k.

where given a formula α, we let var(α) be the set of propositional atoms
appearing in α.

We require the rule, AUT, to add extra propositions into a proof when
the propositions already in the proof do not yield sufficient information
about the system clock. It should be clear that any transducer, (Q, q0, δ)
will generate a unique sequence of states, s0, s1, . . ., where s0 = q0 and
si+1 = δ(si). Furthermore for every transducer there is a unique k ≥ 0 and
a unique n ≥ 1 such that

1. ∀i < k, ∀j 6= i, si 6= sj , and

2. ∀i ≥ k, ∀j > i si = sj if and only if n divides j − i.

In this respect a transducer is simply a clock which tells the time up to k,
and then reports the time modulo n. The rule, AUT, is interesting in that
it does not use any knowledge operators. Such a rule is valid in temporal
logics with past but has rarely been used in proof systems (although it is
similar to the AA rule of [11]).

Just as the AUT rule does not use knowledge operators, the SYNC rule
does not explicitly use any temporal operators. In fact the complete axiom-
atization for synchronous systems has no axiom or rule that uses both tem-
poral and epistemic operators. This may be surprising since the language
clearly has a strong interaction between time and knowledge. However the
SYNC rule allows an implicit interaction between time and knowledge. Sup-
pose that ` α → β and var(α) ∩ var(β) = ∅. Since α and β do not share
any propositional atom, we can only infer β from α if α describes some
structural property (i.e., some property that is independent of propositions,
like “this is an initial state”). By examining the language we can see that
the only structural information that can be expressed are conditions on the
time, such as x ∧ (x ↔ ©w ¬x) (“the time is even”). Thus we can only
infer β from α if for every time that α could be true in some model, β must
be true in every model. Since agents know the time, and are logically omni-
scient, if α is true then any agent will be able to deduce β. Thus the SYNC
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rule captures the interaction between knowledge and time in a synchronous
system.

For an example of the effectiveness of the SYNC rule, consider the formula
(2). Since it is clear that

` (x ∧ (x ↔ ©w ¬x)) → ( (y ↔ ©w ¬y) → y),

by the completeness of the temporal rules and axioms, the provability of (2)
follows directly from the SYNC rule and S5 reasoning.

4 Soundness for unique initial states

Suppose the axiom, UIS, was not sound. Then there would be some model
M with unique initial states, such that for some r ∈ M and some j,

M, r, j |= (©w false → Kiα) ∧ ¬Ki (©w false → α).

Therefore there must be some r′ ∈ M such that r(j)i = r′(j)i such that
M, r′, j |= ¬ (©w false → α). Thus M, r′, 0 |= ¬α, and M, r, 0 |= Kiα
contradicting the unique initial states requirement of the model.

5 Completeness for unique initial states

To prove the axiom system augmented with UIS is complete we use a stan-
dard Henkin-style construction with finite sets of formulas. Given a consis-
tent formula, ψ, we show that ψ has a model generated from the maximal
consistent subsets of some closure set (see, for example [5]). We define the
closure set in two stages. Given ψ, let Γψ = {α,¬α,©w false| α ⊆ ψ}, where
α ⊆ ψ if and only if α is a subformula of ψ. As usual we let Σ be the set of
maximally consistent sets of formulas, and Sψ = {∆∩ Γψ | ∆ ∈ Σ}. We let
S0
ψ = {s ∈ Sψ | ©w false ∈ s}.

For the next stage, we let Γ = Γψ ∪ {3− ŝ | s ∈ S0
ψ} where ŝ is the

conjunction of the formulas in s. We define S = {∆∩Γ | ∆ ∈ Σ} and define
the relations ;,∼i⊆ S × S as:

• s ; t if and only if there exists ∆,∆′ ∈ Σ such that s = ∆ ∩ Γ,
t = ∆′ ∩ Γ and for all α ∈ ∆′, ©α ∈ ∆;

• s ∼i t if and only if there exists ∆,∆′ ∈ Σ such that s = ∆ ∩ Γ,
t = ∆′ ∩ Γ and for all Kiα ∈ ∆, Kiα ∈ ∆′.

It can be seen using the S5 axioms that ∼i is an equivalence relation.
The following lemma gives an alternative characterization of the relation
∼i.

LEMMA 2. For all s and t in S, s ∼i t if and only if ŝ ∧ Lit̂ is consistent.
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Proof. If s ∼i t then there exists maximally consistent sets, ∆ and ∆′ such
that s ⊂ ∆, t ⊂ ∆′ and Kiα ∈ ∆ if and only if Kiα ∈ ∆′. Since t ⊂ ∆′ it
follows that KiLit̂ ∈ ∆′ so ŝ ∧ Lit̂ ∈ ∆, hence ŝ ∧ Lit̂ is consistent.

Conversely, if t̂∧Liŝ is consistent then it is contained in some maximally
consistent set, ∆. We define Λ = {α | Ki(t̂ → α) ∈ ∆}. It should be
clear that Λ is consistent, and t ⊂ Λ. Furthermore, Kiα ∈ Λ if and only if
Kiα ∈ ∆ and Liα ∈ Λ if and only if Liα ∈ ∆. Since Λ is consistent it can
be extended to a maximally consistent set which is sufficient to show s ∼i t.

�

For all s ∈ S, we let [s]i be the corresponding equivalence class of ∼i and
let R be the set of functions r : ω −→ S such that:

1. ©w false ∈ r(0);

2. for all n, r(n) ; r(n+ 1); and

3. for all n, if αU β ∈ r(n) then there exists m ≥ n such that β ∈ r(m).

From R we can derive a model M = {πr : ω → ℘(V)×L1× . . .×Lk | r ∈ R}
where πr(j)0 = r(j) ∩ V , and πr(j)i = [r(j)]i. Finally, for every r ∈ R we
let Mr ⊂ M be defined to be the smallest set such that πr ∈ Mr, and for
every πt ∈Mr, and j ∈ ω, {πu ∈M | ∃i, j′ s.t. t(j) ∼i u(j′)} ⊆Mr.

The standard approach here is to extend ψ to a maximal consistent set
and use this to find a run r with a state containing ψ. We then prove a truth
lemma on Mr, i.e. for every j we show α ∈ r(j) if and only if M,πr, j |= α.
Therefore to complete the proof all we have to do is show that the resulting
model satisfies the unique initial states constraint. We use the following
tautology:

LEMMA 3. ` ©w false → (ϕ → (Ki (©w false → ¬Kj¬ϕ)))

Proof. We define the formula γ as

(3) γ = ©w false ∧ (ϕ ∧3(Li3− (©w false ∧Kj¬ϕ))).

By taking the contrapositive of UIS we can derive the tautology

(4) ` ¬Ki¬3− (©w false ∧ ¬α) →3− (©w false ∧ ¬Kjα).



Axioms for Logics of Knowledge and Past Time: Synchrony and Unique Initial States 9

Let ¬Kj¬ϕ. Applied to γ we have

UIS ` γ → (©w false ∧ ϕ ∧33− (©w false ∧ ¬Kj¬Kj¬ϕ)) (5)

K5 ` ¬Kj¬ϕ→ Kj¬Kj¬ϕ (6)

K1 ` ¬Kj¬Kj¬ϕ → Kj¬ϕ (7)

LTL ` γ → (©w false ∧ ϕ ∧33− (©w false ∧Kj¬ϕ)) (8)

K1 ` γ → ϕ ∧ ¬ϕ (9)

K1 ` ¬γ (10)

Since ¬γ is equivalent to ©w false → (ϕ → (Ki (©w false → ¬Kj¬ϕ))),
the proof is complete. �

We note that this lemma is the only place where we are required to use the
UIS axiom, so this tautology could be used instead of the UIS axiom.

COROLLARY 4. The model Mr satisfies the unique initial states con-

straint.

Proof. If this were not true there would be some runs with non-unique
initial states. Thus there would be some s(0), t(0), s(u), t(v) ∈ S (where
s, t ∈ R) such that s(u) ∼i t(v), but s(0) 6∼j t(0). Since ©w false ∈ s(0) we
can use the Lemma 3 to derive

(11) ` ŝ(0) → Ki (©w false → Lj ŝ(0)).

Let a = s(0) ∩ Γψ. Given the definition of the closure, Γ, it follows that

` ŝ(u) → 3− (©w false ∧ â)). Furthermore, it is clear that ŝ(0) is equivalent

to â, since s(0) = a∪{3− â)}. Combining this with (11) we derive ` ŝ(u) →

Ki (©w false → Lj ŝ(0)), and since s(u) ∼i t(v) it follows using Lemma ??

and S5 reasoning that t̂(v) ∧ (©w false → Lj ŝ(0)) is consistent. It follows

that t̂(0)∧Lj ŝ(0) must be consistent, contradicting the assumption s(0) 6∼j

t(0), again by Lemma ??. �

6 Soundness for synchronous systems

The soundness of the rule AUT is straightforward, and is left to the reader.
To show SYNC is sound, suppose that α and β do not share propositional
atoms, α → β is a validity, but α ∧ Li¬β has some model, M . There-
fore there are runs rα, rβ ∈ M and some j such that M, rα, j |= α, and
M, rβ , j |= ¬β, and rα(j)i = rβ(j)i. Note that the interpretation of α, and
the interpretation of β can only depend on the propositional atoms that
appear in α or β (this can be seen by the recursive definition of the |=
relation).



10 Tim French, Ron van der Meyden, Mark Reynolds

Now let M+ be a new model defined by M+ = {r · s|r, s ∈ M}, where
the run r · s is defined by r · s(u) = (a, l1, . . . , lk) where

• a = (r(u)0 ∩ var(α)) ∪ (s(u)0 ∩ var(β))

• lm = (r(u)m, s(u)m)

Note that M+ is synchronous if M is synchronous.
We can show that M, r, j |= α if and only if M+, r · s, j |= α for all runs

s of M , and M, s, j |= β if and only if M+, r · · · , j |= β for all runs r of
M . (This is done by induction over the complexity of formulas, using the
semantic descriptions given, and is left to the reader). If we let r = rα
and s = rβ , it follows that M+, rba, j |= α ∧ ¬β, contradicting the fact that
α → β is a validity.

7 Completeness for synchronous systems

We use the strategy used in [7] to construct the model as a series of levels,
where each level defines the depth of nestings of knowledge operators in a
formula. Given any consistent formula, ψ, we will create a model (a set
of runs) by taking sequences of maximally consistent subsets of a closure
set of ψ. We will then show that any formula that appears in a maximal
consistent subset will be true at the corresponding state in the model. To
create such a model we need to find a sequence of maximally consistent
sets, where one of the sets contains ψ. We then need to provide additional
runs to ensure that if Liγ appears in some set, γ appears in some other
run. However these additional runs can be defined over a smaller closure
set since we are only interested in the formulas that appear in the scope of
a knowledge operator. We can apply this process recursively until we only
have to add runs defined over a closure containing no knowledge operators.

When we add additional runs, we have to ensure the knowledge relations
conform to the synchrony constraint as well as the normal rules for epistemic
logic. To do this, at each level of the construction we include the character-
istic formula of a transducer. The state of the transducer at a given level
provides sufficient information about the time for us to be able to deduce
which of the sets in a lower level will be inconsistent with the current time.
The SYNC rule allows us to use this information to ensure the model sat-
isfies the synchrony constraint. The following definitions contribute to this
construction.

Each level in the model is represented by a string of agent indexes, (that
is, an element of {1, . . . , k}∗). We call such strings knowledge sequences,
and use the following notation:

• we let λ refer to the empty string;
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• we let τi be the string τ , concatenated with the index i and let (τi)− =
τ ;

• we let τ\i be the largest string µ such that µi is a prefix of τ , or λ if
such a string does not exist; and

• we define τ ≤ σ (τ < σ) to mean τ is a (proper) prefix of σ.

To construct a model of a consistent formula we will use the following
hierarchy of languages. We let L be the language defined above (for k
agents), and define the hierarchy over knowledge sequences.

1. Lλ = {α ∈ L | ∀β ∈ L, ∀i Kiβ 6⊆ α}.

2. Lτi = {α ∈ L | Kjβ ⊆ α ⇒ either j = i and β ∈ Lτ or Kjβ ∈ Lτ}.

We can see that Lλ is the set of all pure temporal formulas, and let σ be
the smallest string such that ψ ∈ Lσ .

We will now define the closure of a formula, ψ.

DEFINITION 5. Given a formula, ψ, we let Γψ be the closure of ψ, defined
recursively by:

• ψ ∈ Γψ.

• α ⊆ ϕ implies α,¬α ∈ Γψ

• α ∈ Γψ implies ¬Kiα ∈ Γψ and Kiα ∈ Γψ for i = 1, . . . , k.

Given a knowledge sequence, τ , we define the τ -closure of ψ to be Γτψ =
Γψ ∩ Lτ .

To be able to create a model we require that maximal consistent subsets
of the closure contain sufficient information about the time. We do this as
follows. Let Σ be the set of maximally consistent sets of formulas taken
from the language (with respect to the axioms given and the two rules for
synchrony), and given a setX of formulas, we let SX be the set of maximally
consistent subsets of X , (ie SX = {∆ ∩X | ∆ ∈ Σ}).

We define the temporal relation ;⊆ SX × SX by s ; t if and only if∧
α∈s α ∧©

∧
α∈t α is consistent.

The knowledge relations are quite complex, and will be constructed using
the following definitions and lemmas. These constructions are given so that
if we are considering formulas in Lτi, then the closure includes an additional
formula, χτ , that describes a transducer, Aτ . A run of this transducer
associates a state with each moment of time and this state describes the
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set of maximal consistent subsets of Lτ which are consistent with the given
time. We do this by induction, where the base case is

Xλ = Γλψ ∪ Γλ
3− ©w false.

Given Xτ , for any τ , we can then define Sτ (the maximally consistent
subsets of Xτ ), Aτ (a transducer showing which subsets are consistent with
which times), χτ (the characteristic formula of the transducer), and Xτi

(the inductive step). This is done as follows:

• Sτ = SXτ
.

• For all τ , given Sτ and ; (defined above) we let Aτ be a transducer
given by the tuple (Qτ , pτ , δτ ) where:

– Qτ = ℘(Sτ ) is the set of states;

– pτ = {s ∈ Sτ | ©w false ∈ s}

– δτ : Qτ → Qτ is the transition function defined by
δτ (q) = {t | ∃s ∈ q, s ; t}.

This transducer is defined to identify states which are reachable in
the constructed model at a given time. The run of Aτ is the sequence
from Qτ , (pτ , δτ (pτ ), δ

2
τ (pτ ), . . .).

• χτ is the characteristic formula of Aτ . To define χτ , for each s ∈ Sτ ,
let xs be a propositional atom not appearing in Γτ , and for all q ∈ Qτ ,
let q =

∧
s∈q xs ∧ ¬

∨
s∈Sτ\q

xs. Then

χτ =3−


©w false ∧ pτ ∧

∧

q∈Qτ

(q → ©δτ (q))


 .

• Xτi = Γτiψ ∪ Γλχτ
.

The proof of completeness will follow from the following lemmas. The
first three are technical lemmas which contribute to the proof of the fourth.

LEMMA 6. For all τ , and q ∈ Qτ , we have ` χτ ∧ q → Ki

∨
s∈q ŝ.

Proof. By the construction the transducer Aτ the initial state pτ is the set
of all maximal consistent subsets which are consistent with ©w false, so the
following is a validity

(12) ` ©w false ∧ χτ →
∨

s∈pτ

ŝ.



Axioms for Logics of Knowledge and Past Time: Synchrony and Unique Initial States13

Since ` χτ →3− (©w false ∧ χτ ), we can derive

(13) ` χτ ∧ q →3−


χτ ∧

∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
 .

The transition function δτ is defined to map a set, q, of maximal consis-
tent subsets to the set of all maximal consistent subsets that are consistent
with ©−

∨
s∈q ŝ. Since ` χτ ∧ q → ©δ(q) and `

∨
s∈q ŝ → ©

∨
s∈δ(q) ŝ are

tautologies we can derive the following:

(14) ` χτ ∧
∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
→ ©


χτ ∧

∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
 .

Applying the rule, RT2, we can show

(15) ` χτ ∧
∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
→


χτ ∧

∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
 ,

and the following tautology follows from (15) and (13):

(16) ` χτ ∧ q →


χτ ∧

∨

q∈Qτ

(
q ∧

∨

s∈q

ŝ

)
 .

Since by definition, ` q →
∧
r 6=q ¬r, we have

(17) ` χτ ∧ q →
∨

s∈q

ŝ.

Since the propositional atoms in χτ are defined to be disjoint from those in∨
s∈q ŝ the result follows from the SYNC rule. �

This lemma shows that for any elements of Sτ which are not consistent
with χτ ∧ q, given χτ ∧ q we can prove an agent knows that those elements
of Sτ are not true. The construction we will use requires us to also prove
an agent knows which elements of Sτ\i are not consistent with χτ ∧ q. To
do this we use the following lemma.

LEMMA 7. For all knowledge sequences τ , for all j ∈ ω and for all µ ≤ τ ,

` χτ ∧ δjτ (pτ ) →
(
χµ → δjµ(pµ)

)
where the propositional atoms in χτ are

disjoint from the propositional atoms in χµ

Proof. We will prove this by induction. The base case is the tautology
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(18) ` χτ ∧ δ
j
τ (pτ ) →

(
χ′
τ → δjτ (pτ )′

)

where the sets of propositional atoms in χ′
τ and χτ are disjoint. The base

case is a temporal validity (since transducers are deterministic) so we can
assume this is provable from the temporal axioms and rules.

For the inductive step we will first show

(19) ` χτ ∧ δ
j
τ (pτ ) →

(
χτ− → δj

τ−(pτ−)
)

where the sets of propositional atoms in χτ and χτ− are disjoint. Since (19)
is a pure temporal formula, it is sufficient for us to show it is valid using
semantic reasoning. Since χτ is always satisfiable, if p = δnτ (pτ ) then there
must be some s ∈ p and some q ∈ Qτ− such that {χτ− , q} ⊂ s. Furthermore,
given such an s for all t ∈ p if χτ− ∈ t, then q ∈ t (since by definition s, t ∈ p
if and only if s and t can be reached in n steps from an initial set, and for
every transducer there is always a unique state that can be reached in n
steps from the initial state). Therefore (19) is valid.

To complete the induction, suppose that for some µ ≤ τ

(20) ` χτ ∧ δ
j
τ (pτ ) →

(
χµ → δjµ(pµ)

)
.

Combining this with (19) we can derive

(21) ` χµ →
(
χτ ∧ δ

j
τ (pτ ) →

(
χµ− → δj

µ−(pµ−)
))

.

Since we can assume that the sets of propositional atoms in χτ , χµ and
χµ− are all disjoint, the AUT rule gives us

(22) ` χτ ∧ δ
j
τ (pτ ) →

(
χµ− → δj

µ−(pµ−)
)

and the lemma follows by induction. �

We will now restrict our attention to sets s ∈ Sτi, such that χτ ∈ s. We
define Tλ = Sλ and let Tτi = {s ∈ Sτi | χτ ∈ s}. By the construction
of the set Sτi and the rule, AUT, every consistent formula in Γτiψ must
be an element of some set in Tτi. Given any set, t, of formulas we let
ti = {α |Kiα ∈ t}. We require the following definition to allow us to
compare maximal consistent subsets at different levels.

DEFINITION 8. For all τ 6= λ, we define the relation ≺i⊂ Tτ\i × Tτ and
say t ≺i s (t i-supports s) if

• For some q ∈ Qτ− , q ∈ s and there is some a ∈ q such that t ⊆ a.
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• ti ⊆ si ⊆ t.

This definition is constructed such that for all s ∈ Tτ , and for all t ∈ Tτ\i,

t ≺i s if and only if ŝ ∧ Lit̂ is consistent.

LEMMA 9. For all s ∈ Tτ , for all t ∈ Tτ\i, if t 6≺i s then ` t̂→ Ki¬ŝ.

Proof. If t 6≺i s then there are three cases we must consider:

1. for all q ∈ Qτ− , if q ∈ s then for all a ∈ q, t 6⊆ a. From Lemma 6 we
know ` χτ− ∧ q →

∨
a∈q â, so it follows ` t̂ → ¬(χτ− ∧ q), and thus

by the SYNC rule, ` t̂ → Ki¬(χτ− ∧ q). As ` ¬(χτ− ∧ q) → ¬ŝ the
proof follows from K2 and R1.

2. si 6⊆ t. In this case there must be some Kiγ ∈ s such that γ /∈ t. Since
γ ∈ Xτ\i we must have ` t̂ → ¬γ. Applying the epistemic axioms

K3, K5 we can show ` t̂ → KiLi¬γ and by the rule R2 we can show
` Ki(Li¬γ → ¬ŝ). The result follows from K2.

3. ti 6⊆ si. In this case there must be some Kiγ ∈ t such that Kiγ /∈ s.
In this case the result follows trivially from R1 and K2.

�

We note that the converse of this lemma is a consequence of Lemma 15.
The following lemma allows us create a synchronous model from a set of
runs corresponding to different knowledge sequences.

LEMMA 10. For all τ , for all j, for all s ∈ δjτ (pτ ) ∩ Tτ , if Liγ ∈ s, then

there is some t ∈ δj
τ\i(pτ\i) ∩ Tτ\i such that γ ∈ t and t ≺i s.

Proof. We use the Lemma 6 and Lemma 7 to prove this lemma as follows.
Suppose for contradiction that there exists some knowledge sequence, τ ,
some j ∈ ω, some s ∈ δjτ (pτ ) ∩ Tτ and some Liγ ∈ s such that for all
t ∈ δj

τ\i(pτ\i) ∩ Tτ\i, if t ≺i s, then γ /∈ t. We can convert this statement

into a formula and use the proof theory to derive a contradiction.
For all t ∈ δj

τ\i(pτ\i), either t 6≺i s, or γ /∈ t, or t /∈ Tτ\i. Thus, by

Lemma 9, the following would be a tautology:

(23) `
∧

t∈δj

τ\i
(pτ\i)

(
t̂→ (Ki¬ŝ ∨ ¬γ ∨ ¬χτ\i−)

)
.

Note in the case that τ\i = λ we can consider χτ\i− to be the formula, true.

Since s ∈ δjτ (pτ )∩Tτ it follows that χτ− , δj
τ−(pτ−) ∈ s. By the Lemma 6,

Lemma 7 and the AUT rule we can deduce
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(24) ` ŝ→ Ki

∨

t∈δj

τ\i
(pτ\i)

t̂

Putting this together with (23) we can show

(25) ` ŝ→ Ki(Ki¬ŝ ∨ ¬γ ∨ ¬χτ\i−).

We can then apply basic epistemic reasoning and the AUT rule to show
` ¬ŝ, contradicting the fact that s is consistent. �

Lemma 10 gives us the sufficient machinery to complete the proof. If ψ
is consistent, then for some knowledge sequence, σ, ψ must belong to Γσψ
and ψ must be consistent with χτ , for all τ . Therefore we can find some
s ∈ Tσ such that ψ ∈ s. It is clear that the relation ; can be restricted to
Tσ for all σ, so we can use this to create a σ-history (an infinite ;-sequence
in Tσ) where all eventualities are satisfied. For every set in this history we
can then satisfy any knowledge formulas using Lemma 10.

The construction we will use here is given as follows: A ranked set of

height σ is a disjoint union R =
⋃
τ≤σ Rτ , where for each τ ≤ σ, Rτ is a set.

For each r in Rτ we associate a τ -history via a labeling, described in the
following definition:

DEFINITION 11. A labeling, `, of a ranked set R of height σ is a collection
of functions `τ : Rτ × ω −→ Tτ for τ ≤ σ where:

1. for all r ∈ Rτ , `τ (r, 0) ∈ pτ ;

2. for all r ∈ Rτ , for all j ∈ ω, `τ (r, j) ; `τ (r, j + 1);

3. for all r ∈ Rτ , for all j ∈ ω for all αU β ∈ `τ (r, j) there is some i ≥ j
such that β ∈ `τ (r, i).

Hence, for any labeling `, for any r ∈ Rτ , `τ (r, 0)`τ (r, 1)`τ (r, 2) . . . will be
a τ -history. The construction must also satisfy all the knowledge formulas.
To do this we use the observation that if Liγ appears at some level (say,
Liγ ∈ `τ (r, j) where r ∈ Rτ ), then a history labeled by an element of Rτ\i
is all that is required to satisfy this formula. In this case we need to find

a witness for Liγ in Rτ\i that is consistent with both Li ˆ`τ(r, j) and the
time j. By Lemma 10 we know this is always possible. To allocate these
witnesses we use the following definition:

DEFINITION 12. A system of support, ρ, for a ranked set R of height σ
equipped with a labeling ` consists of, for all τ < σ, for all agents i, a partial
function ρiτ : Rτ\i ↪→ Rτ × ω, such that
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1. for all r ∈ Rτ , for all j ∈ ω, if ρiτ (t) = (r, j), then `τ\i(t, j) ≺i `τ (r, j).

2. for all r ∈ Rτ for all j ∈ N , if Liγ ∈ `τ (r, j) then exactly one of the
following holds:

• there is some t ∈ Rτ\i such that ρiτ (t) = (r, j) and γ ∈ `τ (t, j).

• there is some t ∈ Rµ such that µ\i = τ , and ρiµ(r) = (t, j).

We note that in some cases the system of support does not directly allocate
a witness for some formula Liγ. This occurs if Liγ ∈ `τ (r, j), and for some
µ, ρiµ(r) = (t, j). In this case Liγ appears in a set that is itself a witness for
a set, `µ(t, j), at a higher level. In this case we must have Liγ ∈ `µ(t, j),
and the witness for Liγ in `µ(t, j) is sufficient to also witness Liγ in `τ (r, j).
This gives us enough to define the basic structure.

DEFINITION 13. Let ψ ∈ Γn be a formula, and σ an index such that
ψ ∈ Lσ . A ψ-frame is a triple (R, `, ρ) where R is a ranked set of height σ,
` is a labeling of R and ρ is a system of support for R and `, such that for
some r ∈ Rσ , and some j ∈ ω, we have ψ ∈ `σ(r, j).

LEMMA 14. Given any consistent formula, ψ, there exists a ψ-frame.

This is left to the reader. The existence of i-τ -supports follows from
lemma 10, and the existence of the τ -labellings follows from the usual reach-
ability arguments.

b’

c
c’

d’
e

e’

a(1) a(2)

d

b

a

λ

i

ij

Figure 1. A basic ϕ-frame

A basic ϕ-frame is depicted in Figure 1. In this example σ = ij and
the levels of knowledge (λ, i, or ij) increase from bottom to top. Formulas
containing Kj will only appear in the highest level (ij), whilst no formulas
containing only epistemic operators will appear in the lowest level (λ). Time
flows from left to right, a labels a run Rij , b, b

′ label runs in Ri and c, . . . e′
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label runs in Rλ. The solid arrows between levels correspond to the partial
function ρjij (so ρjij(b) = (a, 1)), and the dashed arrows correspond to ρii (so

ρii(d
′) = (a, 2)).

Given a ψ-frame F , we can now construct a model, MF ⊆ R (see (1)) as
follows.

• We let the set of local states Li be R × ω.

• For all τ ≤ σ, for each r ∈ Rτ we define a function πr : ω → ℘(V) ×
L1 × . . .×Ld by πr(j) = (a, l1, . . . , ld) where:

– a = `τ (r, j) ∩ V ;

– for each i = 1, . . . d if ρiτ (r) = (t, j), then li = πt(j)i, and other-
wise li = (r, j).

It is clear that the model MF is synchronous.

LEMMA 15. For all τ ≤ σ, r ∈ Rτ , for all j ∈ ω, and for all ϕ ∈ Γτψ

MF , πr, j |= ϕ ⇐⇒ ϕ ∈ `τ (r, j).

Proof. This is shown in the usual way, by induction over the complexity
of formulas. We note that the definition ensures that for all propositional
atoms x, MF , πr, j |= x if and only if x ∈ `τ (r, j). Given a formula α, the
inductive hypothesis is MF , πr, j |= α ⇐⇒ α ∈ `τ (r, j). Assuming α and
α′ satisfy the inductive hypothesis it can be shown α ∧ α′, ¬α, ©α, ©w α,
αU α′ and αS α′ also satisfy the inductive hypothesis. This is relatively
simple and is left to the reader (note that the U case relies on the last part
of Definition 11).

The only interesting case is the inductive step for the knowledge operator,
where ϕ = Kiα. We assume by the inductive hypothesis that for all τ ≤ σ,
for all r ∈ Rτ , and for all j ∈ ω, MF , πr, j |= α ⇐⇒ α ∈ `τ (r, j).
Suppose that MF , πr, j |= ϕ. In this case MF , πr, j |= α and for all t such
that πr(j)i = πt(j)i we have MF , πt, j |= α. By the construction of MF we
have two possibilities:

1. For all t 6= r, such that πr(j)i = πt(j)i, t ∈ Rτ\i and ρiτ (t) = (r, j).
By the induction hypothesis, for all such t where ρiτ (t) = (r, j),
α ∈ `τ\i(t, j). Suppose for contradiction ϕ /∈ `τ (r, j). Then Li¬α ∈
`τ (r, j) and by the definition of ρiτ there would be some t such that
ρiτ (t) = (r, j) and α /∈ `τ\i(t, j), giving us the required contradiction.
Thus ϕ ∈ `τ (r, j).
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2. There is some µ and some s ∈ Tµ such that µ\i = τ and ρτ (j) = s.
For all t 6= s, such that

πr(j)i = πt(j)i, we have ρiµ(t) = (s, j) and hence α ∈ `τ (t, j). Since

ϕ ∈ Γ
µ\i
ψ we must have Kiϕ ∈ Γµψ. If Li¬ϕ ∈ `µ(s, j), by K4 we

have Li¬α ∈ `µ(s, j) and by the definition of ρiµ there must be some

t ∈ Rτ such that ρiµ(t) = (s, j) and α /∈ `τ (t, j), contradicting the
induction hypothesis. Therefore we must have Kiϕ ∈ `µ(s, j) and
hence ϕ ∈ `µ(s, j)

i. By the definition of ≺i it follows that ϕ ∈ `τ (r, j).

For the converse, suppose ϕ ∈ `τ (r, j). Again we consider two possibilities:

1. For all t 6= r such that πr(j)i = πt(j)i, t ∈ Rτ\i and ρiτ (t) = (r, j). In
this case by the definition of ρiτ and ≺i, we have `τ (r, j)

i ⊆ `τ\i(t, j).
Consequently α ∈ `τ\i(t, j)

i, and by K3, α ∈ `τ (r, j). By the inductive
hypothesis, for all t such that πr(j)i = πt(j)i, we have MF , πt, j |= α,
so MF , πr, j |= Kiα.

2. There is some µ, and j ∈ ω and some s ∈ Tµ such that µ\i = τ and
ρ(r) = (s, j). For all t 6= s such that πr(j)i = πt(j)i, we have ρiµ(t) =
(s, j). Since `τ (r, j) ≺i `µ(s, j), Kiα ∈ `τ (r, j) implies Kiα ∈ `µ(s, j).
For all t 6= s such that πr(j)i = πt(j)i, we have ρiµ(t) = (s, j) and thus

`τ (t, j) ≺i `µ(s, j). By the definition of ≺i, Kiα ∈ `µ(s, j) implies
α ∈ `τ (t, j) for all such t. Since we must also have α ∈ `µ(s, j) (by
K3) the results follows from the induction hypothesis.

�

8 Conclusion

In this paper we have presented sound and complete axiomatizations for
logics of knowledge and past time with the synchrony and unique initial
states constraints. While the proof of completeness for the unique initial
states restriction is relatively straightforward, the proof of completeness for
the synchrony restriction is surprisingly complicated. The axiomatization
for synchrony relies on complex automata based rules, and finding a simpler
axiomatization (and proof) would be of some interest.

For future work we will be investigating combinations of knowledge and
past time given the semantic restrictions of perfect recall (where an agent
retains the knowledge of previous times), and no learning (where an agent’s
knowledge can not increase over time) [1]. Along with synchrony and unique
initial state restriction, this gives us sixteen different combinations of re-
strictions to consider. We will investigate axiomatizations for the resulting
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languages and extending these axiomatizations to include axioms for com-
mon knowledge.
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