Maodel Checking and Synthesis for Optimal Use of
Knowledge in Consensus Protocols
(Preliminary Report)

Kaya Alpturer & ®

Princeton

Gerald Huang 20
UNSW

Ron van der Meyden S0
UNSW

—— Abstract

Logics of knowledge and knowledge-based programs provide a way to give abstract descriptions of
solutions to problems in fault-tolerant distributed computing, and have been used to derive optimal
protocols for these problems with respect to a variety of failure models. Generally, these results
have involved complex pencil and paper analyses with respect to the theoretical “full-information
protocol" model of information exchange between network nodes. It is equally of interest to be able
to establish the optimality of protocols using weaker, but more practical, models of information
exchange, or else identify opportunities to improve their performance. Over the last 20 years,
automated verification and synthesis tools for the logic of knowledge have been developed, such as
the model checker MCK, that can be applied to this problem. This paper concerns the application of
MCK to automated analyses of this kind. A number of information-exchange models are considered,
for Simultaneous and Eventual variants of Byzantine Agreement under a range of failure types.
MCK is used to automatically analyze these models. The results demonstrate that it is possible to
automatically identify optimization opportunities, and to automatically synthesize optimal protocols.
The paper provides performance measurements for the automated analysis, establishing a benchmark
for epistemic model checking and synthesis tools.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics; Theory of
computation — Logic and verification; Theory of computation — Verification by model checking;
Theory of computation — Distributed algorithms

Keywords and phrases Logic of Knowledge, Model Checking, Synthesis, Consensus Protocol, Fault-
tolerance

Digital Object Identifier 10.4230/LIPIcs...

Funding Alpturer was supported in part by AFOSR grant FA23862114029. The Commonwealth
of Australia (represented by the Defence Science and Technology Group) supported this research

through a Defence Science Partnerships agreement.

1 Introduction

Reasoning about multi-agent communicating systems can be subtle, particularly in settings
where agents and the communication media they use can be faulty. Amongst the abstractions
that have been developed to deal with the complexities in this area are formal logics of

© The authors;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kalpturer@princeton.edu
https://orcid.org/0000-0003-4843-883X
mailto:gerald.huang@student.unsw.edu.au
mailto:R.VanderMeyden@unsw.edu.au
https://orcid.org/0000-0002-9243-0571
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

Model Checking and Synthesis for Consensus

knowledge [18], which provide a succinct way to express properties of the states of information
of agents operating in such environments. It has been shown that for coordination goals,
such as consensus [34], formulas of the logic of knowledge can express the precise conditions
in which agents can act to achieve these goals [17, 32, 22]. Incorporating these formulas into
programs run by the agents yields what are called knowledge-based programs [18]. It has been
shown that knowledge-based programs can exactly characterize the behaviour of optimal
solutions for certain coordination tasks, independently of the failure environment in which
agents operate. This has lead to the development of optimal protocols for these tasks in a
range of failure environments [17, 32, 6]. The development of such results, however, requires
non-trivial analysis to determine concrete predicates of the local state of the agents that
correspond to the situations in which agents have the requisite knowledge in a given failure
environment. A protocol that substitutes these equivalent predicates for the knowledge
formulas in a knowledge-based program is called an implementation of the knowledge-based
program.

The application of this type of logical analysis of fault-tolerant distributed computing has
been conducted primarily in theoretical pencil and paper work. However, the applicability of
logics of knowledge has motivated work on the development of automated verification tools
using such logics. In particular, there has been work since the early 2000’s to develop model
checkers for the logic of knowledge [19, 30]. Such a model checker takes as input a model of a
(typically, finite state) model of a protocol, and the environment in which it operates, as well
as specification in the logic of knowledge and time, and automatically determines whether
the protocol satisfies this specification in the given environment. One of these model checkers,
MCK, has moreover been extended to enable automated synthesis, from knowledge-based
programs, of distributed protocol implementations [23, 24].

The problems to which epistemic model checkers have been applied have included security
protocols [37, 4], computer hardware protocols [9] and a range of applications in artificial
intelligence [25]. While fault-tolerant distributed computing played a key role in the emergence
of the logic of knowledge as an area of study in computer science, there has been comparatively
little work on the application of epistemic model checkers to this area. It is the objective of
this paper to begin a systematic study to address this lacuna.

We consider the application of the model checker MCK to the analysis of consensus protocols,
the most well-developed area for application of the logic of knowledge in fault-tolerant
distributed computing. Specifically, we focus on variants of the problem of Byzantine
Agreement [34]. In this problem, a set of agents, some of which may be faulty, and each of
which has a preferred value for some decision to be made, must come to a consensus agreement
amongst the non-faulty agents on one of the initial preferences. In the Simultaneous variant
of this problem (SBA) the agents must reach this decision simultaneously (in the same round
of computation). Solutions to the problem can be characterized using a knowledge-based
program in which agents agree upon a value when the non-faulty agents have common
knowledge of the fact that a particular value is the initial preference of at least one agent
[17]. Other knowledge based programs express solutions to Eventual Byzantine Agreement
(EBA), the variant where decisions are not required to be simultaneous [22, 6]

The theoretical literature on the application of the logic of knowledge to Byzantine Agreement
has tended to focus on “full-information protocols”, in which agents repeatedly send their
complete local state to all other agents, and record in their local state all messages that they
receive. This assumption enables an analysis of the problem in which one develops protocols

K. Alpturer and G. Huang and R. van der Meyden

that are optimal in the sense that agents make their decision at the earliest possible time, and
such that no protocol (with any other approach to information exchange) can systematically
decide no later, and sometimes earlier. While the full-information approach is useful for this
theoretical purpose, it is not necessarily practical, since since the full-information state of an
agent grows at an exponential rate over time in Byzantine settings, and still quadratically
when optimized in benign failure settings. Indeed, in some circumstances, the optimal

solutions must, moreover, perform intractable computations at each step of the protocol [33].

Practical protocols, therefore, will operate with simpler state spaces and a lesser exchange of
information than a full-information protocol. Nevertheless, it remains of interest to determine
the optimality of such a protocol with respect to the reduced information exchanged. That
is, we can ask whether a protocol is optimal in its decision time, amongst protocols following
the same rule for information exchange. A formal definition for this notion of optimality was
given for Eventual Byzantine Agreement by Alpturer, Halpern and van der Meyden [6], who
give a number of protocols for this problem that are optimal in this sense. We can similarly
define optimality for Simultaneous Byzantine Agreement with respect to a fixed information
exchange. It is shown in [36] that the knowledge-based program of [17] also characterizes
SBA protocols that are optimal in this sense.

Reduced information-exchanges are also of benefit for model checking purposes, since
complexity in the state space of a model is one of the main factors impacting the computation
run time of a model checker. Our contribution in this paper is to apply MCK in an experiment
on the feasibility of model checking the logic of knowledge as an approach to understanding
Byzantine Agreement protocols with limited information exchange. We do the following;:

We develop formal models in the MCK scripting language of a number of protocols for
Byzantine Agreement, with limited information exchanges that have been proposed in
the literature, as well as the failure models in which those protocols operate. We consider
the following protocols:

The FloodSet protocol of Lynch [31]

A protocol from [13] in which agents additionally maintain a count of the number of
agents from which they received a message in the most recent round.

A protocol from [13] in which agents additionally maintain a count of the number of
agents from which they received a message in the most recent round, as well as the
previous value of that count.

The concrete protocol of [17] derived from an analysis of knowledge in the full
information protocol for SBA in the crash failures model.

Protocols from [6] for the problem of Eventual Byzantine Agreement.

These models take as parameters a number of agents, an upper bound on the number of
faulty agents, and the number of possible values for the decision. In this version of the
paper, we consider both the crash and the sending omissions failures models.

We apply MCK to determine automatically whether decisions are made in these protocols
at the earliest time that the agents achieve the required state of knowledge. We report
results on how running times of the MCK model checking experiments scale in the
above-mentioned parameters.

XX:3

XX:4

Model Checking and Synthesis for Consensus

In the course of these experiments, we identify a number of situations where protocols,
as proposed in the literature, are not optimal with respect to their chosen information
exchange. This means that there exist opportunities to optimize these protocols, by
having agents make their decisions earlier.

To better understand these optimization opportunities, and derive optimal protocols, we
use MCK to automatically synthesize implementations of the knowledge-based program
for Byzantine Agreement with respect to the information exchanges and failure models
considered. We report results on how running times of the MCK model checking
experiments scale in the above-mentioned parameters. We informally describe the
optimal protocols synthesized, in small instances, but do not attempt to give a full
characterization or a proof of optimality in the general case.

Taken together, the results of this paper show that, at least on small scale models, it is
feasible to investigate the question of optimality of a fault tolerant distributed protocol
by means of model checking using the logic of knowledge. Moreover, it is also possible to
automatically synthesize optimal implementations of knowledge based programs, for small
scale models.

The structure of the paper is as follows. We begin in Section 2 by laying out the semantic
framework for the logic of knowledge in which we work. Section 3 describes the failure models
we consider. In Section 4 we give the formal specification for the Byzantine Agreement (BA)
problem. The knowledge-based characterization of optimal solutions to the Simultaneous BA
problem is described in Section 5. A knowledge-based characterization of optimal solutions
to the Eventual BA problem is described in Section 6. The model checker MCK is described
in Section 7. Section 8 describes a number of protocols from the literature for solving SBA,
and the qualitative results that we obtain from our application of MCK model checking and
synthesis to these protocols using the characterization of Section 5. Section 9 presents a
similar treatment for protocols for EBA. In Section 10 we describe the running times of our
experiments. Section 11 describes related work and Section 12 concludes with a discussion of
limitations of our results and possible future directions for research. An appendix gives an
example of the MCK synthesis input scripts used in our work, and the result synthesized by
MCK.

2 Semantic Model

To model distributed systems semantically, we first introduce the abstract interpreted systems
model, with respect to which the logic of knowledge and time has semantics. Some more
specific instantiations of this model are described in the following section, in which we
describe how it can be used to model scenarios in which agents communicate by message
passing and are subject to failures of various sorts.

Interpreted systems [18] model multi-agent scenarios in which some set Agt of agents
communicate and change their states over time. An interpreted system is a pair Z = (R, 7),
where R is a set of runs, describing how the system evolves over time, and 7 : RxN — P(Prop)
is an interpretation function, that indicates which atomic propositions are true at each point of
the system, represented by a pair (r,m) where r € R is a run and m € N is a natural number
representing a time. Each run r € R is represented as a function r : N — S¢ X ILicpge Ly,
where S, is a set, representing the possible states of the environment in which the agents
operate, and where each L; is a set, representing the possible local states of agent i. Given a

K. Alpturer and G. Huang and R. van der Meyden

run r, agent ¢ and time m, we write r;(m) for the i + 1-st component (in L;) of r(m), and
re(m) for the first component (in S,).

Starting with a set of atomic propositions Prop, we can build up a logic, extending
propositional logic, by introducing various types of modal operators. Propositions are
formulas, and, given a formula ¢, we have the following formulas: K;¢ saying that agent ¢
knows that ¢ holds, and v X (¢(X)) saying that the current situation is in the largest fixed
point of an operator on sets of points defined by the formula ¢. (This is essentially the
greatest fixed point operator from the linear-time mu-calculus [38], extended to interpreted
systems. It is required that propositional variable X occur only in positive position for this
operator to be meaningful.)

The semantics of the logic is given by a relation Z, (r,m) |= ¢, where Z is an intepreted
system, (r,m) is a point of Z, and ¢ is a formula, defined inductively as follows (we omit the
obvious cases for the propositional operators):

Z,(r,m) Epif p € w(r,m), for p € Prop,

Z, (r,m) = K;¢ if for all points (', m’) of Z such that r;(m) = ri(m’) we have Z, (', m’) |=
@.

If Z = (R,n), then Z, (r,m) E vX(¢(X)) if (r,m’) is in the largest set of points S
of Z such that F(S) = S, where F(S) is defined to be the set of points (r',m’) such
that (R,7[X — S]),(r',m') = ¢(X). Here n[X — 5] is the interpretation defined by
w[X = Sl(r,m) = (w(r,m) \ {X}) U{X | (r,m) € S} for each point (r,m).

The intuition for the definition of the knowledge operator is that r.(m) = r;(m), says that
agent ¢ considers it possible, when in the actual situation (r,m), that it is in situation (r',m’),
since it is in the same local state there. An agent then knows ¢ is ¢ is true in all the situations
that the agent considers to be possible.

Using these operators, we can define a notion of common belief, that operates with respect
to an indexical set N of agents, which differs from point to point in the system. That is, we
assume that there is a function N mapping each point of the system to a set of agents. The
semantics of the atomic formula ¢ € N is given by Z, (r,m) =i € N if i € N(r,m).

An agent may not know whether it is in a set N. We can define a notion of belief, relative
to the indexical set N, by BN¢ = K,;(i € N = ¢). Using this, we define the notions of
“everyone in N believes” EBy¢ = \\,cy BN ¢. Common belief, relative to an indexical set

N, is defined by CBy¢ = EByé A EB%,¢ A Equivalently, CBy¢ = v X (EBn(X A))).

It is immediate from the fixpoint characterization that CBy¢ = EByCBpy¢®. Provided it is
valid that N # (), we have that EBny¢ = ¢ and CBy¢ = ¢.

3 Communication and Failure Models

For the problems we consider, it is convenient to consider a two-layer protocol model
comprised of an information exchange protocol £ as the base layer, over which we run a
decision protocol P. Nonfaulty agents run both the information exchange and decision
protocols correctly, but faulty agents may deviate from these protocols, in ways that depend
on the failure model. A further parameter is the failure model F. Thus, our systems are
denoted as Z¢ 5 p, but we may elide the parameters when they are clear from the context.

XX:5

XX:6

Model Checking and Synthesis for Consensus

For the communications model we assume message passing as the communications medium.
Each agent may send messages from a set M. Our focus will be on synchronous message
passing, in which agents operate in a sequence of synchronized rounds. In each round, each
agent sends a set of messages to the other agents, receives some of the messages from the
other agents that were sent in the same round, and updates its state depending on these
events. The information exchange protocol £ describes the possible initial states of each
agent (which may include information such as the agent’s preference for the outcome of the
consensus decision to be made), how it chooses the messages to be sent in each round (which
may depend on its local state and the action performed in the round), and how it updates
its state in response to its actions and the messages received in a round.

The failures model describes what failures can occur. Typically, a failures model comes
with a parameter ¢ that indicates the maximum number agents that may be faulty. The
possibility of solutions to consensus problems generally depends on ¢ in some way, e.g., for
Byzantine failures, solutions for consensus using deterministic protocols are only possible
when 3t is less than the number of agents n [34]. A failure pattern, or adversary, F expresses
the failures that actually occur in a particular run. Each failure model is associated with
a set of adversaries. We consider the following failure models, parameterized by an upper
bound of ¢ on the number of faulty agents:

Crash(#): in this model, agents may fail by crashing. When an agent crashes in round
m, it sends an arbitrary subset of the messages it was supposed to send in round m. In
later rounds, it sends no more messages.

Sending-Omissions(¢): a faulty agent may fail to send any message that it was supposed
to send, but receives all messages that have been sent to it.

(The knowledge based program we consider can also be applied to other failure models, such
as receiving and general omissions failures.)

A decision protocol P is a function from the agent’s local state to its action in the next
round.

To connect the above sketch to the semantic model of Section 2, we describe how an
information exchange protocol &, a failure model F and a decision protocol P determine
an interpreted system Zg r p. In this system, states of the environment S, record a failure
pattern F' from F. An initial global state consists of a failure pattern F' for the environment
state, and for each agent ¢, an initial state of the information exchange protocol in L;.
For each initial global state, a run r with that initial state is uniquely determined by the
information exchange protocol &, the failure model F, and the decision protocol P. In each
round of this run, the action protocol P determines what action each agent performs in
the round, and the information exchange protocol £ determines what messages agents are
required to send. The failure pattern F' determines which of these messages are actually sent,
and which are actually received. As a result of the action taken and the messages received,
each agent updates its local state as required by the information exchange protocol £. The
set of runs of Z¢ 7 p consists of all runs generated in this way from some initial global state.

4 Specifications

We consider consensus problems in which each of the agents in the system is required to make
a decision on a value in some set V', and the agents are required to ensure that they make the

K. Alpturer and G. Huang and R. van der Meyden

same decision. There exists a range of definitions of this problem in the literature. We focus
first on a version where nonfaulty agents are required to make their decisions consistently
and simultaneously. We later consider a version where they may decide at different times.

The local states L; of agent ¢ contain the agent’s initial preference init; € V for the decision

to be made, as well as components derived from the messages that the agent has received.

(Details of these components and how the agent updates them depend on the specifics of the
information exchange protocol. We give a number of examples below.) Each agent i has, at
the start of a run, an initial value init; € V representing its preference for the decision to be
made. The possible actions of agent i are noop and decide;(v) for each v € V|, representing
agent i’s action of making the decision on value v. We write decides;(v) for the proposition

stating the next action that agent ¢ performs according to its decision protocol is decide;(v).

Some of the agents may be faulty; we write NV for the set of nonfaulty agents. We note N
is indezical, in the sense that different runs have different values for the set N. The set of
faulty agents, and how they fail, is given in the adversary F' of the run. We consider the
following requirements:

Unique-Decision: Each agent i performs an action decide;(v) (for some v) at most
once.

Simultaneous-Agreement(N): If i € N and decides;(v) then, at the same time,
decides;(v) for all j € N.

Validity (N): If i € N and decides;(v) then init;(v) for some agent j.

A protocol guaranteeing these properties is said to be a Simultaneous Byzantine Agreement

(SBA) Protocol. (We remark that termination is not a requirement of this specification.

There exist knowledge-based characterizations of the problem where various termination
and alternative agreement and validity properties are used, but we do not delve into these
alternatives in the present paper.)

Optimality: A concern in the literature has been to develop SBA protocols that are optimal
in the sense that decisions are made as early as possible. In order to compare two protocols,
we need to be able to be able to compare runs of the two protocols. This has typically
been done in the literature by comparing protocols (with an arbitrary information exchange)
with the full information protocol, and showing that the full information protocol is optimal
[17, 32, 18]. We consider here a definition of optimality that compares protocols using the
same information exchange. A definition of this kind was first given in [6] for Eventual
Byzantine Agreement protocols. We consider here a similar definition from [36] for SBA
protocols.

We rely here on the fact that the transitions are deterministic once deterministic protocols P
and & and an initial global state (containing an adversary F' that resolves all nondeterminism)
have been identified. Given an information exchange protocol £ and a failure model F, we
say that a run r in Zg r p of a decision protocol P corresponds to a run ' in Zg 5 p of
decision protocol P’, if r and 7’ have the same initial global state. This means that all agents
start with the same initial preferences, and face the same pattern of failures over the two
runs.

Using this, we can define an order on decision protocols P, P’ with respect to an information
exchange protocol £ and failure model F. Define P <g » P’ if for all corresponding runs r

XX:7

XX:8

Model Checking and Synthesis for Consensus

of Zg 7 p and 1" of Zg 7 pr, and for all agents 1, if agent ¢ decides at time ¢ in r then agent ¢
does not decide earlier than ¢ in run /.

A decision protocol P is optimum for SBA relative to £ and F, if it is an SBA protocol for £
and F, and for all SBA protocols P’ for £ and F, we have P <g r P’. That is, P always
makes decisions no later than any other SBA protocol for £ and F.

A decision protocol P is optimal for SBA relative to £ and F, if it is an SBA protocol for £
and F, and for all SBA decision protocols P/ <g y P we have P <g r P’. That is, there is
no decision protocol for £ and F in which decisions are made no later than they are in P,
and sometimes earlier.

5 Knowledge-Based Program - Simultaneous Byzantine Agreement

For the problem of Simultaneous Byzantine Agreement, we work with the knowledge-based
program for SBA from [32, 18]. However, whereas these works focus on full information
implementations, we will also consider weaker models of the underlying information flow.

For a value v € V, we write Jv for \/ieAgt init; = v. The results of [32, 18] lead to the
following knowledge-based decision program P, for each agent i:

do noop until v € V(BN CByx);
let v be the least value in V' for which BN CBy3v (1)
in decide;(v)

This program characterizes the conditions under which decisions are made in a way that
abstracts from the concrete details of how the environment operates, how information
exchange protocol states are maintained, and how agents compute what they know. (The
program can be shown to be equivalent to a program in [17], for the crash failures model,
that uses instead the knowledge conditions K;CK 43(v), where A is the set of agents that
are active, that is, have not yet crashed.

An implementation P of such a knowledge-based program, relative to an information exchange
protocol £ and a failure model F, is obtained by substituting concrete predicates of the local
state of each agent i for the knowledge conditions BY CBy3v, that are equivalent to these
knowledge conditions in the interpreted system Zg 7 p.

The knowledge-based program is shown to be correct in [32] the sense that if any SBA protocol
exists in a full information exchange context, then an implementation of the program solves
this problem in that full information exchange context. Moreover, an implementation of this
program is optimum in this context. Concrete implementations using the full information
exchange protocol have been derived for crash failures [17] and for omission failures [32].

In our model checking and synthesis work, we model this knowledge based program in
a variety of failure environments and information exchange protocols. A correctness and
optimality result can be established that generalizes that of [17, 32]. Whether we obtain an
optimal or an optimum protocol as the implementation of the knowledge based program
depends on the information exchange protocol £. We say that € does not transmit information
about actions if the messages transmitted by an agent, and the state updates that the agent
performs, do not depend on the action the agent performs in the round. We say that £ does
not transmit information about decisions if the messages transmitted by an agent, and the
state updates that the agent performs, may depend on whether the agent performs noop or a

K. Alpturer and G. Huang and R. van der Meyden

decide;(v) action, but are the same for all actions decide;(v) and decide;(v') for v,v' € V.

For proof of the following result, see [36].

» Proposition 1. Let £ be an information exchange protocol and let F be failure model, and
let protocol P be an implementation of P relative to € and F.

If € does not transmit information about actions, then P is an optimum SBA decision
protocol relative to € and F.

If € does not transmit information about decisions, then P is an optimal SBA decision
protocol relative to € and F.

6 Knowledge Based Program - Eventual Byzantine Agreement

In the Eventual Byzantine Agreement (EBA) problem, the Simultaneous Agreement requirement

is replaced by the following property:
Agreement(N): If 4,5 € N and decided;(v) and decided;(v") then v = v'.

This allows nonfaulty agents to make their decision at different times, but they are still
required to agree on the decisions that they make.

We work with the following knowledge based program P° for EBA in the sending omissions
failures model from [6], which is similar to a knowledge based program for the crash failures
model in [12, 13]. It is shown in [6] that, subject to some technical side conditions on the
information exchange £, implementations of this knowledge based program with respect
to are optimal EBA protocols with respect to £. The side conditions state, in effect, that
(1) the only way that an agent can learn that some agent has init; = 0 is through a chain
of messages, with some agent deciding 0 at each point of the chain, and (2) if an agent
considers it possible that some agent is deciding 0, then it considers it possible both that it
is nonfaulty itself and that some nonfaulty agent is deciding 0. Intuitively, these conditions
are satisfied in information exchanges, like the flooding protocol, in which agents explicitly
transmit information about 0 values that they learn, but never store enough information
about messages received to be able to make deductions about which agents are faulty.

Algorithm 1 P?

repeat

if dnit; =0 v K;(\/
else if K;(\
else noop
until decided;

jEAgt jdecidedj = 0) then decide;(0)

jengt ﬁ(decidz’ngj =0)) then decide;(1)

Another, more complex, knowledge based program is also considered in [6], which does
not require these side conditions, and also yields an optimal EBA protocol for the sending
omissions failure model with respect to the full information exchange. This knowledge based
program adds some cases to the program P?, expressed using common knowledge, that can
only be satisfied when the information exchange allows agents to learn which agents are
faulty. Since we do not consider the full information exchange in the present paper, but
only information exchanges that satisfy the side conditions for PY, we focus on this simpler
protocol.

XX:9

XX:10

Model Checking and Synthesis for Consensus

7 The Model Checker MCK

Model checking is an automated verification technology [14] applicable to concurrent systems.
Given, as input, code for the behaviour of a concurrent system and a formula in a modal
logic, a model checker will automatically check whether the formula is true of all runs of the
system. The modal logic used in model checking has traditionally been a form of temporal
logic. Epistemic model checkers [19, 30] extend this technology to specifications in a logic
of knowledge and time. MCK [19], the model checker we use in this paper, supports linear
time and branching time temporal logic, knowledge operators, as well as least and greatest
fixpoint operators including the operator v defined above.

Concurrent systems are described in MCK by describing an environment, declaring the
agents in the system and the protocols run by each of the agents. The environment is
described by declaring variables for the environment states in Se, specifying (by means of a
formula or code) which of these states are initial states, and giving nondeterministic code
that computes the transitions on the environment states. This code may take as input the
actions performed by the agents in a round of the computation. Since these actions are
treated as being performed simultaneously, but transition code execution is treated as taking
a single step of computation, the MCK modelling language is in the class of Synchronous
languages. All variable types in MCK (boolean, enumerated or finite numerical ranges) are
finite; this implies that the model is finite state.

A description of an agent’s protocol includes the binding of the protocol’s input parameters
to environment variables, a declaration of additional local variables, and code that describes
the action performed at each round of the computation of the system. Actions may be a
sequence of assignments to local and parameter variables or a signal sent to the environment
as an input to the environment transition code.

Some of the agent’s variables may be declared to be observable. The collection of values of
the agent’s observable variables makes up the agent’s observation. A number of different
semantics for the knowledge operators are supported in MCK, depending on the degree
of recall that an agent has of its observations. In the present paper, we apply the clock
semantics, which states that an agents’s local state in L; is a pair (time, o), where time € N
is the current time, and o is the observation that the agent makes at that time. A formal
description of how the MCK modelling language relates to the interpreted systems model is
given in the MCK manual [20].

In addition to model checking, MCK now supports automated synthesis of implementations
of knowledge based programs. In a synthesis input to MCK, agent protocols may declare
boolean template variables, which function as placeholders for predicates over the agent’s
local variables, which will be automatically synthesized. The template variables may be
used in conditions within the agent’s protocol code. For each template variable x, there is a
requirement that relates x to a formula of the logic of knowledge. This enables knowledge
based programs such as the program P above to be expressed in MCK.

Synthesis algorithms for a number of different semantics of knowledge have been developed
[26, 27, 28]. In the present work, we apply the algorithm for the clock semantics of knowledge.
In this case, the requirement for agent 4’s template variable (at the time that the template
variable is used in the agent’s protocol), is of the form z < ¢ where ¢ is a boolean
combination of formulas of the form K;¢, which may not contain temporal operators, but
may contain knowledge operators and fixpoint operators. The formulas BN CBy3v satisfy

K. Alpturer and G. Huang and R. van der Meyden

these constraints, so we may write the knowledge based program for SBA in MCK’s input
language. An example of an MCK script providing a synthesis input for the SBA problem
(for the FloodSet information exchange described below) is given in Appendix A.

Theoretical results of [18] imply that for the clock semantics, knowledge based programs,
subject to the constrains imposed by MCK, have a unique implementation. MCK’s synthesis
algorithms automatically compute the predicates on the agent’s local states that, when
substituted for the template variables, yields the concrete protocol that implements the
knowledge based program. Both model checking and synthesis algorithms in MCK are
implemented using Order Binary Decision Diagram techniques [11].

8 Information Exchange Protocols for SBA

We now describe the information exchange protocols that we have modelled in MCK, and with
respect to which we have conducted an evaluation of MCK for model checking and synthesis
from knowledge based programs. The present section describes information exchanges we
have considered for the SBA problem, the next section considers information exchanges
for EBA. In the present version of the paper, we report results for the crash and sending
omissions failures model.In the following, n denotes the number of agents in a scenario, and
t denotes the maximum number of these agents that may crash during the running of the
protocol (so t < n). It is well-known that in some runs, a decision cannot be made before
round t + 1, so protocols often defer a decision to that round.

As protocols are usually modelled, decisions in round ¢ + ‘1 are made after all the messages
from that round have been received. In our modelling, to determine an agent’s knowledge at
the end of a round, we capture an agent’s state at the end of round m as the state at time
m, so the decision would be made in round ¢ + 2, as a function of knowledge computed at
time ¢ + 1. We are interested in determining the earliest possible decision time in each run,
given the information being exchanged by the protocol.

8.1 FloodSet Protocol

The FloodSet protocol is described in Section 6.2.1 of Lynch’s text Distributed Algorithms
[31] (simplifying ideas from other protocols in the literature). Each agent maintains a set
of values that it has seen. Initially, each agent will only have seen its own initial value. In
each round, each non-faulty agent broadcasts the set of all values that they have historically
seen, and updates their set of values by adding all of the values in messages received in the
current round. A decision is made on the lowest value received by the end of round ¢ + 1.

In our modelling, the local state of agent ¢ has the form (w, time), consisting of an array
w : V — Bool indicating which values have been seen, and the current time time (number
of rounds executed). Based on the presentation in [31], one expects that the earliest time
at which the condition B CBy3v holds for some value v is ¢t + 1. Our model checking
experiments automatically identify a situation in which this false in some runs. For example,
it is not true in the case of n =3 and ¢t = 2.

We have conducted a theoretical analysis which shows that in the case t > n — 1, the common
knowledge condition BN CBy3v holds for some value v already at time n — 1, so a decision
can be made earlier. This results in a revised hypothesis for the earliest time at which the

XX:11

XX:12

Model Checking and Synthesis for Consensus

condition BYN CBxJv holds with respect to this information exchange, namely
t>n—1Atime=n—1)V({E<n—1Atime=t+1) (2)

The model checking experiments we have conducted support this hypothesis: it is reported
as true in all the instances we were able to check.!

When we apply MCK to automatically synthesize an implementation of the knowledge based
program P, we find that it synthesizes a decision condition that is equivalent to condition (2)
in all the cases we were able to check. (The appendix gives an example of an MCK synthesis
script and the result produced by the model checker.)

8.2 Counting the number of crashed agents

A number of variants of the information exchange in the FloodSet protocol are described by
Castanieda et al. [13], in a study of a range of early stopping conditions. The specification
considered in that paper is for Eventual Byzantine Agreement (EBA) — we consider
the information exchange instead for the simultaneous specification SBA to determine
its usefulness in that case.

One of these variants sends the same messages as in the floodset protocol, but has each
agents also keep a count of the number of agents that it knows have actually crashed. Since
a message is broadcast in each round, for a pair of agents 7 and j, if agent i does not receive
a message from agent j in a round, then i knows that j has crashed. Each agent maintains
a variable count that is updated in each round to be the number of messages received by
the agent in the round. An agent is treated as sending itself a message in each round. An
agent’s local state in this model has the form (w, count, time), where w and time are as in
the FloodSet model.

In view of the conclusions above about the FloodSet information exchange, a reasonable
null hypothesis is that condition (2) captures the earliest time at which BY CBx3v holds for
some v, so that a decision can be made. Model checking shows this to be false, indicating
that that this information exchange protocol gives the agents extra information that allows
an earlier stopping time.

Plainly, if count < 1 (something that is possible only if ¢ > n — 1), then this implies that
at most one message has been received by the agent. Since the agent always receives their
own message, this implies that every other agent must have crashed and so, it is safe to
make a decision at the current round. Correspondingly, when just one agent remains, there
is common knowledge amongst the nonfaulty agents reduces to that agent’s own knowledge,
and common knowledge of a value necessarily holds. This gives an immediate early exit
condition: count < 1.

For this model, both our model checking and synthesis experiments confirm that the earliest
time at which the common knowledge condition for SBA holds is when

count <1V (t>n—1Atime=t)V({Et<n—1Atime=1t+1) (3)

L We have developed a theoretical proof that this condition captures, for all n and t, the earliest time
at which the common knowledge condition is satisfied for the FloodSet protocol [5]. Although, to
our knowledge, the result has not been stated in this precise form in the literature, we note that a
construction in [16] shows that a protocol that is correct for up to t' = n — 2 crashes can be transformed
into one that is correct for up to ¢ = n crashes. The effect of this construction is a protocol that stops
at time ¢’ + 1 = n — 1 in this case.

K. Alpturer and G. Huang and R. van der Meyden

In particular, even condition count < 2 does not suffice to enable a decision unless the
FloodSet condition (2) holds.

Model checking and synthesis can give information only about small numbers n of agents,
but we have subsequently validated this result for general n using a theoretical analysis [5].

8.3 Diff: Memory of Count

A further protocol P considered by by Castafieda et al. [13], makes use of not just a count
of the number of messages received, but also remembers the value of this variable from the
round before the last. It is shown that the difference between these values can be used to
give an earlier stopping condition for EBA than that obtained by using a count alone. We
have also modelled this information exchange. The only modification required to the model
for the single count is to add another variable for the earlier round count and to assign the
count value to this variable at the start of each round, before determining the number of
messages received in the current round.

While for the EBA problem, [13] show that for the crash failures model, the difference
between the most recent count of messages received and the previous value of this variable
allows early decisions to be made, in our model checking experiments for this information
exchange and failure model, we did not find a condition allowing a decision for the SBA
problem that is stronger than that for the version with just a single count variable, as in the
previous subsection. We have subsequently validated this result using a theoretical analysis
for the general case of an arbitrary number of agents [5].

8.4 Dwork-Moses

Finally, we have modelled the protocol derived by Dwork and Moses [17] as a result of an
analysis of common knowledge in the full-information protocol. (The protocol is presented in
Fig. 2 of that paper.) This protocol works for the set of decision values {0, 1}, In this model,
we do not attempt to represent the full-information state; rather, we represent just the
variables of the protocol of Dwork and Moses. These consist of variables F, NF, RF', which
are sets of agents, representing the set of agents known to be faulty, the set of agents newly
discovered by the agent to be faulty, and the set of faulty agents that the agent has heard
about from other agents. Each agent also maintains a variable existsO representing whether
it is aware that some agent has initial value 0. In each round, the protocol broadcasts the
pair (NF,exists0). There is also an integer variable current_waste that represents the
agent’s estimate of the number of rounds that have been wasted in the current run, where a
round is wasted if more than one agent crashes in the round.

Intuitively, the amount of waste can be used to determine that there has been a clean round,
meaning a round in which no new failures were detected. After a clean round, all nonfaulty
agents have received the same set of values, so are guaranteed to make the same same
decision on the least value received. However, to guarantee a simultaneous decision, they
must still wait until the existence of a clean round is common knowledge. The condition
current_waste # ¢t + 1 — time is used to detect the point at which the existence of a clean
round is common knowledge.

XX:13

XX:14 Model Checking and Synthesis for Consensus

9 Information Exchanges for Eventual Byzantine Agreement

For the EBA problem, Alpturer et al. [6] discuss two information exchanges £ that satisfy
the constraint under which implementations of the knowledge based program P° are optimal
EBA protocols with respect to £.

We describe these exchanges £°%%¢ and £™" in the present section.

9.1 Information Exchange £™"

In the information exchange £, agent i’s local state is a tuple (time;, init;, decided;, jd,),
where time; is the time, init; is the agent’s initial value, decided; records whether the agent
has decided, and jd,, intuitively, records either a value that the agent has heard that some
agent has just decided, or L. When the agent decides a value v, it sends a message comprised
just of the value v to all agents. Otherwise, it sends no message. When such a value 0 is
received by agent 4, it sets the value of the variable jd, to 0, otherwise, if a message 1 is
received, it sets the value of the variable jd; to 1, otherwise the value of this variable is L.

An implementation of P? with respect to this information exchange is straightforward. Agent
1 waits until either init;, = 0 or jd;, = 0, and decides 0 if this becomes true before time ¢ + 1.
Otherwise, at time ¢ + 1, the agent decides 1.

9.2 Information Exchange £

gbasic i an extension of £™™ in which agent i’s local state is

The information exchange
a tuple (time;, init;, decided;, jd;, numl1), where time; is the time, init; is the agent’s initial
value, decided; records whether the agent has decided, jd,; again, records either a value that
the agent has just heard that some agent has just decided, or L. The additional variable
numl records a number. When the agent decides a value v, it sends a message comprised
just of the value v to all agents. Otherwise, if it has initial value 1, it sends the message
(énit, 1), or if it has initial value 0, it sends no message. When such a value 0 is received by
agent 4, it sets the value of the variable jd, to 0, otherwise the value of this variable is L. In
each round, the variable numl; is set to the number of messages of the form (init,1) that

the agent has received in the last round.

It is shown in [6] that this enables an early stopping condition for the EBA problem. An
implementation of the knowledge based program has agent i deciding 0 when either init; = 0
or jd; = 0. The agent decides 1 when either numi; > n — time; or jd;, = 1.

10 Model Checking and Synthesis Performance Results

The running times of our model checking and synthesis experiments are reported in this
section. Our experiments were conducted on a machine with 3.7 GHz 6-core Intel Core i5
with 256 KB L2 cache, 9 MB L3 cache and 32 GB memory. (This machine is multicore,
but the present version of MCK runs in a single core.) The timeout TO for long running
computations was taken to be 10 minutes. (This was selected to obtain a reasonable runtime
for our final full experimental run. In our early testing, a few additional cases terminated
within 5 hours, but many TO entries in the tables below ran for as much as 2 days without
termination.)

K. Alpturer and G. Huang and R. van der Meyden

10.1 Results for SBA

The following table shows the time required to execute the floodset and count floodset
protocols on n agents, ¢ maximum failures, and the number of values fixed at v = 2.

floodset protocol count floodset protocol
n t model checking synthesis model checking synthesis
2 1 0m0.069 0m0.239 0m0.085 0m0.336
2 2 0m0.085 0m0.344 0m0.097 0m0.569
3 1 0m0.150 0m0.587 0m0.292 0m1.245
3 2 0m0.228 Om1.011 0m0.407 0m2.401
3 3 0m0.278 0m1.408 0m0.538 0m4.511
4 1 0m0.672 0m2.706 0mb5.274 0m24.263
4 2 0m2.122 0m8.164 0m23.328 2m0.892
4 3 0m2.264 1m9.663 0m23.059 TO
4 4 0m3.333 5m40.488 0m27.705 TO
5 1 0m6.214 0m25.784 TO TO
5 2 0m34.635 2m42.015 TO TO
5 3 0m41.724 TO TO TO
5 4 1m8.150 TO TO TO
5 5 1m12.180 TO TO TO
6 1 1m12.863 TO TO TO
6 2 TO TO TO TO

Table 1 Running times for number of agents n, mazximum number of faulty agents t

From these results, we see that adding even a single count variable has a significant impact
on performance, with model checking and synthesis of the counting version of floodset scaling
less well, and timing out at a smaller numbers of agents. Synthesis is more complex than
model checking. A similar poor performance is therefore expected for the even more complex
Differential Protocol and the Dwork-Moses protocols. To determine the impact of the number
of rounds on the performance, we have considered versions in which fewer than the required
t + 1 rounds are executed. The results for model checking are given in Table 2.

XX:15

XX:16 Model Checking and Synthesis for Consensus

differential protocol Dwork and Moses
n t mno. rounds time no. rounds time
2 1 1 0m0.098 0m0.490
2 1 2 0m0.104 0m0.576
2 2 1 0Om0.110 0m0.490
2 2 2 0m0.116 0m0.574
2 2 3 0m0.114 0m0.637
3 1 1 4m18.072 TO
3 1 2 5m4.243 TO
3 2 1 4m17.531 TO
3 2 2 4m27.026 TO
3 2 3 4m27.951 TO
3 3 1 4m23.998 TO
3 3 2 4m23.384 TO
3 3 3 4m28.896 TO
3 3 4 4m24.074 TO
4 1 1 TO TO

Table 2 Running times for model checking SBA, Diff and Dwork Moses protocols.

We see that adding the additional “previous count” variable to the count floodset model
results in model checking scaling less well, with models with one fewer agent terminating
within the timeout. However, the number of rounds appears to have a minimal impact on
the performance.

10.2 Performance Results for EBA

In the case of EBA, we report just the results for synthesis. The optimality result of [6] for
the knowledge based program PP applies to the sending omissions model, but this includes
the crash failures model. We have therefore modelled both failures models.

gmin gbasic
n t crash omissions crash omissions
2 1 0m0.413 0mO0.336 0m1.478 0m1.245
2 2 0m0.623 0m0.408 0m3.651 0m4.976
3 1 0m31.219 0m11.371 TO TO
3 2 2m43.594 0m14.046 TO TO
3 3 2mb58.142 1m6.735 TO TO
4 1 TO TO TO TO

Table 3 Running times for EBA synthesis

K. Alpturer and G. Huang and R. van der Meyden

Table 3 gives the performance results for synthesis. It appears that, even though the knowledge
based program P° does not involve common knowledge operators, the performance scales
less well than in the SBA case. Whereas for SBA, the FloodSet information exchange scaled
to examples with 5 agents, in the case of EBA, the similar information exchange £™"
scales to just 4 agents before the blowup in computation time. The performance for the
information exchange £™" is worse. This is expected because, like the Count information
exchange considered for SBA, this protocol has a additional variable that counts the number
of messages received by an agent.

We have also modelled receiving omissions and general omissions, and the performance results
obtained are similar, with successful computations in the same cases.

11 Related Work

Knowledge based analyses of consensus protocols have generally focussed on full-information
protocols, yielding theoretically optimal, but not necessarily practical implementations
[17, 22, 32, 33]. Alpturer, Halpern and van der Meyden [6] have previously considered the
knowledge based analysis of consensus protocols and optimality with respect to limited
information exchange. However, the focus of that paper is on Eventual Byzantine Agreement,
where agents do not need to decide simultaneously. The theory underlying knowledge based

programs and the existence of their implementations that we draw upon is developed in [18].

Automated synthesis of concurrent systems is an established area with its own workshops [35].

In general the focus is on synthesis of protocols from temporal specifications; early works in
this area are [1, 2, 7, 8]. This approach does not guarantee optimality of the resulting protocol
in the way that implementing a knowledge based program is able to achieve. There exists
some work on synthesis from epistemic specifications [10, 21, 29] but in general, the focus
is on specifications about a single agent’s knowledge, rather than than forms of knowledge
involving multiple agents, like the common knowledge condition that use in the present

paper.

A number of epistemic model checkers exist [19, 30, 15], but MCK remains the only such

system to address the automated synthesis of implementations of knowledge based programs.

Of the range of problems that have been studied using epistemic model checking, closest
to the SBA problem we consider here is a work by Al-Bateineh and Reynolds [3] that the

considers Byzantine Atomic Commitment problem. Synthesis is not attempted in this work.

12 Conclusion

In this paper, we have investigated the application of epistemic model checking and synthesis
simultaneous and eventual versions of Byzantine Agreement. We have shown that this
technique, at least on some small examples, is able to automatically identify situations
where the information being exchanged in a protocol provides an opportunity to make a
decision earlier than in the protocol as originally designed, leading to implementations that
are optimal relative to that information exchange.

One disappointing aspect of our results is that both model checking and synthesis time out
at a low number of agents, with a dramatic blowup of performance at the threshold. To some
extent, a blowup is expected, since the information exchanges we have considered inherently
involve n(n — 1) messages per round. The model checking algorithms that we use for this

XX:17

XX:18

Model Checking and Synthesis for Consensus

exercise use Binary Decision Diagrams, which tend to scale to models involving just 100-200
variables in the boolean representation.

Temporal model checking usually scales better using SAT-based bounded model checking
techniques, but because we need to check a complex common knowledge fixpoint, and
negative occurrences of knowledge operators, this technique cannot be applied to our problem.
However, we remark that we are able to model check the purely temporal specification of
SBA using MCK’s SAT-based model checking, with significantly better scaling. For example,
model checking the SBA specification on the n = 5, ¢ = 4 model of the Dwork-Moses protocol
takes just 2 minutes 5 seconds.

Nevertheless, our results demonstrate in principle feasibility, and motivate future research
aimed at improving upon the benchmarks for epistemic model checking and synthesis set in
our experiments.

Various directions for future work suggest themselves from this. One is to consider consensus
protocols with linear messaging - conceivably, the BDD blowup experienced in the present
study will be ameliorated in such protocols. Another is to develop alternate epistemic model
checking and synthesis algorithms that scale better on these examples. Of particular interest
would be parametric epistemic model checking and synthesis techniques that address the issue
of inherent quadratic scaling of the model checking inputs. As we have written generators
for arbitrary size models, one of the outcomes is a set of challenge problems for work on
epistemic model checkers.

—— References

1 M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent program
specifications. In Proc. 16th Int. Colloquium on Automata, Languages and Programming,
volume 372, pages 1-17. Lecture Notes in Computer Science, Springer-Verlag, July 1989.

2 F. Afrati, C. Papadimitriou, and G. Papageorgiou. The synthesis of communication protocols.
In PODC ’86: Proc. 5th ACM symposium on Principles of Distributed Computing, pages
263-271, 1986.

3 Omar I. Al-Bataineh and Mark Reynolds. Epistemic model checking of distributed commit
protocols with byzantine faults. In Stefania Gnesi, Nico Plat, Nancy A. Day, and Matteo
Rossi, editors, Proceedings of the 7th International Workshop on Formal Methods in Software
Engineering, FormaliSEQICSE 2019, Montreal, QC, Canada, May 27, 2019, pages 51-60.
IEEE / ACM, 2019. URL: https://doi.org/10.1109/FormaliSE.2019.00014, doi:10.1109/
FORMALISE.2019.00014.

4 Omar I. Al-Bataineh and Ron van der Meyden. Epistemic model checking for knowledge-based
program implementation: An application to anonymous broadcast. In Proc. SecureComm,
pages 429-447, 2010.

5 K. Alpturer, R. avn der Meyden, S. Ruj, and G. Wong. Optimality of simultaneous byzantine
agreement with limited information exchange. submitted for publication, 2024.

6 Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden. Optimal eventual byzantine
agreement protocols with omission failures. In Proc. ACM Symp. on Principles of Distributed
Computing, PODC, pages 244-252. ACM, 2023. doi:10.1145/3583668.3594573.

7 A. Anuchitanukul and Z. Manna. Realizability and synthesis of reactive modules. In Computer-
Aided Verification, Proc. 6th Int’l Conference, pages 156-169, Stanford, California, June 1994.
Springer-Verlag, Lecture Notes in Computer Science 818.

https://doi.org/10.1109/FormaliSE.2019.00014
https://doi.org/10.1109/FORMALISE.2019.00014
https://doi.org/10.1109/FORMALISE.2019.00014
https://doi.org/10.1145/3583668.3594573

K. Alpturer and G. Huang and R. van der Meyden

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

P. C. Attie and E.A. Emerson. Synthesis of concurrent systems with many similar sequential
processes. In Proc. 16th ACM Symposium on Principles of Programming Languages, pages
191-201, Austin, January 1989.

Kai Baukus and Ron van der Meyden. A knowledge based analysis of cache coherence. In
Proc. ICFEM, pages 99-114, 2004.

S. Bensalem, D. Peled, and J. Sifakis. Knowledge based scheduling of distributed systems. In
Time for Verification, Essays in Memory of Amir Pnueli, volume 6200 of Lecture Notes in
Computer Science, pages 26—41. Springer, 2010.

J. R. Burch, E. M. Clarke, D. L. Dill, J. Hwang, and K. L. McMillan. Symbolic model checking:
10%° states and beyond. Information and Computation, 98(2):142-171, 1992.

A. Castafieda, Y. A. Gonczorowski, and Y. Moses. Unbeatable consensus. In Proc. 28th
International Conference on Distributed Computing (DISC 1), pages 91-106, 2014.

Armando Castafieda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early decision and
stopping in synchronous consensus: A predicate-based guided tour. In Networked Systems
- 5th International Conference, NETYS 2017, Proc., pages 206-221, 2017. doi:10.1007/
978-3-319-59647-1_16.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

P. Dembinski, A. Janowska, P. Janowski, W. Penczek, A. Pélrola, M. Szreter, B. Wozna, and
A. Zbrzezny. Verics: A tool for verifying timed automata and Estelle specifications. In Proc.
Conf. Tools and Algorithms for the Construction and Analysis of Systems, pages 278283,
2003.

Danny Dolev, Riidiger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. J. ACM, 37(4):720-741, 1990.

C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environment:
crash failures. Information and Computation, 88(2):156-186, 1990.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge. The MIT
Press, 1995.

P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In Rajeev
Alur and Doron Peled, editors, Proc. Conf. on Computer Aided Verification (CAV), volume
3114 of LNCS, pages 479-483. Springer, 2004.

MCK User Manual. Available from http://wuw.cse.unsw.edu.au/~mck.

Susanne Graf, Doron Peled, and Sophie Quinton. Achieving distributed control through model
checking. Formal Methods in System Design, 40(2):263-281, 2012.

Joseph Y. Halpern, Yoram Moses, and Orli Waarts. A characterization of eventual byzantine
agreement. SIAM J. Comput., 31(3):838-865, 2001.

X. Huang and R. van der Meyden. Symbolic synthesis of knowledge-based program
implementations with synchronous semantics. In Proc. TARK, pages 121-130, 2013.

X. Huang and R. van der Meyden. Symbolic synthesis for epistemic specifications with
observational semantics. In Proc. Tools and Algorithms for the Construction and Analysis of
Systems, TACAS, pages 455-469, 2014. doi:10.1007/978-3-642-54862-8_39.

Xiaowei Huang, Patrick Maupin, and Ron van der Meyden. Model checking knowledge in
pursuit evasion games. In Proc. IJCAI pages 240-245, 2011.

XX:19

https://doi.org/10.1007/978-3-319-59647-1_16
https://doi.org/10.1007/978-3-319-59647-1_16
http://www.cse.unsw.edu.au/~mck
https://doi.org/10.1007/978-3-642-54862-8_39

XX:20 Model Checking and Synthesis for Consensus

26

27

28

29

30

31
32

33

34

35
36

37

38

Xiaowei Huang and Ron van der Meyden. Symbolic synthesis of knowledge-based program
implementations with synchronous semantics. In Proc. TARK, 2013.

Xiaowei Huang and Ron van der Meyden. Symbolic synthesis for epistemic specifications with
observational semantics. In Proc. TACAS, pages 455-469, 2014.

Xiaowei Huang and Ron van der Meyden. The complexity of approximations for epistemic
synthesis (extended abstract). In Proc. Workshop on Synthesis, SYNT, pages 120-137, 2015.

Gal Katz, Doron Peled, and Sven Schewe. Synthesis of distributed control through knowledge
accumulation. In Proc. Int. Conf on Computer Aided Verification, pages 510-525, 2011.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of
multi-agent systems. In Ahmed Bouajjani and Oded Maler, editors, Proc. Conf. on Computer
Aided Verification (CAV), volume 5643 of Lecture Notes in Computer Science, pages 682-688.
Springer, 2009.

N. Lynch. Distributed Algorithms. MIT Press, 1996.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common knowledge.
Algorithmica, 3:121-169, 1988. doi:10.1007/BF01762112.

Yoram Moses. Optimum simultaneous consensus for general omissions is equivalent to an NP
oracle. In Idit Keidar, editor, Proc. Distributed Computing, 23rd International Symposium,
DISC 2009, volume 5805 of Lecture Notes in Computer Science, pages 436-448. Springer, 2009.
doi:10.1007/978-3-642-04355-0_45.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228-234, 1980.

Synt workshop series. https://cgi.csc.liv.ac.uk/~sven/synt/, 2012-2023.

R. van der Meyden. Optimal simultaneous byzantine agreement, common knowledge and
limited information exchange. manuscript, 2024.

Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proc. CSFW, pages 280-291, 2004.

M. Y. Vardi. A temporal fixpoint calculus. In POPL, 1988.

A An example of an MCK Synthesis Script

The following is an example of an MCK synthesis script for the FloodSet protocol, for n = 3
agents, ¢ = 1 possible failures, and k = 2 values.

The script begins with a statement selecting the semantics for knowledge to be used in the

synthesis process. We used the clock semantics clk in order to ensure that there is a unique

implementation of the knowledge based program. In this semantics, an agent’s local state

consists just of the variables it observes, as well as the clock value (number of rounds). This

is followed by a declaration of some enumerated types, and a declaration of variables in

the environment of the agents. For efficiency of the model, we have chosen to model the

information exchange protocol, including the way that local states are updated, as part of
the environment, rather than in the agents’ protocol section.

KBP_semantics = clk

type Crash_Status = {ALIVE, CRASHING, CRASHED}

https://doi.org/10.1007/BF01762112
https://doi.org/10.1007/978-3-642-04355-0_45
https://cgi.csc.liv.ac.uk/~sven/synt/

K. Alpturer and G. Huang and R. van der Meyden

type Time = {0..3}
type Values = {0..1}

vote : Values[Agent]

time : Time

w: Bool[Agent] [Values]

--old_w stores walue of w at the start of a transition
0ld_w: Bool[Agent] [Values]

status : Crash_Status[Agent]

max_crashed : Time

crashed : Time

The variable vote is an array of values indexed by agents; vote[i] represents the initial
preference of agent i. Next, the init cond statement gives a formula that constrains the
possible initial values of these variables.

init_cond =

time == 0 /\ max_crashed == 1 /\ crashed == 0 /\

Forall i:Agent (Forall v:Values ((w[il[v] <=> vote[il == v) /\ neg
— old_wlil [v])) /\

Forall i:Agent (status[i] == ALIVE)

This is followed by a declaration of the three agents in the system, indicating (in quotes)
which protocol each runs, and the binding of the parameters of the protocol to variables in
the environment.

agent DO "decider" (status[DO],time,w[DO])
agent D1 "decider" (status[D1],time,w[D1])
agent D2 "decider" (status[D2],time,w[D2])

Next, we have a transitions statement giving code describing how the environment variables
are updated in each round. The statement form [[var | formula(var,var')]] is a
refinement calculus/TLA action style statement, meaning that var are the only variables that
may change when this statement runs, and its effect is such that the new values var' after

its execution are related to the values var at the start of the execution by the given formula.

This statement allows nondeterminism to be represented. Similarly, the if construct is
a Dijkstra style nondeterministic guarded statement. If more than one guard holds, any
corresponding branch may be taken. An example of this is when status[j] = CRASHING,
when either agent j’s message maybe either delivered (updating w[i]), or not (by choosing
the skip branch).

transitions
begin
if time < 2 -> begin
-- make a copy, the wvalues to be transmitted
[[old_w | Forall i:Agent (Forall v:Values (old_wl[i][v]' <=> w[i][v]))
- 11;
-— select the agents that crash, keeping the total number crashed at most
-~ mazx_crashed
for i in Agent do
begin

XX:21

XX:22 Model Checking and Synthesis for Consensus

[[status[i] |status[i]' in {ALIVE, CRASHING, CRASHED} /\

(status[i]' == CRASHING => crashed < max_crashed) /\
(status[i] == CRASHED <=> status[i]' == CRASHED)]];
if status[i] == CRASHING then crashed := crashed + 1 else skip

end ;
for i in Agent do

for j in Agent do

if status[j] in {ALIVE, CRASHING} ->
for v in Values do w([i][v] := w([il[v] \/ old_w[j] [v]
[1 status[j] in {CRASHING, CRASHED} -> skip
fi;

for i in Agent do if status[i] == CRASHING -> status[i] := CRASHED fi
end fi ;
-— wipe out the old values, to remove correlations in the BDD
[[old_w | Forall i:Agent (Forall v:Values (neg old_wl[il[v]')) 1];
time := time + 1
end

The following are the formulas that we verify after synthesis has been performed. These
include formulas for the temporal specification for SBA, as well as epistemic formulas that
capture the situations in which the agent has common knowledge. The temporal operators
used here are from the branching time logic CTL. The operator A represents “on all branches”,
the operator G means “at all future times”, X means “at the next moment of time” (after
the next round) and exponentiation is used to repeat an operator a give number of times.
The keyword “spec_ obs” indicates that the observational semantics should be used to
interpret the knowledge operators, but since the time is one of the observable variables, this
is equivalent to the clock semantics.

spec_obs =
"Agreement: no conflicting decisions by non-failed agents"
AG (Forall i:Agent:"decider" (Forall j:Agent:"decider" (
(status[i] /= CRASHED /\ i.decided /\
status[j] /= CRASHED /\ j.decided) =>
(i.decision == j.decision))))

spec_obs = "Uniform Agreement: all agents that decide agree"
AG (Forall i: Agent:"decider" (Forall j:Agent:"decider" (
(i.decided /\ j.decided) => (i.decision == j.decision))))

spec_obs =
"Strong Validity: any decision value is the initial vote of some agent"
AX"3 (Forall i:Agent:"decider" (Forall v:Values (
(i.decision == v /\ i.decided) => Exists j:Agent (vote[j]l == v))))

spec_obs =
"Termination: all nonfaulty agents eventually decide"

AX~3 (Forall i:Agent:'"decider" (status[i] == ALIVE => i.decided))

spec_obs =

K. Alpturer and G. Huang and R. van der Meyden XX:23

"agent DO's knowledge test for deciding DO never holds at time 1"
AX~1 neg Knows DO (status[DO] == ALIVE =>
(gfp _X (Forall i:Agent (status[i] == ALIVE
(Knows i (status[i] == ALIVE =>
((Exists j:Agent (vote[jl == 0)) /\ _X)))))))

Il
\4

spec_obs =
"at time 2, agent DO's knowledge test for deciding O is equivalent to
— the test used by agent DO"
AX"2 (DO.values_received[0] <=> Knows DO (status[DO] == ALIVE =>
(gfp _X (Forall i:Agent (status[i] == ALIVE =>
(Knows i (status[i] == ALIVE =>
((Exists j:Agent (vote[j]l == 0)) /\ _X D))

Finally, we have the knowledge based program run by the agents. The variables in the
parameters of the protocol are aliased to environment variables in the agent declarations
above. Variables that are declared observable make up the agent’s local state for purposes
of determining what an agent knows. Variables declared template are boolean variables that
correspond to “holes” in the protocol that are to be filled by the synthesizer. These variables
occur in conditions in the conditional statements in the protocol code. The define statements
are macros defining some abbreviations. These are used in the require statements, which
state properties that must be satisfied by the concrete predicates over the observable variables
that are constructed by the synthesizer. In the case of this knowledge based program, these
properties state that each template variable is equivalent to the agent’s knowledge that there
is common knowledge amongst the nonfailed (status = ALIVE) agents. The operator X in
these formulas is the linear temporal logic “at the next time” operator.

protocol "decider"(status: Crash_Status,
time: observable Time,
values_received : observable Bool[Values])

decision : Values
decided : Bool

0 : template
1 : template
0 : template
1 : template

init_cond = neg decided

define someone_voted0 = Env.vote[DO] == 0 \/ Env.vote[D1] == 0 \/
< Env.vote[D2] ==
define someone_votedl = Env.vote[DO] == 1 \/ Env.vote[D1] == 1 \/

< Env.vote[D2] ==

XX:24

Model Checking and Synthesis for Consensus

define decide_condition0 = Knows Self (status == ALIVE => (gfp _X (
Forall i:Agent:"decider" (i.status == ALIVE => Knows i (i.status ==
< ALIVE => someone_voted0 /\ _X)))))

define decide_conditionl = Knows Self (status == ALIVE => (gfp _X (
Forall i:Agent:"decider" (i.status == ALIVE => Knows i (i.status ==
— ALIVE => someone votedl /\ _X)))))

require = X"1(c_1_0 <=> decide_condition0)

require = X" 1(c_1_1 <=> decide_conditionl)

require = X" 2(c_2_0 <=> decide_conditionO)

require = X"2(c_2_1 <=> decide_conditionl)

begin

skip;

if (status /= CRASHED /\ neg decided) ->

if ¢_1_0 then <| decision := 0; decided := True |> else
if c¢_1_1 then <| decision := 1; decided := True |> else
skip

fi

’

if (status /= CRASHED /\ neg decided) ->

if ¢_2_0 then <| decision := 0; decided := True |> else
if ¢_2_1 then <| decision := 1; decided := True |> else
skip

fi

end

When MCK runs on this input script, it synthesizes predicates over the observable variables
for each of the template variables, and replaces the template variable statements by the
following definition statements. These statements contain a disjunct for each agent that is
running the knowledge based program. In general, the synthesis result can be different for
each agent, but because the present situation is symmetric, the same predicate is synthesized

for each agent.

define c_1 0 =
((Self == DO) /\ False) \/
(((Self == D1) /\ False) \/
((Self == D2) /\ False))

define c_1_1

((Self == DO) /\ False) \/
(((Self == D1) /\ False) \/
((Self == D2) /\ False))

define c_2_0
((Self == DO) /\ ((time == 2) /\ values_received[0])) \/
(((Self == D1) /\ ((time == 2) /\ values_received[0])) \/

K. Alpturer and G. Huang and R. van der Meyden XX:25

((Self == D2) /\ ((time == 2) /\ values_received[0])))

define c_2_1 =
((Self == DO) /\ ((time == 2) /\ values_received[1])) \/
(((Self == D1) /\ ((time == 2) /\ values_received[1])) \/
((Self == D2) /\ ((time == 2) /\ values_received[1])))

We see that MCK has calculated that there is not common knowledge of either value at time
1, and that at time 2, an agent has common knowledge that some agent ¢ had an initial value
of v e {0,1} iff values received|v] holds. (This local variable is an alias for the variable
w[i][v] in the environment.) As a result, the formulas above are all evaluated to hold by the
model checker for the concrete program produced by the synthesis process.

	1 Introduction
	2 Semantic Model
	3 Communication and Failure Models
	4 Specifications
	5 Knowledge-Based Program - Simultaneous Byzantine Agreement
	6 Knowledge Based Program - Eventual Byzantine Agreement
	7 The Model Checker MCK
	8 Information Exchange Protocols for SBA
	8.1 FloodSet Protocol
	8.2 Counting the number of crashed agents
	8.3 Diff: Memory of Count
	8.4 Dwork-Moses

	9 Information Exchanges for Eventual Byzantine Agreement
	9.1 Information Exchange Emin
	9.2 Information Exchange Ebasic

	10 Model Checking and Synthesis Performance Results
	10.1 Results for SBA
	10.2 Performance Results for EBA

	11 Related Work
	12 Conclusion
	A An example of an MCK Synthesis Script

