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abstract. Local propositions arise in the context of the semantics
for logics of knowledge in multi-agent systems. A proposition is local
to an agent when it depends only on that agent’s local state. We con-
sider a logic, LLP, that extends S5, the modal logic of necessity (in
which the modality refers to truth at all worlds) by adding a quantifier
ranging over the set of all propositions and, for each agent, a propo-
sitional quantifier ranging over the agent’s local propositions. LLP
is able to express a large variety of epistemic modalities, including
knowledge, common knowledge and distributed knowledge. However,
this expressiveness comes at a cost: the logic is equivalent to second
order predicate logic when two independent agents are present [5],
hence undecidable and not axiomatizable. This paper identifies a
class of multi-agent S5 structures, hierarchical structures, in which
the agents’ information has the structure of a linear hierarchy. All
systems with just a single agent are hierarchical. It is shown that
LLP becomes decidable with respect to hierarchical systems. The
main result of the paper is the completeness of an axiomatization for
the hierarchical case.

1 Introduction

Although modal logics are most commonly studied in their propositional
forms, which may often be interpreted in first order logic, the topic of modal
logics with second order expressive power is almost as old as the field itself.
Motivated by earlier applications of quantification over propositions in the
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context of conditional logic, Kripke’s early work on the semantics of modal
logic [14] already contains an axiomatization of the logic S5 combined with
quantification over propositions.

Kripke’s assumptions concerning the range of the propositional quanti-
fiers were somewhat unnatural, however. Further progress in the area was
made in the 1960’s, with Fine, Bull, and Kaplan [8, 2, 13] establishing
axiomatizations and decidability results of several more natural variants.
Decidability of S5 plus propositional quantification can be seen from the
decidability of monadic second order logic [1].

The above works consider logics with a single modality. Motivated by
applications of the logic of knowledge in distributed systems [10], Engel-
hardt, van der Meyden, and Moses [5] consider propositional quantification
in a multi-modal S5 setting. A natural notion in this setting is that of local
propositions. Local propositions arise in the context of the semantics for
logics of knowledge in distributed systems due to Halpern and Moses [10].
In this semantics, each agent in a system has in each configuration of the
system a local state, representing the information it has about the global
state of the system and its history. A proposition is local for the agent when
it is a function of this local state.

Engelhardt, van der Meyden, and Moses [5] show that S5 (with the modal-
ity interpreted as truth in all possible worlds) when combined with quantifi-
cation over local propositions provides a framework that is able to express a
large variety of epistemic modalities, including knowledge, common knowl-
edge, and distributed knowledge [6].

In the most general case, in which more than one independent agent
is involved, the logic obtained by adding local propositional quantifiers to
S5 is highly undecidable [5], (indeed, equivalent to second order predicate
logic) hence this logic is also not axiomatizable. After introducing syntax
and semantics of this logic in Sect. 2, we identify a natural restriction on
the semantic structures, expressing that the agents’ information has the
structure of a linear hierarchy, with respect to which the logic is decidable
even in the multi-agent case. The single agent case satisfies this condition. A
practical example in which hierarchical structures arise is information-based
models for computer security, which frequently assume a linear hierarchy
of secrecy levels [4]. We provide an axiomatization for the hierarchical case
in Sect. 3. Bounded model property, decidability, and completeness follow
from a normal form result presented in Sect. 4. Sect. 5 concludes and
indicates directions for future work.
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2 Syntax and Semantics

We deal with a class of Kripke structures suited to a multi-modal logic,
of the kind used in the literature on reasoning about knowledge [6]. Let
Prop be an infinite set of propositional variables. A Kripke structure for n
agents M = (W,R1, . . . , Rn, π) consists of a setW of possible worlds, binary
accessibility relationsR1, . . . , Rn ⊆W 2, and an assignment π : Prop −→ 2W

of propositions to the propositional variables. Each relation Ri represents
the information available to agent i. Intuitively, uRi v for two worlds u and
v when, from agent i’s point of view, these worlds are indistinguishable.
As is usual in the literature on knowledge, we assume that the accessibility
relations Ri are equivalence relations. Structures satisfying this restriction
are called S5n structures.

A proposition in such a structure is a subset of the set of worlds W ,
intuitively, just the worlds where the proposition is true. We will be con-
cerned with a special class of propositions. For each agent i, a proposition
is called i-local if it is a union of Ri-equivalence classes. Intuitively, the
i-local propositions are those that depend only upon agent i’s information.
Agent i can always determine whether a given i-local proposition is true.

While the class of S5n structures is standard, the language we consider
is not the usual one from the knowledge literature. Write p for a typical
element of Prop. Define the language L(∀,∀1,...,∀n,2) with typical element φ
by:

φ ::= p | ¬φ | φ ∧ φ | 2φ | ∀p (φ) | ∀ip (φ)

We employ parentheses to indicate aggregation and take true, ∨, 3, ∃p (),
and the remaining familiar connectives to be defined in the usual way. In-
tuitively, 2φ says that φ is true in all possible worlds. The formula ∀p (φ)
says that φ is true for all assignments of a proposition to the propositional
variable p. The meaning of ∀ip (φ) is similar, but here p is restricted to
range over i-local propositions.

These intuitions are made precise as follows. Another S5n structureM ′ =
(W ′, R′

1, . . . , R
′
n, π

′) is a p-variant of M (denoted M ′ 'p M) if it differs
from M at most on the interpretation of p. That is, M ′ 'p M if we have
W ′ = W , the relation R′

i = Ri for each i = 1 . . . n, and π′(q) = π(q) for
all q ∈ Prop \ {p}. If, moreover, π′(p) is i-local then M ′ is called an i-local
p-variant (denoted M ′ 'ip M). Formulas are interpreted at a world w of
a structure M by means of the satisfaction relation |=, defined inductively
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by:

M,w |= p iff w ∈ π(p)
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= 2φ iff ∀v ∈W (M,v |= φ)
M,w |= ∀p (φ) iff ∀M ′ 'p M (M ′, w |= φ)

M,w |= ∀ip (φ) iff ∀M ′ 'ip M (M ′, w |= φ)

Let M be a class of Kripke structures for n agents. We say that φ is
satisfiable in M iff M,w |= φ for some M ∈ M and some possible world w
of M .

We write L(o1,...,om) for the language generated from a set Prop of proposi-
tional variables by ∨, ¬, and operators oi. Fine, Bull, and Kaplan discussed
axiomatizations of L(∀,2) [8, 2, 13] and Fine already claimed decidability.
The local propositional quantifiers were introduced in [5]. These quantifiers
are of interest because they are able to express many of the knowledge-like
notions, including common knowledge and distributed knowledge, that have
been discussed in the literature. This point is discussed at greater length
elsewhere [5]. We confine ourselves here to an illustration using the standard
knowledge operators Ki and modalities Li expressing i-locality of formulas.
The semantics of these operators is defined as follows.

M,w |= Kiφ iff ∀v ∈W (w Ri v ⇒M,v |= φ)
M,w |= Liφ iff { v ∈W | M,v |= φ } is i-local

The expressive power of L(∀,∀1,...,∀n,2) is illustrated by the fact that the
operators ∀i, Ki, and Li are interexpressible in the presence of 2 and ∀:

Kiφ ≡ ∃ip (p ∧2(p→ φ)) , provided p not free in φ (1)
Liφ ≡ ∃ip (2(p ≡ φ)) , provided p not free in φ (2)

∀ip (φ) ≡ ∀p (Lip→ φ) (3)

Note that in L(∀,∀1,...,∀n,2) one can express that the set of worlds at which
p is true is an Ri-equivalence class, which we abbreviate to Eip:

Eip ≡ 3p ∧ Lip ∧ ∀iq (3(p ∧ q) → 2(p→ q)) (4)

Unfortunately, the expressiveness of L(∀,∀1,...,∀n,2) comes at a cost. Even if
there are just two agents, satisfiability is undecidable for this language [5],
when interpreted over all S5n structures. As the use of two agents appears
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essential in this result, this motivates the consideration of two variants: (i)
the single agent case, and (ii) restricted classes of structures. We focus
in this paper on the following class that subsumes both variants. An S5n
structure (W,R1, . . . , Rn, π) is hierarchical if Ri−1 ⊆ Ri, for 1 < i ≤ n.
That is, in such structures, i-local propositions are also (i − 1)-local, and
∀i-quantification is weaker than ∀i−1-quantification. Note that every S51

structure is hierarchical, so results on hierarchical structures also apply to
the single agent case.

3 A Proof System

Our axiomatization of hierarchical L(∀,∀1,...,∀n,2) below consists of an adap-
tation of Fine’s for L(∀,2) [8]. Fine’s axiomatization consists of the following.
For the propositional basis, we have the usual axioms and inference rule:

all substitution instances of propositional tautologies PC

φ→ ψ, φ ` ψ MP

The operator 2 is interpreted as necessity, so we have the axioms and in-
ference rules of S5 for this modality:

` 2φ→ φ T2

` 3φ→ 23φ 52

` 2(φ→ ψ) → (2φ→ 2ψ) K2

φ ` 2φ RN2

For the universal quantification over propositions, we have a set of axioms
and a rule of inference that resemble closely the usual rules for predicate
logic, the main difference being that we substitute formulas where we would
substitute terms in predicate logic:

` ∀p (φ) → φ[ψ/p] , where ψ is free for p in φ 1∀
` ∀p (φ→ ψ) → (∀p (φ) → ∀p (ψ)) K∀

` φ→ ∀p (φ) , where p not free in φ N∀

φ ` ∀p (φ) G

Additionally, we have an axiom that captures the fact that the lattice of
propositions in a Kripke structure is atomic. The following axiom can be
understood as saying that the proposition p, which is true only at the current
world, is a subset of all propositions true at the current world.

` ∃p (p ∧ ∀q (q → 2(p→ q))) AT
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Fine [8] established that the above axioms are sound and complete for L(∀,2).
We note the following property of the axiomatization. Let ψ be a formula

with free variables including e and p. Let p1, p2 ∈ Prop be free for p in ψ.
The formula

∀p1 (∀p2 (2(e→ (p1 ≡ p2)) → (ψ[p1/p] ≡ ψ[p2/p])))

expresses that the truth value of ψ depends only on the values of p in e.
Then for formulas α1, . . . , αk free for e in a formula ψ we have

`

(
∀e (∀p1, p2 (2(e→ (p1 ≡ p2)) → (ψ[p1/p] ≡ ψ[p2/p])))
∧
∧
i 6=j2(¬(αi ∧ αj))

)
→ ∃p

(∧k
i=1ψ[αi/e]

) Ch

Intuitively, this formula says that if ψ depends only on the values of p in e
then we may take a set of propositions that have some desirable properties
on a finite, mutually exclusive collection of pieces e of the model (defined
by the αi), and combine these propositions into a single proposition p that
satisfies ψ on each piece e.

We now extend the axioms above to an axiomatization for L(∀,∀1,...,∀n,2).
(In this axiomatization, we take the previous axioms PC – AT to refer
to L(∀,∀1,...,∀n,2)-formulas.) We add three sets of axioms. The first set
consists of axioms relating the local propositional quantifiers to the standard
propositional quantifier. The second set concerns the hierarchy between the
local quantifiers. The final axiom generalizes the finite choice property.

For each of the universal quantification operators over i-local propositions
for 1 ≤ i ≤ n, the following axioms characterize the local quantifiers. We
use Liφ as an abbreviation for ∃ip (2(p ≡ φ)), which expresses that φ is
an i-local proposition, as noted above. The first axiom characterizes i-local
propositional quantification as the restriction of propositional quantification
to i-local propositions:

` ∀ip (φ) ≡ ∀p (Lip→ φ) Def∀i

The following axiom says that locality of a proposition is independent of
the world.

` Liφ→ 2Liφ NLi

The following is a variant of the atomicity axiom, but dealing with local
propositions.

` ∃ip (p ∧2(p→ ∀iq (q → 2(p→ q)))) ATi
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Intuitively, this axioms says that there exists an i-local proposition p which
is, at every world where p holds, the smallest i-local proposition holding at
that world. Next, we have an axiom that says that local propositions are
closed under union.

` ∀p (θ(p) → Lip) → Li(∃q (θ(q) ∧ q)) Ui

where θ(q) is some formula with free variable q. To establish the hierarchy
on the agents’ knowledge, for 1 < i ≤ n, we have the following:

` ∀p (φ) → ∀1p (φ) H∀

` ∀i−1p (φ) → ∀ip (φ) H∀i

The final axiom generalizes the finite choice property Ch noted above:

`

(
∀e (∀p1, p2 (2(e→ (p1 ≡ p2)) → (ψ[p1/p] ≡ ψ[p2/p])))
∧ ∀e, e′

(
θ ∧ θ[e′/e] → (3(e ∧ e′) → 2(e ≡ e′))

) )
→ (∀e (θ → ∃p (ψ)) → ∃p (∀e (θ → ψ)))

Choice

where θ is a formula not containing p free. The antecedent of this axiom
states that ψ depends only on the values of p in e, and that the formula θ
defines a collection of disjoint sets of worlds. The conclusion of the formula
says that if for each of these sets of worlds e there exists proposition p
making ψ true, then there is a single proposition p that makes ψ true for
all the sets e satisfying θ simultaneously. This axiom is valid if the axiom
of choice holds in our semantic meta-theory.

This axiom is also valid for L(∀,2), but does not need to be stated as part
of the axiomatization for that language because of its limited expressive
power. A difference that emerges in L(∀,∀1,...,∀n,2) is that we may take θ
to express properties such as Eie, i.e., “e is an Ri-equivalence class”, that
define an infinite collection of disjoint sets. This is not possible for L(∀,2).
(This impossibility claim follows from the completeness proof for L(∀,2),
which is given below.)

Write LLPHn for the above set of axioms and inference rules. We say that
φ is derivable, and write ` φ, when the formula φ can be derived using the
axioms and rules of inference above. The main result of the paper is the
following.1

THEOREM 1 Assume the axiom of choice holds meta-theoretically. Then
LLPHn is a sound and complete axiomatization of L(∀,∀1,...,∀n,2) with respect

1We have not investigated completeness when we do not assume the axiom of choice
semantically.



8 Kai Engelhardt, Ron van der Meyden, and Kaile Su

to hierarchical S5n structures. The language has the finite model property
with respect to these structures.

3.1 Some Theorems of LLPHn

We list some derived rules and theorems of LLPHn. We first note that a set
of axioms and a rule for the local quantifiers, corresponding to the axioms
and rule for the global propositional quantifier, can be straightforwardly
derived using Def∀i:

` ∀ip (φ) → (Liψ → φ[ψ/p]) , where ψ is free for p in φ 1∀i

` ∀ip (φ→ ψ) → (∀ip (φ) → ∀ip (ψ)) K∀i

Lip→ φ ` ∀ip (φ) Gi

` φ→ ∀ip (φ) , where p not free in φ N∀i

The Barcan formula is derivable using the same argument used to derive it
in predicate S5 [11].

` ∀p (2φ) ≡ 2∀p (φ)

Using NLi, we also obtain the Barcan formula for the i-local quantifiers.

` ∀ip (2φ) ≡ 2∀ip (φ)

We can also establish some additional properties of the locality predicate.
Using ATi and Ui, we obtain that the set of local propositions is closed
under complementation:

` Liφ→ Li¬φ Compi

Defining Kiφ as an abbreviation for ∃ip (p ∧2(p→ φ)), we can now derive
that Ki satisfies the axioms and rule of S5:

` Ki(φ→ ψ) → (Kiφ→ Kiψ) KKi

` Kiφ→ φ TKi

` ¬Kiφ→ Ki¬φ 5Ki

φ ` Kiφ NKi
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The proof of KKi
uses the fact that the local propositions are closed under

intersection, which follows from Compi and Ui. The proof of 5Ki
uses ATi.

Finally, we have some derivable formulas that express properties of Ri-
equivalence classes and their relation to local propositions:

` Eie→ 2Eie EC1

` Eie ∧ ∀e′ (2(e′ → e) ∧ Ei−1e
′ → 2(e′ → φ)) → 2(e→ φ) EC2

` ∀e (Eie→ 2(e→ p) ∨2(e→ ¬p)) → Lip EC3

` (Eie ∧3(e ∧ p) ∧3(e ∧ ¬p)) → ¬Lip EC4

EC1 says that whether or not a proposition is an equivalence class is in-
dependent of the world of evaluation. The fact that an Ri-equivalence
class is the union of the Ri−1-equivalence classes it contains is expressed
by EC2. The formulas EC3 and EC4 allow us to derive conclusions about
the i-locality of a proposition. Intuitively, a proposition is i-local if it is
determinate within each Ri-equivalence class.

4 A Normal Form

The proof of the completeness result for LLPHn is by means of a normal form
for L(∀,∀1,...,∀n,2) over hierarchical structures. A side effect of the normal
form result is a proof that the logic is decidable.

4.1 Completeness for L(∀,2)

Since the construction for L(∀,∀1,...,∀n,2) is moderately complex, we first
illustrate the idea of the proof on the restricted case of L(∀,2). (Note
that since models for this language have no accessibility relations, all struc-
tures are hierarchical.) We discuss the generalizations required to deal with
L(∀,∀1,...,∀n,2) in the next section. (The axiomatization LLPH0 for L(∀,2)

omits the axioms for the local quantifiers and their hierarchy.)
Decidability and completeness for L(∀,2) were already established by Fine

and Kaplan [8, 13]. They have proofs based on the graded modalities [9,
12, 7, 3].2 These are the unary modalities Cl, for l a natural number. The
semantics for the graded modal logic L(C1,C2,...) is based on the same set
of structures as used for L(∀,2), i.e., Kripke structures for 0 agents of the
form M = (W,π). The semantics of the graded modalities is defined by

2As the proofs in the readily accessible literature are sketchy, we do not know if the
completeness arguments used by these authors are the same as those we present. Our
expression of the graded modalities is similar to those by Fine and Kaplan. Fine states
that decidability can be proved by a quantifier elimination argument using the graded
modalities and that this can be used to prove completeness but does not provide details
of the normal form.



10 Kai Engelhardt, Ron van der Meyden, and Kaile Su

M,w |= Clφ if there are at least l distinct possible worlds v ∈ W with
M,v |= φ.

Note that we may express the graded modal logic formula Clφ in L(∀,2)

as3

∃q1 . . .∃ql
(∧

1≤i<j≤l2[qi → ¬qj ] ∧
∧l
i=1(3qi ∧2[qi → φ])

)
where qi is the i-th propositional variable not free in φ and 1 ≤ i ≤ l. We use
Elφ as an abbreviation for the translation of the graded modal logic formula
Clφ∧¬Cl+1φ, which states that there are exactly l worlds satisfying φ. We
also define the abbreviation Ml,Nφ, to be Elφ if l < N and Clφ if l ≥ N .

Let p = p1, . . . , pm be a vector of propositional variables. Define a point
atom for p to be a formula of the form l1 ∧ . . . ∧ lm where each li is either
pi or ¬pi. Write PA(p) for the set of point atoms of p.

Given a point atom a for p and a number N , define an N -bounded count
of a to be either a formula of the form Ela where l < N , or the formula
CNa. Define a (p, k)-atom to be a formula of the form

a ∧
∧
b∈PA(p)cb

where a is a point atom for p and cb is an 2k-bounded count of b for each
b ∈ PA(p), such that ca is not E0a. We write At(p, k) for the set of (p, k)-
atoms. These atoms have the following properties.

LEMMA 2

1. If A,A′ ∈ At(p, k) are distinct atoms, then ` ¬(A ∧A′).

2. `
∨
A∈At(p,k)A

3. If A,A′ ∈ At(p, k) then ` A→ 3A′ or ` A→ ¬3A′

4. If A ∈ At(p, k + 1) and B ∈ At(p · q, k) then ` A → ∃q (B) or
` A→ ¬∃q (B).

Sketch of the proof. For part 1, note that if A and A′ are distinct then
they differ either in their point atoms, or they disagree about the count
of some atom b. In the first case, we have ` ¬(A ∧ A′) by propositional
reasoning, and in the second case, we get the result by reasoning about the
quantificational encoding of the counting modalities.

Part 2 is established by noting that `
∨N−1
k=0 Ek(b)∨CN (b) for each point

atom b. The result is obtained by conjoining these formulas, distributing,
3The approach used here results in an exponential blowup when l is expressed in

binary form since the quantifier prefix then has length exponential in the length of l.
However, there exists another translation that involves only a linear blowup in this case.
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and then eliminating cases containing a conjunct of the form a ∧ C0a using
the fact that ` a→ ¬C0a.

For part 3, let A = a∧
∧
b∈PA(p)cb and A′ = a′∧

∧
b∈PA(p)c

′
b. We consider

two cases, depending on whether there exists a point atom b such that
cb 6= c′b. Suppose first that such an atom b exists. Note that ` cb → 2cb.
It follows by S5 reasoning that ` A ∧ 3A′ → 3(cb ∧ c′b), which gives that
` A → ¬3A′ since ` ¬(cb ∧ c′b). In the second case, we have cb = c′b
for all point atoms b. In particular, ca′ = c′a′ is not E0a

′. It follows that
` A → 3(a′). Moreover, for each point atom b we have ` cb → 2cb, so it
follows that ` A → 3(a′ ∧

∧
b∈PA(p)cb)). Since cb = c′b for each b, this is

just ` A→ 3(A′).
For part 4, let A be a (p, k + 1)-atom of the form a ∧

∧
b∈PA(p)cb where

each cb is a 2k+1-bounded count of b. Let B be a (p · q, k + 1)-atom, which
we write in the form a′∧

∧
b∈PA(p)(c

+
b ∧ c

−
b ). Here c+b is a 2k bounded count

of b ∧ q and c−b is a 2k bounded count of b ∧ ¬q.
Define a q-partition of a 2k+1 bounded count cb of an atom b ∈ PA(p) to

be a formula of the form c+ ∧ c− where c+ is a 2k bounded count of b ∧ q
and c− is a 2k bounded count of b ∧ ¬q, subject to the following:

1. if cb is Elb, then c+ is Ml+,2k(b ∧ q) and c− is Ml−,2k(b ∧ ¬q) where
l+ + l− = l;

2. if cb is C2k+1b then

(a) c+ is C2k(b ∧ q) and c− is C2k(b ∧ ¬q), or

(b) c+ is C2k(b ∧ q) and c− is El−(b ∧ ¬q) where l− < 2k, or

(c) c+ is El+(b ∧ q) where l+ < 2k and c− is C2k(b ∧ ¬q).

That is, c+ and c− can be any combination of 2k-bounded counts in
which at least one has the operator C2k .

Then we may show that if c+ ∧ c− is a q-partition of cb, then we have
` cb → ∃q (c+ ∧ c−). Moreover, we have ` b∧ cb → ∃q (b ∧ q ∧ c+ ∧ c−) and
` b ∧ cb → ∃q (b ∧ ¬q ∧ c+ ∧ c−). Conversely, if c+ ∧ c− is not a q-partition
of cb, then ` cb → ¬∃q (c+ ∧ c−).

Define B to be q-compatible with A if either b = a ∧ q or b = a ∧ ¬q and
for all point atoms b ∈ PA(p) we have that c+b ∧ c

−
b is a q-partition of cb.

Then, if B is q-compatible with A, it follows from the observations of the
previous paragraph that

` A→ ∃q
(
a′ ∧ c+a ∧ c−a

)
∧
∧
b∈PA(p)\{a}∃q

(
c+b ∧ c

−
b

)
.
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Using Ch and the fact that point atoms correspond to mutually exclusive
propositions, we obtain that ` A → ∃q (B). Conversely, if B is not q-
compatible with A, then we have either that the point atom a′ is neither a∧q
nor a∧¬q, or there exists a point atom b such that c+b ∧c

−
b is not a q-partition

of cb. If a′ is neither a ∧ q nor a ∧ ¬q, we plainly have ` A → ¬∃q (B). If
c+b ∧ c

−
b is not a q-partition of cb, then ` A → ¬∃q (B) follows using the

observation of the previous paragraph. �

Using Lemma 2, we may now establish the following result.

LEMMA 3 If A is a (p, k)-atom and φ is a formula of L(∀,2) of quantifi-
cation depth at most k with free variables amongst p, then either ` A→ φ
or ` A→ ¬φ.

Proof. By induction on k, and, within each k, on the complexity of φ. The
cases where φ is a propositional variable or formed from simpler formulas
using negation or conjunction are straightforward, from completeness of the
propositional fragment of the logic.

Suppose φ is 2ψ. (Here φ and ψ have the same quantification depth
k.) We consider two cases, depending on whether there exists a point atom
A′ ∈ At(p, k) such that ` A→ 3A′ and ` A′ → ψ. If this is the case, then
it follows that ` A → 3ψ, i.e. ` A → ¬2ψ, by S5 reasoning. Otherwise,
for all A′ ∈ At(p, k), if ` A → 3A′ then not ` A′ → ψ. Let Ã be the set
of (p, k)-atoms A′ such that ` A → 3A′. By the induction hypothesis,it
follows that ` A′ → ¬ψ for all A′ ∈ Ã. Now by Lemma 2.3, we have that
` A → 2¬A′ for all (p, k)-atoms not in Ã. Hence, by Lemma 2.2 and S5
reasoning, we obtain that ` A→ 2(

∨
A′∈ÃA

′). It follows that ` A→ 2ψ.
The proof of the case where ψ is ∀q(ψ) is almost identical to the proof of

the case for 2ψ, with the following exceptions. In this case, we take φ to
have quantification depth k + 1, so A is a (p, k + 1)-atom. The formula ψ
in this case has quantification depth k, and in place of the (p, k+ 1)-atoms
A′ in the preceding paragraph, we use (p · q, k)-atoms B. The rest of the
argument follows as above, but we use Lemma 2.4 in place of Lemma 2.3.

�

For the completeness proof, we now argue as follows. Let φ be a consistent
formula of quantification depth k with free variables p. By Lemma 2.1, we
have `

∨
A∈At(p,k)A. Hence, by Lemma 3 there exists a (p, k)-atom A such

that ` A→ φ. It is now straightforward to construct a finite model M with
a world w such that M,w |= A, since this amounts merely to creating the
right number of worlds for each point atom. It now follows that M,w |= φ
by soundness. Clearly, the proof also establishes the finite model property.
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4.2 Dealing with L(∀,∀1,...,∀n,2)

We now show how the proof idea of the previous section can be generalized
to give a normal form and completeness proof for L(∀,∀1,...,∀n,2). The basic
structure of the completeness proof will be the same: we identify a kind
of atom generalizing the (p, k)-atoms of the previous section, and prove a
results analogous to Lemma 2.

As above, atoms count certain sorts of objects up to a given bound, which
depends on the formula we are dealing with. However, where for L(∀,2) it
suffices to count worlds satisfying a point atom, we now also need to count
equivalence classes, and to distinguish equivalence classes having different
internal structure in this count. We distinguish equivalence classes of the
most highly informed agent (agent 1) according to the number of worlds
of each propositional type they contain. That is, we relativize the normal
form formulas of the previous section to each equivalence class of agent 1,
and then count the number of distinct such relativizations that we obtain,
just as we did with worlds in the previous section. This gives a normal form
for the language L(∀,∀1,2). To deal with additional agents, we recursively
apply the construction, using at each level the normal form for the previous
level.

As we proceed up the levels, when dealing with a formula φ of quantifica-
tion depth k, the bound up to which we count (which was 2k in the previous
section) increases, depending on i (an agent), p (the list of free variables of
φ) and the quantification depth k.

Recall that Eie expresses that the set of worlds satisfying e is an Ri-
equivalence class. Consequently, just as L(∀,2) permits counting of worlds,
L(∀,∀1,...,∀n,2) permits counting of equivalence classes. We write Eikx(φ)
as an abbreviation for the formula expressing that there exists exactly k
distinct Ri-equivalence classes x such that φ holds. We use x ⊆ y as an
abbreviation for 2(x→ y). We will also write Eikx ⊆ y(φ) for Eikx(x ⊆ y∧φ).
Similarly, we write Cikx(φ) as an abbreviation for the formula expressing that
there exists at least k distinct Ri-equivalence classes x such that φ holds,
and use Cikx ⊆ y(φ) for Cikx(x ⊆ y ∧ φ). For uniformity, it is convenient to
treat E0

k and C0
k as notations for Ek and Ck, respectively.

It is convenient to represent the normal form by means of the following
objects, which we call (i,p, k)-trees, where p = p1, . . . , pm is a vector of
propositional variables, k a natural number and 0 ≤ i ≤ n+1. We write p+

for p1, . . . , pm, pm+1. The definition of the set Ti,p,k of (i,p, k)-trees is by
induction on i. Set T0,p,k = 2p, i.e., the power set of p. For i = 1, . . . , n+1,
we define Ti,p,k to be the set of functions u : Ti−1,p,k −→ {0, . . . , Ni−1,p,k}
such that u(t) 6= 0 for some t ∈ Ti−1,p,k. Here, the Ni,p,k are the numbers
defined by the following mutual recursion with the definition of (i,p, k)-
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trees:

N0,p,k = 2k

Ni,p,0 = 1
Ni,p,k+1 = |Ti,p+,k| ·Ni,p+,k

Note that
|Ti,p,k| = (1 +Ni−1,p,k)|Ti−1,p,k| − 1 .

It is not too difficult to verify that this recursion is well defined. A branch
in a tree t ∈ Ti,p,k is a sequence of trees ti, ti−1, . . . , t0 where tj ∈ Tj,p,k for
each j = 0, . . . , i such that t = ti and tj(tj−1) 6= 0 for each j = 1, . . . , i.

Each (i,p, k)-tree corresponds to a formula as follows. It is convenient
to define the expression Mi,p,k

l x ⊆ y(φ) to be Eilx ⊆ y(φ) if l < Ni,p,k and
to be CiNi,p,k

x ⊆ y(φ) if l ≥ Ni,p,k. With every (i,p, k)-tree u, we associate
a distinct propositional variable eu. Given an (i,p, k)-tree u, we define
the formula φu, by induction on i. When i = 0, we define φu to be the
point atom

∧m
j=1lj , where lj = pi if pj ∈ u and lj = ¬pi otherwise. When

1 ≤ i ≤ n+ 1, we define the formula corresponding to an (i,p, k)-tree u to
be the formula

φu(eu) =
∧
t∈Ti−1,p,k

Mi−1,p,k
u(t) et ⊆ eu(φt(et)) .

Clearly, φt(et) has only the variables et and p free.
The normal form uses the set of distinct propositional variables c =

{c1, . . . , cn}. Let Ac be the formula∧n
j=1(cj ∧ Ejcj) .

Intuitively, Ac says that each ci corresponds to the Ri-equivalence class
containing the current world.

From now on, we call a formula a (p, k)-atom if it is of the form

∃c(Ac ∧ φt0 ∧
∧n
i=1φti(ci) ∧ φtn+1(true)) ,

where ti ∈ Ti,p,k for each i, and tn+1, . . . , t0 is a branch in tn+1. Again, we
write At(p, k) for the set of (p, k)-atoms. These atoms have the following
properties. The first four of these are identical to the properties of Lemma 2.
However, we have some new properties relating to the local propositional
quantifiers.

LEMMA 4

1. If A,A′ ∈ At(p, k) are distinct atoms, then ` ¬(A ∧A′).
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2. `
∨
A∈At(p,k)A

3. If A,A′ ∈ At(p, k) then ` A→ 3A′ or ` A→ ¬3A′

4. If A ∈ At(p, k + 1) and B ∈ At(p · q, k) then ` A → ∃q (B) or
` A→ ¬∃q (B).

5. If A ∈ At(p, k) and p is one of the propositions in p then ` A→ Lip
or ` A→ ¬Lip.

6. If A ∈ At(p, k + 1) and B ∈ At(p · q, k) then ` A → ∃iq (B) or
` A→ ¬∃iq (B).

We defer discussion of the proof. Using this result, we may obtain a result
directly analogous to Lemma 3.

LEMMA 5 If A is a (p, k)-atom and φ is a formula of L(∀,∀1,...,∀n,2) of
quantification depth at most k, with free variables p then either ` A → φ
or ` A→ ¬φ.

The proof of Lemma 5 is identical to that of Lemma 3, except that we
now have a new case for φ of the form ∃ip (φ′). The proof for this case
follows exactly along the lines of the proof for the case ∃p (φ′) in the proof
of Lemma 3, but uses Lemma 4.6 in place of Lemma 2.4.

As in the previous section, it then follows straightforwardly that a con-
sistent formula is equivalent to a disjunction of (p, k)-atoms, and we may
give a completeness and finite model argument exactly as before.

The bulk of the work of the completeness proof is therefore in the proof
of Lemma 4. We now sketch some of the key steps of this proof, focussing
on part 4.

As a first observation, we note that the formulas φu(e) have the following
basic properties:

LEMMA 6

1. If u, v ∈ Ti,p,k and u 6= v then ` ¬(φu(e) ∧ φv(e)) .

2. ` Eie→
∨
v∈Ti,p,k

φv(e).

One of the key steps in the proof of Lemma 2.4 is the notion of partition
of a count. In the proof of Lemma 2, we dealt with counts of point atoms
a, which split into two point atoms a ∧ q and a ∧ ¬q when taking a new
proposition q into consideration. We now need to deal with a partition of
a formula that counts equivalence classes satisfying a counting property,
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rather than a type of world. These nests of equivalence classes split into a
larger and more complex collection of nests of equivalence classes when we
add a new proposition.

To handle this, we introduce a notion of compatibility that generalizes
the partition of a count of a point atom a into counts of the point atoms
a∧q and a∧¬q. For u ∈ Ti,p,k+1 we define a set C(u) ⊆ Ti,p+,k, of (i,p+, k)-
trees. If v ∈ C(u) then we say that v is compatible with u. The definition is
by induction on i, as follows. If i = 0 then v ∈ C(u) if u = v ∩ {p1, . . . , pm}.
For i > 0, v ∈ C(u) if there exists a function f : Ti−1,p,k+1 × Ti−1,p+,k →
[0, . . . , Ni−1,p+,k] such that

C1. for all t ∈ Ti−1,p,k+1 and all t′ ∈ Ti−1,p+,k, if f(t, t′) 6= 0 then
t′ ∈ C(t),

C2. for all t′ ∈ Ti−1,p+,k, we have

v(t′) = min
(
Ni−1,p+,k,

∑
t∈Ti−1,p,k+1

f(t, t′)
)
, and

C3. for all t ∈ Ti−1,p,k+1, if f(t, t′) < Ni−1,p+,k for all t′ ∈ Ti−1,p+,k then
u(t) =

∑
t′∈Ti−1,p+,k

f(t, t′) otherwise u(t) ≥
∑
t′∈Ti−1,p+,k

f(t, t′).

We may then prove the following results that mirror the observations con-
cerning partitions in the proof of Lemma 2.

LEMMA 7 Let u ∈ Ti,p,k+1 and v ∈ Ti,p+,k.

1. If v ∈ C(u) then ` φu → ∃pm+1 (φv).

2. If v /∈ C(u) then ` φu → ¬∃pm+1 (φv).

Rather than give the full proof of this proof-theoretic result, we give the
proof of a closely related semantic result, and describe the key steps required
to mirror this proof within our proof system. The first part of Lemma 7
corresponds to the following semantic result.

PROPOSITION 8 Suppose that u ∈ Ti,p,k+1 and v ∈ Ti,p+,k. If v ∈ C(u)
then |= φu → ∃pm+1 (φv).

Proof. The proof is by induction on i. The base case is straightforward.
When i = 0, if v ∈ C(u) then we have either φv = φu ∧ pm+1 or φv =
φu ∧ ¬pm+1 and the claim is immediate from 1∀.

We now establish the inductive step. Let i ∈ {1, . . . , n}, let u ∈ Ti,p,k+1,
let v ∈ C(u), and let f be the witness to compatibility. Suppose M |= φu(e).
For each t ∈ Ti−1,p,k+1, let S(t) be the set of Ri−1-equivalence classes
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U ⊆ π(e) such thatM [U/e] |= φt(e). Then |S(t)| = u(t) if u(t) < Ni−1,p,k+1

and |S(t)| ≥ Ni−1,p,k+1 otherwise. Note that by Lemma 6.1, we have that
if t1 6= t2 are both (i,p, k + 1)-trees, then S(t1) ∩ S(t2) = ∅.

For each t ∈ Ti−1,p,k+1, we partition S(t) into a disjoint union

S(t) =
⋃

t′∈Ti−1,p+,k

S(t, t′)

in such a way that |S(t, t′)| = f(t, t′) if f(t, t′) < Ni−1,p+,k and |S(t, t′)| ≥
f(t, t′) if f(t, t′) = Ni−1,p+,k. The reason we can partition in this way is as
follows. By C3, there are two possibilities.

1. The first possibility is that f(t, t′) < Ni−1,p+,k for all t′ ∈ Ti−1,p+,k.
In this case, we have

u(t) =
∑

t′∈Ti−1,p+,k

f(t, t′) < |Ti−1,p+,k| ·Ni−1,p+,k = Ni−1,p,k+1 .

It follows that |S(t)| = u(t) =
∑
t′∈Ti−1,p+,k

f(t, t′), so we partition
S(t) in such a way that |S(t, t′)| = f(t, t′) for all t′ ∈ Ti−1,p+,k.

2. The second possibility is that f(t, t′0) = Ni−1,p+,k for some t′0. In
this case we are still guaranteed that u(t) ≥

∑
t′∈Ti−1,p+,k

f(t, t′), and
since M |= φu(e) we have that |S(t)| ≥ u(t). In this case we first
partition

∑
t′∈Ti−1,p+,k

f(t, t′) of the elements of S(t) as before, and
then place any remaining elements of S(t) in S(t, t′0). Clearly we
then have |S(t, t′)| = f(t, t′) for t′ 6= t′0, and both |S(t, t′)| ≥ f(t, t′)
and f(t, t′) = Ni−1,p+,k in the case t′ = t′0, so the constraint on the
partitioning is satisfied.

For each Ri−1-equivalence class U in S(t, t′), we have M [U/e] |= φt(e). By
the induction hypothesis, we have |= φt → ∃pm+1 (φt′) for all t′ ∈ C(t).
Since the sets S(t, t′) are disjoint, for each such set the equivalence classes
U ∈ S(t, t′) are disjoint, the formulas φt′ depend only on the values of pm+1
in U , and the propositions witnessing these facts may be aggregated into a
single proposition P such that M [P/pm+1, U/e] |= φt′(e) for all U ∈ S(t, t′),
all t ∈ Ti−1,p,k+1 and all t′ ∈ Ti−1,p+,k.

Write S′(t′) for the set of Ri−1-equivalence classes U in π(e) such that
M [P/pm+1, U/e] |= φt′(e). Then

S′(t′) =
⋃

t∈Ti−1,p,k+1

S(t, t′)
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is a partition of S′(t′). To see this, note that S(t, t′) ⊆ S′(t′) for each t
by construction of P . By Lemma 6.2, each Ri−1-equivalence class U in
π(e) is in S(t) for some t ∈ Ti−1,p,k+1, hence in S(t, t′′) for some t′′ ∈
Ti−1,p+,k. By Lemma 6.1 and construction of P , we cannot have t′′ 6= t′

if M [P/pm+1, U/e] |= φt′(e). This proves the containment in the other
direction. The union is therefore a partition because all the sets S(t, t′) are
disjoint.

We now claim that M [P/pm+1] |= φv(e). We show this by establishing
that M [P/pm+1] |= Mi−1,p+,k

v(t′) e′ ⊆ e(φt′(e′)) for all t′ ∈ Ti−1,p+,k. There are
two cases.

1. First, suppose v(t′) < Ni−1,p+,k. Then by C2, we have that v(t′) =∑
t∈Ti−1,p,k+1

f(t, t′) < Ni−1,p+,k, so f(t, t′) < Ni−1,p+,k for each t ∈
Ti−1,p,k+1. Thus, for each t′ ∈ Ti−1,p+,k, we have

|S′(t′)| =
∑

t∈Ti−1,p,k+1

|S(t, t′)| =
∑

t∈Ti−1,p,k+1

f(t, t′) = v(t′) ,

hence M [P/pm+1] |= Ei−1
v(t′)e

′ ⊆ e(φt′(e′)), as is required to establish

M [P/pm+1] |= Mi−1,p+,k
v(t′) e′ ⊆ e(φt′(e′)) in case that v(t′) < Ni−1,p+,k.

2. In the other case, where v(t′) = Ni−1,p+,k, we have by C2 that∑
t∈Ti−1,p,k+1

f(t, t′) ≥ Ni−1,p+,k. Since we always have |S(t, t′)| ≥
f(t, t′), we have

|S′(t′)| =
∑

t∈Ti−1,p,k+1

S(t, t′) ≥
∑

t∈Ti−1,p,k+1

f(t, t′) ≥ Ni−1,p+,k .

Thus, M [P/pm+1] |= Ci−1
Ni−1,p+,k

e′ ⊆ e(φt′(e′)), again as required.

�

The main difficulty in converting this proof into a proof of Lemma 7.1, is
its use of the axiom of choice. To capture this in the proof system, we use
axiom Choice, with the formula θ as Eip∧2(p→ e), and ψ as a disjunction
that describes the mapping from the Ri−1-equivalence classes e′ in e to the
formulas φt′(e′) that the construction chooses to make them satisfy.

For the second part of Lemma 7, we note the following semantic result.

PROPOSITION 9 Suppose u ∈ Ti,m,k+1 and v ∈ Ti,m+1,k is not compatible
with u. Then |= φu → ¬∃pm+1 (φv).



Modal Logics with a Linear Hierarchy of Local Propositional Quantifiers 19

Proof. Suppose v 6∈ C(u). We proceed by induction on i. For i = 0,
the claim is straightforward, since one of φv and φv contains, for some
j = 1 . . .m, a conjunct pj whereas the other contains a conjunct ¬pj . For
i > 0, suppose that v is not compatible with u, and that M |= φu(e). Let
M ′ be a pm+1-variant of M . We suppose that M ′ |= φv(e) and derive the
contradiction that v ∈ C(u).

Define S(t) for t ∈ Ti−1,p,k+1 to be the set of Ri−1-equivalence classes U
in π(e) such that M ′[U/e] |= φt(e). Similarly, define S′(t′) for t′ ∈ Ti−1,p+,k

to be the set of Ri−1-equivalence classes U in π(e) such that M ′[U/e] |=
φt′(e). Additionally, define S(t, t′) = S(t) ∩ S′(t′). By Lemma 6, each
of the collections { S(t) | t ∈ Ti−1,p,k+1 },

{
S′(t′)

∣∣ t′ ∈ Ti−1,p+,k

}
and{

S(t, t′)
∣∣ t ∈ Ti−1,p,k+1, t

′ ∈ Ti−1,p+,k

}
partition the set of Ri−1-equiv-

alence classes U in π(e).
Define f(t, t′) = min(Ni−1,p+,k, |S(t, t′)|). We show that f satisfies all

the conditions of the definition of compatibility in order to witness that
v ∈ C(u).

C1: If f(t, t′) 6= 0 then there exists an Ri−1-equivalence class U in e such
thatM ′[U/e] |= φt(e)∧φt′(e), henceM [U/e] |= φt(e)∧∃pm+1 (φt′(e)). Thus,
we do not have |= φt(e) → ¬∃pm+1 (φt′(e)). By the induction hypothesis,
we have t′ ∈ C(t).

C2: We consider two cases. Suppose first that v(t′) < Ni−1,p+,k. Since
M ′ |= φv(e), we have v(t′) = |S′(t′)| < Ni−1,p+,k . Consequently, for all
t ∈ Ti−1,p,k+1 we also have |S(t, t′)| < Ni−1,p+,k, so f(t, t′) = |S(t, t′)|.
Thus, ∑

t∈Ti−1,p,k+1

f(t, t′) =
∑

t∈Ti−1,p,k+1

|S(t, t′)| = |S(t′)| = v(t′).

It follows that v(t′) = min(
∑
t∈Ti−1,p,k+1

f(t, t′), Ni−1,p+,k).
In the other case, suppose that v(t′) = Ni−1,p+,k. We break this case

down into two possibilities. Suppose first that there exists t0 ∈ Ti−1,p,k+1

such that |S(t0, t′)| ≥ Ni−1,p+,k. Then f(t0, t′) = Ni−1,p+,k, so

min

 ∑
t∈Ti−1,p,k+1

f(t, t′), Ni−1,p+,k

 = Ni−1,p+,k = v(t′) .

Alternately, if |S(t, t′)| < Ni−1,p+,k for all t ∈ Ti−1,p,k+1 then for all
t ∈ Ti−1,p,k+1 we have f(t, t′) = |S(t, t′)|. Thus,

∑
t∈Ti−1,p,k+1

f(t, t′) =∑
t∈Ti−1,p,k+1

|S(t, t′)| = |S(t′)| ≥ Ni−1,p+,k. Hence

min

 ∑
t∈Ti−1,p,k+1

f(t, t′), Ni−1,p+,k

 = Ni−1,p+,k = v(t′) .
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C3: Note that we always have f(t, t′) ≤ |S(t, t′)|, hence∑
t′∈Ti−1,p+,k

f(t, t′) ≤
∑

t′∈Ti−1,p+,k

|S(t, t′)| = |S(t′)| .

Since f(t, t′) ≤ Ni−1,p+,k, we have∑
t′∈Ti−1,p+,k

f(t, t′) ≤ |Ti−1,p+,k| ·Ni−1,p+,k = Ni−1,p,k+1

Thus
∑
t′∈Ti−1,p,k+1

f(t, t′) ≤ min(|S(t)|, Ni−1,p,k+1). Since M |= φu(e),
we have min(|S(t)|, Ni−1,p,k+1) = u(t). It follows that we always have∑
t′∈Ti−1,p,k+1

f(t, t′) ≤ u(t). In the case that f(t, t′) < Ni−1,p+,k for all
t′ ∈ Ti−1,p+,k, we have also f(t, t′) = |S(t, t′)|. Thus

|S(t)| =
∑

t′∈Ti−1,p+,k

|S(t, t′)|

=
∑

t′∈Ti−1,p+,k

f(t, t′)

< |Ti−1,p+,k| ·Ni−1,p+,k

= Ni−1,p,k+1 .

Since M |= φu(e), it follows that u(t) = |S(t)| =
∑
t′∈Ti−1,p+,k

f(t, t′). �

The main step in converting this semantic proof to a proof-theoretic argu-
ment is to replace the use of satisfiability by a consistency argument.

Just as in the proof of Lemma 2.4, we needed to treat the atom a as a
special case, establishing that ` a ∧ ca → ∃q(a′ → c+a ∧ c−a ), we actually
need a slight strengthening of Lemma 7 that deals with branches rather
than trees. For this we need a generalized notion of compatibility. Define
a branch vi, . . . , v0 in a tree vi ∈ Ti,p+,k to be compatible with a branch
ui, . . . , u0 in a tree ui ∈ Ti,p,k+1 when v0 is compatible with u0, and there
exist functions f1, . . . , fi such that for each j = 1, . . . , i, the function fj
witnesses that vj is compatible with uj , and fj(uj−1, vj−1) 6= 0. We write
Chain(e0, . . . , ei) for

∧i−1
j=0ej ⊆ ej+1 ∧

∧i
j=0Ejej . That is, Chain(e0, . . . , ei)

says that e0, . . . , ei is a nested set of equivalence classes.

LEMMA 10 Let ui ∈ Ti,p,k+1 and let ui, . . . , u0 be a branch in ui. Similarly,
let vi ∈ Ti,p+,k and let vi, . . . , v0 be a branch in vi. Then if vi, . . . , v0 is
compatible with ui, . . . , u0, we have

` Chain(e0, . . . , ei) ∧
∧i
j=0φuj

(ej) → ∃pm+1

(∧i
j=0φvj

(ej)
)
,
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else

` Chain(e0, . . . , ei) ∧
∧i
j=0φuj

(ej) → ¬∃pm+1

(∧i
j=0φvj

(ej)
)
.

The proof of Lemma 10 is very similar to the proof of Lemma 7: we sim-
ply need to add some special treatment of the proposition pm+1 along the
distinguished branch.

Lemma 4.4 now follows easily from Lemma 10. Parts 1 – 3 of Lemma 4
can be established by arguments similar to those in the proof of Lemma 2.
For part 5, we use EC2 (Section 3.1) and an induction on i to show that for
(i,p, k)-trees u and propositions p in p, we have ` Eie ∧ φu(e) → 2(e→ p)
or ` Eie ∧ φu(e) → ¬2(e → p), and also ` Eie ∧ φu(e) → 2(e → ¬p) or
` Eie ∧ φu(e) → ¬2(e → ¬p). From this we obtain, using EC3 and EC4,
that when u is an (n + 1,p, k)-tree and p is one of the propositions in p,
either ` φu(true) → Lip or ` φu(true) → ¬Lip. Part 5 of Lemma 4 follows
from this. Part 6 follows from part 4 and part 5 using Def∀i.

5 Conclusion

The results presented in this paper leave open a number of questions con-
cerning L(∀,∀1,...,∀n,2). One of these is the complexity of the language with
respect to hierarchical structures: we will report on this in the full version.
(Note that decidability follows from the finite model property we have es-
tablished.) Another question is the effect of restrictions on the range of
quantification. We have interpreted the quantifiers to range over all propo-
sitions. For L(∀,2), Fine [8] proved completeness with respect to semantics
for quantification that place various restrictions of the range of quantifica-
tion, such as the assumption that this space forms a boolean algebra. We
do not know yet what the effect of such assumptions would be on our logic.

Tenney showed a bounded model property for the monadic second-order
theory of an equivalence relation [15]. His language and L(∀,∀1,2) are of
equal expressive power and effectively translatable. Consequently our ax-
iomatization LLPH1 translates to an axiomatization of Tenney’s language.
Moreover, Tenney’s bounds on model-sizes are similar to the ones we cal-
culated for L(∀,∀1,2).

The class of models for which we are able to axiomatize the language
L(∀,∀1,...,∀n,2) can be generalized slightly from the hierarchical models to
locally hierarchical models. These are models in which for all pairs U , V of
propositions, with U an Ri-equivalence class and V an Rj-equivalence class,
we have one of U ∩V = ∅, U ⊆ V or V ⊆ U . We leave further discussion of
this to the full paper.
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