Slide 1	COMP3152/9152 Lecture 7 Knowledge-Based Programs Ron van der Meyden	Slide 3	Standard programs Standard programs for agent <i>i</i> are programs in which the ϕ_i are boolean formulas over atomic propositions "local to agent <i>i</i> " Example: Case of if \neg received _S (ack,R) do send _S (m,R) if received _S (ack,R) do skip end case
Slide 2	A notation for programs Case of if ϕ_1 do action_1 : if ϕ_n do action_n end case means: repeat forever: nondeterministically choose <i>i</i> such that ϕ_i is true, do action _{<i>i</i>}	Slide 4	A proposition p is <i>local to agent</i> i according to an interpretation π over a set of global states \mathcal{G} if for all $s, t \in \mathcal{G}$, if $s \sim_i t$ then $\pi(s)(p) = \pi(t)(p)$. π is <i>compatible</i> with Pg _i if every proposition p that occurs in Pg _i is local to i according to π . If ϕ is a boolean combination of propositions local to i according to π and l is a local state of agent i , define $(\pi, l) \models \phi$ if $(\pi, g) \models \phi$ for all global states g with $g_i = l$.

Knowledge-based programs $Knowledge-based programs$ for agent i are programs in which the ϕ may talk about the knowledge of agent i E.g., After father says "at least one of you is muddy", child i behaves as if running the following knowledge-based program: Case of if $K_i(muddy_i) \lor K_i(\neg muddy_i)$ do Say "Yes" if $\neg(K_i(muddy_i) \lor K_i(\neg muddy_i))$ do Say "No" end case	Slide 7	Joint actions Let ACT_e be a set of actions that the environment can perform For each agent <i>i</i> , let ACT_i be a set of actions that agent <i>i</i> can perform (examples: say "yes", send message <i>m</i> to agent <i>j</i> , the "skip/do nothing" action Λ) A <i>joint action</i> is a tuple (a_e, a_1, \ldots, a_n) such that $a_e \in ACT_e$ and $a_i \in ACT_i$ for each $i = 1 \ldots n$. Write ACT for the set of joint actions
A robotics example A robotics example A knowledge-based program: Case of if $K_r(posn \in Goal)$ do halt end case What is the semantics of such programs? (FHMV book version)	Slide 8	Let the set of global states be $\mathcal{G} = L_e \times L_1 \times \ldots \times L_n$. A transition function is a mapping $\tau : ACT \to (\mathcal{G} \to \mathcal{G})$ if a is a joint action and s is a state, then $\tau(\mathbf{a})(s)$ is the next state when a is performed in state s. Typically, $\tau((\Lambda, \Lambda, \ldots, \Lambda))(s) = s$

Slide 5

Slide 6

Slide 9	Protocols A protocol for agent i (with local states L_i) is a mapping $P_i: L_i \to \mathcal{P}(ACT_i) \setminus \{\emptyset\}$ $P_i(l) = \{a_1, \ldots, a_n\}$ means that when in local state l , agent i 's next action is (nondeterministically) one of a_1, \ldots, a_n P_i is deterministic if $ P_i(l) = 1$ for all $l \in L_i$ A joint protocol is a tuple (P_1, \ldots, P_n) where each P_i is a protocol of agent $i = 1 \ldots n$	Slide 11	Contexts A context is a tuple $\gamma = (P_e, \mathcal{G}_0, \tau, \Psi)$ where 1. $P_e : L_e \to ACT_e$ is a protocol for the environment 2. $\mathcal{G}_0 \subseteq \mathcal{G}$ is a set of <i>initial global states</i> , 3. $\tau : ACT \to (\mathcal{G} \to \mathcal{G})$ is a transition function, 4. Ψ is an <i>admissibility</i> condition on runs An <i>interpreted context</i> is a pair (γ, π) where π is an interpretation of a set of atomic propositions $Prop$ in the global states \mathcal{G} of γ .
lide 10	 Admissibility Conditions We sometimes need to express constraints on the set of runs that cannot be captures using just initial states and protocols. E.g. Every message sent is eventually delivered. Represent these using a set Ψ of runs, called an <i>admissibility condition</i>. E.g. Ψ is the set of runs in which all messages sent are eventually delivered 	Slide 12	A run r is consistent with a joint protocol $P = (P_1, \ldots, P_n)$ in context $\gamma = (P_e, \mathcal{G}_0, \tau, \Psi)$ if 1. $r(0) \in \mathcal{G}_0$ 2. for all $m \ge 0$ there exists $a_e \in P_e(r_e(m))$ and $a_i \in P_i(r_i(m))$ (for $i = 1 \ldots n$) such that $r(m + 1) = \tau((a_e, a_1, \ldots, a_n))(r(m))$ 3. $r \in \Psi$ Write $\mathbf{R}^{rep}(P, \gamma)$ for the set of all runs that are consistent with protocol P in context γ

ide 13	Interpreting Standard Programs as Protocols Let (γ, π) be an interpreted context and $Pg_i = Case of$ if ϕ_1 do a_1 : if ϕ_n do a_n end case a standard program for agent <i>i</i> such that π is compatible with Pg_i . Define the protocol Pg_i^{π} by $Pg_i^{\pi}(l) = \begin{cases} \{a_i \mid (\pi, l) \models \phi_i, i = 1 \dots n\} & \text{if this set is not } \emptyset \\ \{\Lambda\} & \text{otherwise} \end{cases}$	Slide 15	Can we give a similar definition Pg^{π} for knowledge-based programs? A problem: to determine the set of runs produced by executing a knowledge based program, we need to know which actions are enabled at each point (r, m) . to decide whether an action a_i is enabled by a knowledge-based program at (r, m) , we need to evaluate the formula ϕ_i . When ϕ_i contains knowledge operators, this means looking at points (r', m') such that $(r', m') \sim_i (r, m)$ For that, we need to know the set of runs. <i>This is circular!</i>
lide 14	For joint programs $Pg = (Pg_1, \dots, Pg_n)$, $Pg^{\pi} = (Pg_1^{\pi}, \dots, Pg_n^{\pi})$ The <i>interpreted system representing</i> a joint program Pg in the interpreted context (γ, π) is the system $\mathcal{I}^{rep}(Pg, \gamma, \pi) = (\mathbf{R}^{rep}(Pg^{\pi}, \gamma), \pi)$	Slide 16	Resolution: provide a way of <i>testing</i> whether a given standard program/protocol implements a knowledge-based program Given an interpreted system $\mathcal{I} = (\mathcal{R}, \pi)$ and a joint knowledge-based program $Pg = (Pg_1, \ldots, Pg_n)$, define a joint protocol $Pg^{\mathcal{I}} = (Pg_1^{\mathcal{I}}, \ldots, Pg_n^{\mathcal{I}})$, as follows.

 A knowledge-based formula φ is local to agent i according to π if it is either a proposition p local to i according to π, a formula of the form K_iφ, or a boolean combination of these Let I = (R, π) be an interpreted system. If l is a local state of agent i and φ is a formula local to i according to π, define (I, l) ⊨ φ by 1. (I, l) ⊨ p if (π, l) ⊨ p (as defined above), 2. (I, l) ⊨ K_iφ if (I, r, m) ⊨ φ for all points (r, m) in I such that r_i(m) = l, 3. (Booleans as usual) 	Slide 19	A system \mathcal{I} represents the knowledge-based program Pg in an interpreted context (γ, π) if π is compatible with Pg and $\mathcal{I} = \mathcal{I}^{rep}(Pg^{\mathcal{I}}, \gamma, \pi)$. A standard protocol P is an <i>implementation</i> of the knowledge-based program Pg in an interpreted context (γ, π) if $\mathcal{I}_P = \mathcal{I}^{rep}(P, \gamma, \pi)$ represents Pg in (γ, π) . Note this implies $\mathcal{I}_P = \mathcal{I}^{rep}(Pg^{\mathcal{I}_P}, \gamma, \pi)$. A standard program Pg_s is an <i>implementation</i> of the knowledge-based program Pg_k in an interpreted context (γ, π) if the protocol Pg_s^{π} is an implementation of Pg_k in (γ, π) .
Let $\mathcal{I} = (\mathcal{R}, \pi)$ be an interpreted system and $Pg_i = Case of$ if ϕ_1 do a_1 \vdots if ϕ_n do a_n end case a knowledge-based program for agent <i>i</i> such that each ϕ_j is local to <i>i</i> according to π . Define the protocol $Pg_i^{\mathcal{I}}$ by $Pg_i^{\mathcal{I}}(l) = \begin{cases} \{a_i \mid (\mathcal{I}, l) \models \phi_i, i = 1 \dots n\} & \text{if this set is not } \emptyset \\ \{\Lambda\} & \text{otherwise} \end{cases}$	Slide 20	Specifications Let ϕ be a formula of the language of knowledge and time A protocol P satisfies ϕ in context (γ, π) if for all runs $r \in \mathbf{R}^{rep}(P, \gamma)$, we have $((\mathbf{R}^{rep}(P, \gamma), \pi), r, 0) \models \phi$. A (knowledge-based) program Pg satisfies ϕ in (γ, π) if for all systems \mathcal{I} representing Pg in (γ, π) , for all runs r of \mathcal{I} we have $(\mathcal{I}, r, 0) \models \phi$.

de 21	Specification of Robot $Goal = \{2, 3, 4\}$ Safety part: $\Box(halted \Rightarrow posn \in Goal)$ Liveness part: $\Diamond halted$	Slide 23	Let MP be the knowledge-based program if $K_r(posn \in \{2, 3, 4\})$ do halt Let MP_s be the standard program if sensor=3 do halt Then MP_s is an implementation of MP in (γ, π) MP_s satisfies the specification \Box (halted \Rightarrow posn $\in \{2, 3, 4\}$) But NOT the liveness part: \Diamond halted
ide 22	Implementations of the robot example Let P^{Λ} be the deterministic protocol that always does Λ (never halt) Let γ be a context in which - the environment nondeterministically moves the position one step, or none - the robot's local state is the sensor reading - the sensor reading is (nondeterministically) posn + x , $x \in \{-1, 0, 1\}$ Then $\mathcal{I}^{rep}(P^{\Lambda}, \gamma, \pi) \models K_r(\text{posn} \in \{2, 3, 4\}) \iff \text{sensor} = 3)$	Slide 24	Let MP'_s be the standard program if sensor $\in \{3, 4, 5\}$ do halt Then MP_s is also an implementation of MP in (γ, π) MP_s satisfies the safety specification \Box (halted \Rightarrow posn $\in \{2, 3, 4\}$) AND the liveness part: \Diamond halted

ide 25	A KBP with NO implementations There are NO implementations of the KBP if $K_1(\neg \diamondsuit(bit = 1))$ do $bit := 1$ in a context where the bit is initially 0, agent 1's local state is the value of bit , and the environment does nothing	Slide 27	Nonexcluding Admissibility Conditions The admissibility condition Ψ of a context $\gamma = (P_e, \mathcal{G}_0, \tau, \Psi)$ is <i>nonexcluding</i> if for every protocol P and all times m , if $r : [0, \ldots m] \to \mathcal{G}$ satisfies 1. $r(0) \in \mathcal{G}_0$ and 2. for all $k \in [0, \ldots, m-1]$ and $(a_e, a_1, \ldots, a_n) \in P_e(r(k)) \times P_1(r_1(k)) \times \ldots \times P_n(r_n(k))$ we have $r(k+1) = \tau((a_e, a_1, \ldots, a_n))(r(k)),$ then there exists a run $r' \in \mathbf{R}^{rep}(P, \gamma)$ such that $r[0 \ldots m] = r'[0 \ldots m].$
lide 26	Unique Implementations The above examples show that we can have 0,1 or many implementations of a knowledge-based program. (So knowledge-based programs are more like specifications than like programs.) When can we be sure there is a <i>unique</i> implementation?	Slide 28	An interpreted system \mathcal{I} provides witnesses for $K_i\phi$ if for every point (r,m) of \mathcal{I} , if $(\mathcal{I}, r, m) \models \neg K_i\phi$ then there exists $m' \leq m$ such that $(r,m) \sim_i (r',m')$ and $(\mathcal{I},r',m') \models \neg \phi$. Lemma: Every synchronous system provides witnesses for every formula $K_i\phi$.

lide 29