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COMP3152/9152

Lecture 6

Model Checking Knowledge and Time

Ron van der Meyden
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Problem:

Given a finite state environment E, and a formula φ, determine if

E, (r, 0) |= φ for all runs r of E.
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CTL - a restricted fragment of branching time
temporal logic

We defined branching time temporal logic so that if φ is a formula

then Aφ and Eφ are formulas

So, e.g., A((© p) ∨ p U q) is a formula

CTL is the logic in which the branching operators A,E apply only to

formulas in which the outermost operator is a temporal (not boolean)

operator:

E.g. A((© p) ∨ p U q) is not a CTL formula

But A(p U q), E© p A�E♦p are CTL formulas
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Model Checking CTL + Knowledge, Observational
View

Theorem: Model Checking of φ ∈ L{K1,...,Kn,C,∀© ,∀ U ,∃ U } in E

with respect to obs is in PTIME.
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Let S′ be the set of reachable states of E

label states of M = 〈S′,K1, . . . ,Kn, πe〉 by subformulas of φ

1. label s by Kiψ (Cψ) if sKit (sKCt) implies t labelled ψ

2. label s by ∀© ψ if sT t implies t labelled by ψ

3. label s by ∃(ψ1 U ψ2) if there exists a sequence s = s0, s1, . . . , sk

such that sk labelled ψ2 and for l < k slTsl+1 and sl is labelled

ψ1
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4. label s by ¬∀(ψ1 U ψ2) if there exists a sequence

s = s0, s1, . . . , sk, . . . sm of states such that

(a) slTsl+1 for all l < m

(b) sk = sm

(c) {sk, . . . , sm} ∩ α 6= ∅

(d) either sl is not labelled ψ2 for all l ≤ m, or, for the least l

such that sl is labelled ψ2 there exists l′ < l such that sl′ is

not labelled ψ1
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It’s not necessary to construct every state to run this algorithm, it

can be done symbolically.....

Step 1: represent each state s as a Boolean assignment to a set of

state variables V = {v1, . . . , vn}: s : V → {0, 1}

Step 2: represent a set X of states as a Boolean function

fX : {0, 1} × . . .× {0, 1} → {0, 1} with n arguments x1, . . . , xn, so

that fX(x1, . . . , xn) = 1 iff s ∈ X where s is the state with

s(v1) = x1, . . . s(vn) = xn.

Step 3: Compute the set [φ] = {s ∈ S | E, s |= φ} using the above

rule setwise, using this representation: e.g., f[φ1∧φ2] = f[φ1] ∧ f[φ2].

Step 4: represent these functions as binary decision diagrams....
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Binary Decision Trees
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f(a1, a2, b1, b2) = (a1 = b1) ∧ (a2 = b2)
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Binary Decision Diagrams
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Operations on BDD’s

Given BDD’s representing boolean functions f , g, we can compute

BDD’s representing

1. the functions (¬f), (f ∧ g), (f ∨ g), defined pointwise, e.g.

(f ∧ g)(v) = f(v) ∧ g(v).

2. the function ∃v(f). If the arguments of f are u, v,w, this is

defined by

(∃v(f))(u,w) = f(u, 0,w) ∨ f(u, 1,w)
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Model Checking with respect to Perfect Recall

Theorem [van der Meyden & Shilov 99]: Model Checking

L{© , U ,K1,...,Kn} with respect to perfect recall is decidable, but

non-elementary in complexity.

This lecture: Focus on implementation for formulas of the form

© kφ where φ ∈ L{K1}
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Reducing Model Checking Knowledge to BDD
operations
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Let oj be a sequence of boolean variables representing an observation

of agent 1.

Let s be a sequence of variables representing a state of the

environment.

Define

fk(o0, . . . , ok, s) = 1 iff there exists a run r such that

1. agent 1’s observations during [0, . . . , k] in r are (o0, . . . , ok)

2. r(k) = s

8



Slide 17 Computing fk recursively

fk+1(o0, . . . , ok+1, s) = ∃t(fk(o0, . . . , ok, t) ∧ T (t, s) ∧Oi(s) = ok+1)
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Satp(o0, . . . , ok, s) = πe(p, s)

Sat¬φ(o0, . . . , ok, s) = ¬Satφ(o0, . . . , ok, s)

Satα∧β(o0, . . . , ok, s) = Satα(o0, . . . , ok, s) ∧ Satβ(o0, . . . , ok, s)

SatK1α(o0, . . . , ok, s) = ∀s′(fk(o0, . . . , ok, s) ⇒ Satα(o0, . . . , ok, s
′))

Model checking © kφ:

∀o0 . . . oks(fk(o0, . . . , ok, s) ⇒ Satφ(o0, . . . , ok, s))
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MCK: a model checker for the logic of knowledge
and time

A system developed at UNSW. It can be downloaded from

http://www.cse.unsw.edu.au/∼mck

You can also run it (preferably on williams) from

/import/kamen/1/peteg/bin/mck-cudd
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Clock View

If ρ = s0, s1, . . . is a run of an environment, the clock view is the

(synchronous) local state assignment defined by

ρclocki (m) = (m,Oi(ρ(m))
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MCK: Current Capability

Observational Clock Perfect Recall

Xnφ, φ ∈ L{Ki
} spec obs ltl spec clk xn spec spr xn

L{X,K1,...,Kn} spec obs ltl spec spr ltl nested

L{X,K1,...,Kn} spec obs ctl spec clk ctl nested

L{CTL,K1,...,Kn,C} spec obs ctl

L{LTL,Kn,...,Kn,C} spec obs ltl

(spr = synchronous perfect recall)
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