slide 1

Slide 2

COMP3152/9152
Lecture 6
Model Checking Knowledge and Time
Ron van der Meyden

Problem:

Given a finite state environment E, and a formula ¢, determine if
E,(r,0) = ¢ for all runs r of E.

Slide 3

Slide 4

CTL - a restricted fragment of branching time
temporal logic

We defined branching time temporal logic so that if ¢ is a formula
then A¢ and E¢ are formulas

So, e.g., A(Op) VpU q) is a formula

CTL is the logic in which the branching operators A, E apply only to
formulas in which the outermost operator is a temporal (not boolean)
operator:

E.g. A(Op)VpU q) is not a CTL formula
But A(p U q), EO p AOEQp are CTL formulas

Model Checking CTL + Knowledge, Observational
View

Theorem: Model Checking of ¢ € Lyg,
with respect to obs is in PTIME.

e Kn CNONU AUy IDE

slide 5

slide 6

Let S’ be the set of reachable states of E

label states of M = (5", K1, ..., Ky, m) by subformulas of ¢
1. label s by K;u (Cv) if sK;t (sK¢t) implies ¢ labelled v
2. label s by V(O @ if sT't implies t labelled by v

3. label s by (1 U 1b2) if there exists a sequence s = s, 81, . . ., Sk
such that si labelled ¥9 and for [< k s;T's;41 and s; is labelled

U1

4. label s by =V(11 U 1)2) if there exists a sequence

S = 80,81,---,8k,...Sm of states such that
(a) s1Tsp41 foralll <m
(b) sk = sm

)

)
(€) {Sky---,sm}Na#0

) either s; is not labelled 5 for all [< m, or, for the least [
such that s; is labelled 15 there exists I’ < [such that s is
not labelled

Slide 7

Slide 8

It’s not necessary to construct every state to run this algorithm, it
can be done symbolically.....

Step 1: represent each state s as a Boolean assignment to a set of
state variables V. = {vy,...,vp}: s: V — {0,1}

Step 2: represent a set X of states as a Boolean function
fx:{0,1} x...x{0,1} — {0,1} with n arguments x1,...,z,, so
that fx(z1,...,2,) =1 iff s € X where s is the state with

s(v1) = a1, ... s(vn) = .

Step 3: Compute the set [¢p] = {s € S| E,s | ¢} using the above

rule sefwise, using this representation: e.g., fig,n¢o] = flg1] N f1pa)-

Step 4: represent these functions as binary decision diagrams....

Binary Decision Trees

slide 9

ide 10

Binary Decision Diagrams

Operations on BDD’s

Given BDD'’s representing boolean functions f, g, we can compute
BDD’s representing

1. the functions (=f), (f Ag), (f V g), defined pointwise, e.g.
(fAg)v) = f(v) Ag(v).

2. the function Ju(f). If the arguments of f are u, v, w, this is
defined by

(Elv(f))(uv W) = f(uv 0, W) \ f(uv 1, W)

Slide 11

Slide 12

Model Checking with respect to Perfect Recall

Theorem [van der Meyden & Shilov 99]: Model Checking

Lo, u K.,...K,} With respect to perfect recall is decidable, but
non-elementary in complexity.

This lecture: Focus on implementation for formulas of the form
O kd) where ¢ € E{Kl}

Reducing Model Checking Knowledge to BDD
operations

\

/

[

\
[
\

(

ide 13

ide 14

01020304 ...

01020304 ...

01020304 ...

viv2v3v4

vlv2v3va

viv2v3v4

ulu2u3ud

ulu2u3du4

Slide 15

Slide 16

01020304 ...

viv2Vv3V4 ...

ULlU2U3 U4 ...

Let o; be a sequence of boolean variables representing an observation

of agent 1.

Let s be a sequence of variables representing a state of the

environment.

Define

fx(oo,...,0r,s) = 1iff there exists a run r such that
1. agent 1’s observations during [0, ..., k] in r are (og, ..., 0k)
2. r(k)=s

ide 17

ide 18

Computing f; recursively

Jr+1(00, ... 0k41,8) = Ft(fu(oo, ..., 0k, t) NT(t,5) AN Oi(s) = 0p+1)

Satp(007 .. '70k78) = Tre(pvs)
Sat-g(00, ..., 0k, 8) = Sats(0o, ..., 0k, S)
Satans(00s ..., 0k, 8) = Saty(0g, ..., 0k, $) A Satg(og, ..., 0k, S)

Satg,a(00,--.,0k,8) =Vs'(fr(oo,..., 0k, 8) = Saty(og,...,0k,8"))

Model checking) *¢:

Yoo . ..oxs(fr(00, ..., 0k, 8) = Satg(og, ..., 0k, S))

Slide 19

Slide 20

MCK: a model checker for the logic of knowledge
and time

A system developed at UNSW. It can be downloaded from
http://www.cse.unsw.edu.au/~mck
You can also run it (preferably on williams) from

/import/kamen/1/peteg/bin/mck-cudd

Clock View

If p = s0, s1,... 18 a run of an environment, the clock view is the

(synchronous) local state assignment defined by

pitect(m) = (m, Oi(p(m))

10

ide 21

MCK: Current Capability

Observational |

Clock

Perfect Recall

X", ¢ € Lig,}

L{X,Kq,....Kn}

L{X,Kq,.... Kn}
L{cTL,Kq,....,Kn,C}
L{LTL,Kp,....Kn.C}

spec_obs_ltl
spec_obs_ltl
spec_obs_ctl
spec_obs_ctl

spec_obs_ltl

spec_clk_xn

spec_clk_ctl_nested

spec_spr-xn

spec_spr_ltl_nested

(spr = synchronous perfect recall)

11

