
Slide 1

COMP3152/9152

Lecture 6

Model Checking Knowledge and Time

Ron van der Meyden

Slide 2
Problem:

Given a finite state environment E, and a formula φ, determine if

E, (r, 0) |= φ for all runs r of E.

1

Slide 3

CTL - a restricted fragment of branching time
temporal logic

We defined branching time temporal logic so that if φ is a formula

then Aφ and Eφ are formulas

So, e.g., A((© p) ∨ p U q) is a formula

CTL is the logic in which the branching operators A,E apply only to

formulas in which the outermost operator is a temporal (not boolean)

operator:

E.g. A((© p) ∨ p U q) is not a CTL formula

But A(p U q), E© p A�E♦p are CTL formulas

Slide 4

Model Checking CTL + Knowledge, Observational
View

Theorem: Model Checking of φ ∈ L{K1,...,Kn,C,∀© ,∀ U ,∃ U } in E

with respect to obs is in PTIME.

2

Slide 5

Let S′ be the set of reachable states of E

label states of M = 〈S′,K1, . . . ,Kn, πe〉 by subformulas of φ

1. label s by Kiψ (Cψ) if sKit (sKCt) implies t labelled ψ

2. label s by ∀© ψ if sT t implies t labelled by ψ

3. label s by ∃(ψ1 U ψ2) if there exists a sequence s = s0, s1, . . . , sk

such that sk labelled ψ2 and for l < k slTsl+1 and sl is labelled

ψ1

Slide 6

4. label s by ¬∀(ψ1 U ψ2) if there exists a sequence

s = s0, s1, . . . , sk, . . . sm of states such that

(a) slTsl+1 for all l < m

(b) sk = sm

(c) {sk, . . . , sm} ∩ α 6= ∅

(d) either sl is not labelled ψ2 for all l ≤ m, or, for the least l

such that sl is labelled ψ2 there exists l′ < l such that sl′ is

not labelled ψ1

3

Slide 7

It’s not necessary to construct every state to run this algorithm, it

can be done symbolically.....

Step 1: represent each state s as a Boolean assignment to a set of

state variables V = {v1, . . . , vn}: s : V → {0, 1}

Step 2: represent a set X of states as a Boolean function

fX : {0, 1} × . . .× {0, 1} → {0, 1} with n arguments x1, . . . , xn, so

that fX(x1, . . . , xn) = 1 iff s ∈ X where s is the state with

s(v1) = x1, . . . s(vn) = xn.

Step 3: Compute the set [φ] = {s ∈ S | E, s |= φ} using the above

rule setwise, using this representation: e.g., f[φ1∧φ2] = f[φ1] ∧ f[φ2].

Step 4: represent these functions as binary decision diagrams....

Slide 8

Binary Decision Trees

0 1 0 1 0 1 0 1

a1

0 1

10

b1

0 1

a2

b2 b2

0 0 0

0 1

a2

b2 b2

1 0 0 1

0 1 0 1 0 1 0 1

10

b1

0 1

a2

b2 b2

1 0 0 1

0 1

a2

b2 b2

0 0 00 0

f(a1, a2, b1, b2) = (a1 = b1) ∧ (a2 = b2)

4

Slide 9

Binary Decision Diagrams
a1

b2 b2

a2

b1b1

1 0

11

0 0

0
1 1

0

0

0 1

1

Slide 10

Operations on BDD’s

Given BDD’s representing boolean functions f , g, we can compute

BDD’s representing

1. the functions (¬f), (f ∧ g), (f ∨ g), defined pointwise, e.g.

(f ∧ g)(v) = f(v) ∧ g(v).

2. the function ∃v(f). If the arguments of f are u, v,w, this is

defined by

(∃v(f))(u,w) = f(u, 0,w) ∨ f(u, 1,w)

5

Slide 11

Model Checking with respect to Perfect Recall

Theorem [van der Meyden & Shilov 99]: Model Checking

L{© , U ,K1,...,Kn} with respect to perfect recall is decidable, but

non-elementary in complexity.

This lecture: Focus on implementation for formulas of the form

© kφ where φ ∈ L{K1}

Slide 12

Reducing Model Checking Knowledge to BDD
operations

6

Slide 13

Slide 14

o1 o2 o3 o4 ...

o1 o2 o3 o4 ...

o1 o2 o3 o4 ...

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

u1 u2 u3 u4

u1 u2 u3 u4

7

Slide 15

o

o

o

o

o

o1 o2 o3 o4 ...

v1 v2 v3 v4

u1 u2 u3 u4

o

o

o

Slide 16

Let oj be a sequence of boolean variables representing an observation

of agent 1.

Let s be a sequence of variables representing a state of the

environment.

Define

fk(o0, . . . , ok, s) = 1 iff there exists a run r such that

1. agent 1’s observations during [0, . . . , k] in r are (o0, . . . , ok)

2. r(k) = s

8

Slide 17 Computing fk recursively

fk+1(o0, . . . , ok+1, s) = ∃t(fk(o0, . . . , ok, t) ∧ T (t, s) ∧Oi(s) = ok+1)

Slide 18

Satp(o0, . . . , ok, s) = πe(p, s)

Sat¬φ(o0, . . . , ok, s) = ¬Satφ(o0, . . . , ok, s)

Satα∧β(o0, . . . , ok, s) = Satα(o0, . . . , ok, s) ∧ Satβ(o0, . . . , ok, s)

SatK1α(o0, . . . , ok, s) = ∀s′(fk(o0, . . . , ok, s) ⇒ Satα(o0, . . . , ok, s
′))

Model checking © kφ:

∀o0 . . . oks(fk(o0, . . . , ok, s) ⇒ Satφ(o0, . . . , ok, s))

9

Slide 19

MCK: a model checker for the logic of knowledge
and time

A system developed at UNSW. It can be downloaded from

http://www.cse.unsw.edu.au/∼mck

You can also run it (preferably on williams) from

/import/kamen/1/peteg/bin/mck-cudd

Slide 20

Clock View

If ρ = s0, s1, . . . is a run of an environment, the clock view is the

(synchronous) local state assignment defined by

ρclocki (m) = (m,Oi(ρ(m))

10

Slide 21

MCK: Current Capability

Observational Clock Perfect Recall

Xnφ, φ ∈ L{Ki
} spec obs ltl spec clk xn spec spr xn

L{X,K1,...,Kn} spec obs ltl spec spr ltl nested

L{X,K1,...,Kn} spec obs ctl spec clk ctl nested

L{CTL,K1,...,Kn,C} spec obs ctl

L{LTL,Kn,...,Kn,C} spec obs ltl

(spr = synchronous perfect recall)

11

