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Environments (transition form)

An environment in transition form is a tuple of the form

E = 〈Se, Ie, T, O, πe〉 where

1. Se is a set of states of the environment.

2. Ie ⊆ Se, is the set of initial states of the environment.

3. T ⊆ Se × Se is a transition relation.

4. O is a tuple 〈O1, . . . , On〉 such that for each i = 1..n,

Oi : Se → O is an observation function O.

5. πe : Se × Prop → {0, 1} is a valuation.
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Assume T is serial: ∀s ∈ Se∃t ∈ Se(sT t)

A run of an environment E is an infinite sequence ρ = s0s1 . . . of

states of E such that

1. s0 ∈ Ie,

2. skTsk+1 for all k ≥ 0,

A trace of E

is a finite sequence τ = s0 . . . sm of states satisfying conditions 1 and 2.
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Local state defined wrt a view

Let ρ be a run of E. A view associates a local state with each agent

at each point of time, determining a mapping ρv : N → Ln × Se

In all cases ρv
e(m) = ρ(m)

Examples:

1. The observational view: ρobsi (m) = Oi(ρ(m)))

2. The synchronous perfect recall view:

ρ
spr

i (m) = Oi(ρ(0)) . . . Oi(ρ(m))

3. The asynchronous perfect recall view: ρ
pr

i (m) is ρ
spr

i (m) with

consecutive repetitions removed.
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System Generated by an Environment wrt a View

Let v be a view of an environment E. Define Iv(E) = (Rv(E), π) to

be the interpreted system with

1. Rv(E) the set of ρv such that ρ is a run of E.

2. π(r(m), p) = πe(re(m), p) for all r ∈ Rv(E), p ∈ Φ
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Recall, for each agent i we define the relation ∼i on points by

(r, m) ∼i (r′, m′) if ri(m) = r′i(m).

Given a point (r, m) of Iv(E), define

trace(r, m) = re(0) . . . re(m).

For two traces τ , τ ′, define τ ∼i τ ′ if there exist points (r, m), (r′, m′)

such that trace(r, m) = τ and trace(r′, m′) = τ ′ and (r, m) ∼i (r′, m′).
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Let v ∈ {obs, pr, spr}

Proposition: Suppose (r, m), (r′, m) are points of Iv(E) and let

ϕ ∈ L{K1,...,Kn,C}. If trace(r, m) = trace(r′, m′) then

Iv(E), (r, m) |= ϕ iff Iv(E), (r′, m′) |= ϕ.

If τ is a trace of E, write Iv(E), τ |= ϕ when Iv(E), (r, m) |= ϕ for

some point (r, m) with trace(r, m) = τ .
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Consider an environment E in which

• agent s (sender) can send the single message “hello” to agent r

(receiver), but can only do this once

• agent s observes a variable that records whether or not the

message has been sent

• agent r observes a variable that records whether the message has

arrived

• the channel either delivers the message either immediately, or

with a delay of one second

• the proposition p means “the message has arrived”
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<e:*, s:*, r:*><e:dly, s:send, r:*>

<e:*, s:wait, r:*>

<e:dlvr, s:send, r:*>
p

<e:*, s:*, r:*>

Ie = {w} πe(x, p) = true iff x = d.

Os(w) = ⊥, Os(t) = Os(d) = sent

Or(w) = Or(t) = ⊥, Or(d) = rcvd

Slide 10 traces(E) = {wkdm | k > 0, m ≥ 0} ∪ {wktdm | k > 0, m ≥ 0}
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element.
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Message transmission example (observational view)

Suppose agent s sends the message at time 1, and the environment

delivers the message immediately, then the agents wait for n− 1 ticks

of the clock, i.e. consider the trace wdn−1

Under the observational view,

• wdn−1 ∼r τ implies fin(τ) = d

• wdn−1 ∼s wn−1t

Thus Iobs(E), wdn−1 |= Krp but

Iobs(E), wdn−1 |= ¬Ksp.
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Message transmission example (synchronous perfect recall

view)

Under the perfect recall view,

{wdn−1}sprs = ⊥ · (sent)n−1 = {wtdn−2}sprs

so wdn−1 ∼s wtdn−2.

More generally, for each length n:

wdn−1 ∼s wtdn−2 ∼r w2dn−2 ∼s w2tdn−3 . . .

. . . ∼r wn−1d ∼s wn−1t ∼r wn
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Ispr(E), wdn−1 |= (KrKs)
jp for all j < n − 1,

Ispr(E), wdn−1 |= ¬(KrKs)
n−1p

Ispr(E), τ |= ¬Cp for all τ ∈ traces(E)
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Kripke Structures

An S5n Kripke structure is a tuple M = 〈W,K1, . . . ,Kn, π〉 where

1. W is a set of worlds

2. Ki is an equivalence relation on W for each i = 1 . . . n

3. π : W × Φ → {0, 1} is an assignment

Define KC = (
⋃

i Ki)
∗

1. M, w |= Kiφ if M, w′ |= φ for all w′Kiw

2. M, w |= Cφ if M, w′ |= φ for all w′KCw
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Given an environment E and view v, define

Mv
E = 〈traces(E),∼1, . . . ,∼n, π〉 where the ∼i are the equivalence

relations on traces defined wrt the view and π(τ, p) = πe(fin(τ), p).

Proposition: For τ ∈ traces(E) and φ ∈ L{K1,...,Kn,C},

Mv
E , τ |= φ iff Iv(E), τ |= φ

Slide 18

Model Checking at a Trace (Observational View)

Let E = 〈Se, Ie, T, O, πe〉 be a finite state environment.

A state t ∈ Se is reachable if sT ∗t for some s ∈ Ie.

Define M = 〈W,K1, . . . ,Kn, π〉 by

1. W is the set of reachable states of E.

2. sKit iff Oi(s) = Oi(t)

3. π = πe
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Proposition: For φ ∈ L{K1,...,Kn,C}, we have Iobs(E), τ |= φ iff

M, fin(τ) |= φ.

Corollary: For ϕ ∈ L{K1,...,Kn,C}, determining whether

Iobs(E), τ |= ϕ can be done in time O(|E| · |ϕ|).
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Progression Structures

A progression structure for environment E is a pair 〈M, σ〉 consisting

of an S5n Kripke structure M = 〈W,K1, . . . ,Kn, π〉 and a state

mapping σ : W → Se such that

π(w, p) = πe(σ(w), p)

for all w ∈ W and p ∈ Prop

Example: PE,n = 〈Mn, fin〉, where Mn is the substructure of M
spr

E

consisting of the traces of length n
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If P = 〈M, σ〉, Write P, w |= φ if M, w |= φ.
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The environment E operates on its progression structures by

〈M, σ〉 ∗ E = 〈M ′, σ′〉

where M ′ = 〈W ′,K′
1, . . . ,K

′
n, π′〉 is the Kripke structure with

1. W ′ = {(w, s) | w ∈ W, s ∈ Se, σ(w)Ts}

2. (w, s)K′
i(v, t) iff wKiv and Oi(s) = Oi(t)

3. π′((w, s), p) = πe(s)

4. σ′((w, s)) = s
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Proposition: Let τ = s0 . . . sk be a trace of an environment E and

let φ ∈ L{K1,...,Kn,C}. Then Ispr(E), τ |= φ iff PE,k, wτ |= φ, where

wτ = ((. . . (((s0, s1), s2), s3), . . . , sk).

Proposition: PE,n+1 is isomorphic to PE,n ∗ E
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This means we can check Ispr(E), τ |= φ as follows:

1. Construct PE,0,

2. For i = 1 . . . k construct PE,k = PE,k−1 ∗ E

3. Check PE,k, wτ |= φ using finite state model checking.
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