	COMP3152/9152 Lecture 4 Properties of Knowledge and Time Ron van der Meyden Reading, FHMV Ch 8	Slide 3	Properties of systems sync: A system \mathcal{R} is <i>synchronous</i> if for all agents <i>i</i> , if $(r,m) \sim_i (r',m')$ then $m = m'$.
T2. (T3. (RT1.	Axioms for Linear Time: LT $\bigcirc (\varphi) \land \bigcirc (\varphi \Rightarrow \psi) \Rightarrow \bigcirc \psi$ $\bigcirc (\neg \varphi) \Leftrightarrow \neg \bigcirc \varphi$ $\varphi U \psi \Leftrightarrow \psi \lor (\varphi \land \bigcirc (\varphi U \psi))$ If φ then $\bigcirc \varphi$ If $\varphi' \Rightarrow \neg \psi \land \bigcirc \varphi'$ then $\varphi' \Rightarrow \neg(\varphi U \psi)$	Slide 4	$\begin{array}{l} \textbf{Concordant intervals}\\ \textbf{Two intervals (possibly infinite) of two runs are concordant wrt agent i f agent i goes through the same sequence of local states over those intervals, not counting consecutive repeats.\\ \textbf{E.g. if}\\ r_i[19,\infty] = aaabbaacc\ldots\\ \textbf{and}\\ r_i'[2,\infty] = abaaaaaaaaaaaaaaaaaaacc\ldots\\ \textbf{then } r[19,\infty] \mbox{ and } r'[2,\infty] \mbox{ are concordant for agent } i. \end{array}$

Slide 5

Slide 9	An Axiom for Asynchronous Systems with Perfect Recall KT ^{pr} : $K_i \varphi_1 \land \bigcirc (K_i \varphi_2 \land \neg K_i \varphi_3) \Rightarrow \neg K_i \neg \{(K_i \varphi_1) U[(K_i \varphi_2) U \neg \varphi_3]\}$	Slide 11	An Axiom for Synchronous Systems with No Learning $KT^{nl,sync}$: $\bigcirc K_i \varphi \Rightarrow K_i \bigcirc \varphi$
ide 10	An Axiom for Asynchronous Systems with No Learning KT^{nl} : $Ki\varphi_1UK_i\varphi_2 \Rightarrow K_i(K_i\varphi_1UK_i\varphi_2)$	Slide 12	Class of SystemsComplete Axiomatization $\mathcal{C}, \mathcal{C}^{sync}$ $S5(C)_m + LT$ \mathcal{C}^{pr} $S5_m + LT + KT^{pr}$ $\mathcal{C}^{pr}, sync$ $S5_m + LT + KT^{pr, sync}$ \mathcal{C}^{nl} $S5_m + LT + KT^{nl}$ $\mathcal{C}^{nl}, sync$ $S5_m + LT + KT^{nl}, sync$ $\mathcal{C}^{pr,nl}$ $S5_m + LT + KT^{pr} + KT^{nl}$ $\mathcal{C}^{pr,nl}$ $S5_m + LT + KT^{pr} + KT^{nl}$ $\mathcal{C}^{pr,nl, sync}$ $S5_m + LT + KT^{pr} + KT^{nl, sync}$

e 13	 Branching Time Extend the temporal language to a variant of CTL* (Emerson & Halpern) if φ is a formula, then so is 1. Aφ (read "on all paths φ") 2. Eφ (read "on some path φ"). 	Slide 15	Axioms for Branching Time: AXB B1. $p \Rightarrow Ap$, where p is atomic B2. $\exists p \Rightarrow p$, where p is atomic B3. $A\phi \Rightarrow \phi$ B4. $A(\phi \Rightarrow \psi) \Rightarrow (A\phi \Rightarrow A\psi)$ B5. $A\phi \Rightarrow AA\phi$ B6. $\exists \phi \Rightarrow A \exists \phi$ RB. From φ infer $A\phi$.
e 14	Two runs r, r' are said to be equivalent to time n, if r[0n] = r'[0n]. (I, r, n) ⊨ Aφ if for all runs r' of I that are equivalent to r to time n, we have (I, r', n) ⊨ φ. (This is the bundle semantics (Burgess, Stirling).)	Slide 16	Interaction Axioms FC. $A \bigcirc \phi \Rightarrow \bigcirc A\phi$ Theorem: AXB + LT + FC is sound and complete for $\mathcal{L}_{\{A,\bigcirc, \mathcal{U}\}}$ in the class of all interpreted systems.

lide 17	An Interaction between Knowledge and Branching KB. $K_i \phi \Rightarrow A K_i \phi$		
lide 18	Class of SystemsComplete Axiomatization $\mathcal{C}, \mathcal{C}^{sync}$ $S5(C)_m + AXB + LT + FC + KB$ \mathcal{C}^{pr} $S5_m + AXB + LT + FC + KB + KT^{pr}$ $\mathcal{C}^{pr,sync}$ $S5_m + AXB + LT + FC + KB + KT^{pr,sync}$		