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Axioms for Linear Time: LT

T1. © (ϕ) ∧© (ϕ⇒ ψ) ⇒ ©ψ

T2. © (¬ϕ) ⇔ ¬© ϕ

T3. ϕUψ ⇔ ψ ∨ (ϕ ∧© (ϕUψ))

RT1. If ϕ then ©ϕ

RT2. If ϕ′ ⇒ ¬ψ ∧©ϕ′ then ϕ′ ⇒ ¬(ϕUψ)

1

Slide 3

Properties of systems

sync: A system R is synchronous if for all agents i, if

(r,m) ∼i (r′,m′) then m = m′.
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Concordant intervals

Two intervals (possibly infinite) of two runs are concordant wrt agent

i if agent i goes through the same sequence of local states over those

intervals, not counting consecutive repeats.

E.g. if

ri[19,∞] = aaabbaacc . . .

and

r′i[2,∞] = abaaaaaaaaaaaaaacc . . .

then r[19,∞] and r′[2,∞] are concordant for agent i.
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Properties of Systems (continued)

pr: A system R has perfect recall (or no forgetting) if for all points

(r,m) and all agents i, if (r,m) ∼i (r′,m′) then the intervals r[0,m]

and r′[0,m′] are concordant wrt agent i.
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Properties of Systems (continued)

nl: A system R has no learning if for all points (r,m) and all agents

i, if (r,m) ∼i (r′,m′) then the intervals r[m,∞] and r′[m′,∞] are

concordant wrt agent i.
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An Axiom for Synchronous Systems with Perfect

Recall

KT
pr,sync

: Ki © ϕ⇒ ©Kiϕ

o o o o o

o o o o o
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ϕ
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A Characterization of Perfect Recall

Let I be an interpreted system. Then the following are equivalent:

(a) I is a system with perfect recall.

(b) For all agents i, for all runs r, s and for all numbers n,m, if

(r,m+ 1) ∼i (s,m) then either (r,m) ∼i (s,m) or there exists a

number l < m such that (r,m) ∼i (s, l) and for all k with

l < k ≤ m we have (r,m+ 1) ∼i (s, k).
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An Axiom for Asynchronous Systems

with Perfect Recall

KT
pr

:

Kiϕ1 ∧© (Kiϕ2 ∧ ¬Kiϕ3) ⇒ ¬Ki¬{(Kiϕ1)U [(Kiϕ2)U¬ϕ3]}
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An Axiom for Asynchronous Systems

with No Learning

KT
nl

: Kiϕ1UKiϕ2 ⇒ Ki(Kiϕ1UKiϕ2)
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An Axiom for Synchronous Systems

with No Learning

KT
nl,sync

: ©Kiϕ⇒ Ki © ϕ
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Class of Systems Complete Axiomatization

C, Csync S5(C)m+LT

Cpr S5m+ LT +KTpr

Cpr,sync S5m+ LT + KTpr,sync

Cnl S5m+ LT + KTnl

Cnl,sync S5m+ LT + KTnl,sync

Cpr,nl S5m+ LT + KTpr+ KTnl

Cpr,nl,sync S5m+ LT + KTpr+ KTnl,sync
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Branching Time

Extend the temporal language to a variant of CTL∗ (Emerson &

Halpern)

if φ is a formula, then so is

1. Aφ (read “on all paths φ”)

2. Eφ (read “on some path φ”).
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Two runs r, r′ are said to be equivalent to time n, if

r[0 . . . n] = r′[0 . . . n].

(I, r, n) |= Aϕ if for all runs r′ of I that are equivalent to r to

time n, we have (I, r′, n) |= ϕ.

(This is the bundle semantics (Burgess, Stirling).)
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Axioms for Branching Time: AXB

B1. p⇒ Ap, where p is atomic

B2. ∃p⇒ p, where p is atomic

B3. Aφ⇒ φ

B4. A(φ⇒ ψ) ⇒ (Aφ⇒ Aψ)

B5. Aφ⇒ AAφ

B6. ∃φ⇒ A∃φ

RB. From ϕ infer Aφ.
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Interaction Axioms

FC. A© φ⇒ © Aφ

Theorem: AXB + LT + FC is sound and complete for L{A,© , U } in

the class of all interpreted systems.
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An Interaction between Knowledge and Branching

KB. Kiφ⇒ AKiφ
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Class of Systems Complete Axiomatization

C, Csync S5(C)m+ AXB + LT + FC + KB

Cpr S5m+ AXB + LT + FC + KB +KTpr

Cpr,sync S5m+ AXB + LT + FC + KB + KTpr,sync
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