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Model Checking and Axiomatization

COMP3152/9152
Lecture 2

Ron van der Meyden

Reading, FHMYV Ch 3

Axioms for Reasoning about Knowledge

Write Ly for the language based on a set of operators X.
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Model Checking

Problem: Given a structure M, a world w of M and a formula ¢,
decide if M, w = ¢.

Theorem: For finite M, and ¢ € L(k, .. K, cq) there exists an
algorithm that solves the problem in time linear in |M| - |¢|, where
|M| and |¢| are the amount of space needed to write down M and ¢,

respectively.

Subformulas

The set of subformulas subformulas(¢) of a formula are defined as

follows:
subformulas(p) = {p}
subformulas(—¢) = {—¢} U subformulas(¢)

subformulas(¢; A ¢2) =
{é1 A ¢2} U subformulas(¢;) U subformulas(¢ps)

subformulas(K;¢) = {K;¢} U subformulas(¢)
subformulas(Cg¢) = {Caé} U subformulas(¢p)
subformulas(Dg¢) = {Dg¢} U subformulas(g)
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Examples:

The subformulas of K;(K;p) A Cgq are:
K;(Kip) A Caq

K;(Kip), Caq

Kipa b, q

Algorithm

Input: A finite structure M = (W, 7,K1,...,K,) and a formula
¢ € L{K,,..Kn,Cc}

Order subformulas(¢) as ¢1, @2, ..., ¢, where ¢ = ¢ and
subformulas(¢;) C {¢1,...,¢;} for 0 < j.

For j=1...k,
For all worlds w € W, label w by either ¢; or —¢;, as follows:
if ¢; = p then label w by p iff 7(w)(p) = true
if $; = a A B then label w by ¢; iff w is labelled by both o and 3
if ¢; = K;a then
1. label w by —¢; if w is labelled by -«
2. if w'K;w and w has been labelled by —¢; then label w’ by —¢;
3. label all other worlds by ¢;
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If ¢; = Cga,
1. Label all worlds w that are labelled by —a by -Cga

2. Do a depth first search from these worlds, label all worlds
reached by -Cga

3. Label all worlds not labelled in the depth first search by Cga.

This algorithm can be implemented to run in time linear in |M| - |¢|.

Exercise: Extend this to an algorithm for Lk, . Kk, ce.pey- What is

the complexity of the extension?
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Validity

A formula ¢ is wvalid if for all Kripke structures M and all states w of
M, we have M, w = ¢.

Write |= ¢ if ¢ is valid.

Question: how can we prove that/decide if a given formula ¢ is valid?

Axioms for Knowledge

KO. all substitution instances of valid formulas of propositional
logic

K2 Kip = ¢

K4. - ip = K;— P
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Rules of inference
Nec. (Necessitation) If ¢ then K¢
MP. (Modus Ponens) If ¢ and ¢ = 1 then ).

Proofs

A proof of a formula ¢ is a sequence of formulas ¢1, ¢o, . ..

that ¢ = ¢ and for all j =1...k, either
1. ¢; is an axiom, or
2. ¢; follows from ¢1,...,¢;—1 using a rule of inference.

Write F ¢ if there exists a proof of ¢.

, O such
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Example

A proof of p = K;—K;—p:

1.
2.

K,—p=-p (K2)

(Ki=p = —p) = (p = ~Ki~p)
(KO, instance of (A = B) = (-B = —A)

.p=-K,—p (1,2, MP)
. ﬁKiﬁp = KiﬁKiﬁp (K4)

. (p = ﬁKiﬁp) = ((ﬁKiﬁp = KiﬁKiﬁp) = (p = KiﬁKiﬁp))

(KO, instance of (A= B)= (B=C) = (A= C)
(ﬁKiﬁp = KiﬁKiﬁp) = (p = KiﬁKiﬁp) (475, NIP)
p= K;=K;=p (3,6, MP)

Warning re the Deduction Theorem

For propositional logic, the following pattern of reasoning is sound:

If, assuming ¢, ¥ can be proved, then ¢ = 1 can be proved.

TLe.,

¢t implies - ¢ = ¢

This does not hold for the logic of knowledge!
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Example (incorrect deduction):

1. p (assumption)

2. K;p  (from 1 using Nec.)

3. p = K;p (using Deduction Theorem)
But p = K;p is NOT valid.

(Exercise - construct a structure in which it fails.)

For formulas ¢ € Ly, . Kk, .co-
Theorem: (Soundness) If F ¢ then |= ¢.
Theorem: (Completeness) If |= ¢ then - ¢.

where I~ is defined using the axioms and rules above.
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Proving Soundness
Suppose that ¢1, ¢o, ..., ¢ is a proof of ¢.
Show that |= ¢ by induction on k, using

1. If ¢ is an axiom then | ¢

2. If the inputs to a rule of inference are valid then so is the output.

Proving Completeness
Define ¢ to be consistent if not - —¢.

Define ¢ to be satisfiable if there exists a structure M and world w
such that M, w = ¢.

To prove: = ¢ then F ¢.
We prove: if ¢ is consistent then ¢ is satisfiable. (*)

This suffices: if not F ¢
then not - ——¢

so —¢ is satisfiable (by (*))
so not = ¢.
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Define subformulas™(¢) to be
subformulas(¢) U {—¢ | ¢ € subformulas(®)}.

Given a set X C subformulas™(¢), define

ox =\ v

PpeX

Define X C subformulas™(¢) to be an atom if
1. ¢x is consistent

2. for all larger sets Y C subformulas™(¢) such that X C Y, ¢y is

not consistent.

Now construct the structure M = (W, x, K1, ..., K,) where
1. W is the set of atoms of ¢
2. w(w)(p) = trueiff p € w
3. wkw' iff w/K; =w'/K;

where w/K; = {4 | K;3) € w}

10
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Lemma 1: Let X; ..., X} be the set of all atoms of ¢. Then
Fox, V...Vox,.

Proof idea: if X is an inconsistent subset of subformulas™(¢), then
F-¢x.

Lemma 2: For all ¢ € subformulas™(¢) and worlds w of M, we
have M, w E ¢ iff p € W.

Proof idea: induction on the complexity of 1

So: if ¢ is consistent, then there exists an atom w containing ¢, so
there M, w = ¢.

Deciding Validity

Note that the proof actually shows that if ¢ is satisfiable iff there
exists a model for ¢ with 2/¢/ worlds.

This implies that there is an algorithm that decides if ¢ is satisfiable:

Construct all structures of size 2/¢!.

Test if any of these satisfies ¢, if so, return “yes”, else return “no”.

11
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Axioms for Common Knowledge

Adding the following axioms and rule of inference gives a sound and

complete axiomatization for Lix, . x..ce}-

Cl. M = Egp < A, Kip
C2. M = Cap = Eq(p A Cayp)

Rules of Inference

RC.If F o = Eq(v A ¢) then F ¢ = Cgp

In the completeness proof, the same construction of M works when

we add common knowledge.
For the proof of Lemma 2, we use

Lemma: Let R be the set of atoms w’ such that w ~g w’ in M.
Then & ¢ = Ca(Vyep(Puw))-

12
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Axioms for Distributed Knowledge

Adding the folowing axioms gives a sound and complete
axiomatization when we add D¢ to the language:

Dy <= Ki¢
E Dgédp = Dgiop it G C G

13




