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Lecture 12

Knowledge and Probability

Ron van der Meyden
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The Monty Hall Puzzle

Monty Hall is a television quiz show host. You are the contestant,

and have the opportunity to win a prize.

There are three doors. Behind one door is a car. Behind each of the

other doors is a goat. You will win whatever is behind the door you

pick.

You pick a door, and then Monty opens another door. There is a

goat there.

Monty asks: “Would you like to switch doors, or stick with the door

that you have picked?”

What should you do?
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Probability Spaces

Recall that a probability space is a tuple (W,F , µ), where

1. W is a nonempty set,

2. F is an algebra over W , i.e., a set of subsets of F that contains

W and is closed under union and complementation: if U, V ∈ F

then U ∪ V ∈ F , U ∩ V ∈ F and W \ U ∈ F .

3. µ : F → [0, 1] satisfies

(a) µ(W ) = 1

(b) µ(U ∪ V ) = µ(U) + µ(V ) if U ∩ V = ∅.
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If W is infinite we also require that

1. F is a σ-algebra, i.e., if U1, U2, . . . ∈ F then
⋃

i∈N
Ui ∈ F ,

2. µ is countably additive, i.e., if Ui ∩ Uj = ∅ for i 6= j, then

µ(
⋃

i∈N

Ui) =
∑

i∈N

µ(Ui)
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Example

Tossing two coins:

W = {HH,HT, TH, TT }

F = P(W )

µ({HH}) = 1/4, µ({HT }) = 1/4,

µ({TH}) = 1/4, µ({TT }) = 1/4

Note that it follows that, e.g.,

µ({HH,TT }) = µ({HH}) + µ({TT })) = 1/4/+ 1/4 = 1/2

In general, if W is finite, µ is defined by its values on singletons, and

we write µ(w) for µ({w}) for w ∈ W .
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Conditioning

Conditional Probability captures revision of uncertainty when given

new information.

µ(U |V ) = µ(U ∩ V )/µ(V )

Example: Two coins are tossed. You are told that the outcome of

the two coin tosses was not HH . What is the probabilty

1. the first coin was H?

2. the coins tosses were the same?
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Multi-agent Probability

A probability structure for n agents is a tuple (W,PR1, . . . ,PRn, π)

where

1. W is a set of worlds and

2. each PRi is a probability assignment, mapping each world w ∈W

to probability space PRi(w) = (Ww,i,Fw,i, µw,i)

3. π : W ×Φ → {0, 1} is an intrerpretation of atomic propositions Φ.
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Example - Two agent Coin Tossing

Agent 1 and 2 each toss a coin, and see only their own coin toss.

W = {HH,HT, TH, TT }

PR1(HT ) = ({HH,HT },P({HH,HT }), µ1,HT)

PR2(HT ) = ({TT,HT },P({TT,HT}), µ2,HT)

where

µ1,HT (HH) = 1/2, µ1,HT (HT ) = 1/2

µ2,HT (TT ) = 1/2, µ2,HT (HT ) = 1/2
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Conditions on Probability Strctures

Uniformity. For all i, v, w, if PRi(w) = (Ww,i,Fw,i, µw,i) and

v ∈ Ww,i, then PRi(v) = PRi(w).
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Logic of Probability - Syntax

Let Φ be a set of atomic propositions. The following are formulas:

1. p, where p ∈ Φ

2. φ ∧ ψ, ¬φ, where φ, ψ are formulas

3. a1li1(φ1) + . . .+ aklik
(φk) > ak+1, where the ai are real numbers,

i1, . . . , ik are agents, and φ1, . . . , φk are formulas.
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Other sorts of inequalities can be defined, e.g.,

li(φ) > li(ψ) by li(φ) − li(ψ) > 0

ali(φ) + blj(ψ) ≥ c by ¬(ali(φ) + blj(ψ) < c)

Examples:

l1(p) + l1(¬p) = 1

l1(p ∧ q) + 2l2(p ∨ q) > 1
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Logic of Probability, semantics

Let M = (W,PR1, . . . ,PRn, π) be a probability structure

Define the semantics using a function t 7→ [t]M,w (where w ∈W )

whose value is a number if t is a term:

[li(φ)]M,w = µw,i({u ∈W | M,u |= φ} ∩Wi,w)

[a · t]M,w = a · [t]M,w

[t1 + t2]M,w = [t1]M,w + [t2]M,w

Define satisfaction using:

M,w |= t > c if [t]M,w > c
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Example

In the two agent coin tossing example, suppose

pi,x means “agent i tossed x”

Then

M,HH |= l1(p1,H) = 1

M,HH |= l2(p1,H) = 1/2

M,HT |= l2(p1,H) = 1/2

M,HH |= l1(l2(p1,H) = 1/2) = 1
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Axiomatizing the Logic of Probability

Prop. All substitution instances of propositional logic

MP. From φ and φ⇒ ψ deduce ψ

QU1. li(φ) ≥ 0

QU2. li(true) = 1

QU3. li(φ ∧ ψ) + li(φ ∧ ¬ψ) = li(φ)

QUGen. From φ ⇐⇒ ψ infer li(φ) = li(ψ).

Ineq. All substitution instances of valid linear inequality

formulas.
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Examples of valid linear inequality formulas:

x+ 3y ≥ 0 ⇒ 2y + x+ y ≥ 0

x+ y ≥ 1 ∧ 2x+ y ≥ 0 ⇒ 3x+ 2y ≥ 1

Slide 16

Let Mmeas
n be the set of probability structures for n agents in which

all sets are measurable, i.e., for which for each w, i, there exists a set

X such that Fw,i = P(X).

Theorem: The above axiomatization is sound and complete with

respect to Mmeas
n .
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Combining Multi-agent Knowledge and Probability

An epistemic probability structure for n agents is a tuple

(W,K1, . . . ,Kn,PR1, . . . ,PRn, π) where

1. W is a set of worlds and

2. each Ki is an equivalence relation on W ,

3. each PRi is a probability assignment, mapping each world w ∈W

to probability space PRi(w) = (Ww,i,Fw,i, µw,i)

4. π : W × Φ → {0, 1} is an interpretation of atomic propositions Φ.

Slide 18

Conditions on Probability Structures

Uniformity. For all i, v, w, if PRi(w) = (Ww,i,Fw,i, µw,i) and

v ∈ Ww,i, then PRi(v) = PRi(w).

State Dependent Probability. For all i, v, w, if v ∈ Ki(w), then

PRi(v) = PRi(w).

Consistency. For all i and w, if PRi(w) = (Ww,i,Fw,i, µw,i) then

Ww,i ⊆ Ki(w).

If M satisfies State Dependent Probability and Consistency then it

satisfies Uniformity.
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A language for knowledge and probability

Extend the language for probability, by adding formulas Kiφ, with

the usual semantics...

M,w |= Kiφ if M,w′ |= φ for all w′Kiw.
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Example- Two agent Coin tossing

Extending the previous example...

K1(HH) = {HT,HH} and

M,HH |= K1(l2(p1,H) = 1/2)
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Example - differing intuitions

Alice has a coin, which she tosses. Bob does not see the outcome.

After the toss, what is Bob’s probability of Heads?

Intuition 1: KB(lB(pA,H) = 0 ∨ lB(pA,H) = 1

¬KB(lB(pA,H) = 0) ∧ ¬KB(lB(pA,H) = 1)

Intuition 2: KB(lB(pA,H) = 1/2)

We can model both intuitions.
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Axiomatizing Knowledge and Probability

Theorem: The axiomatic system that combines all the axioms and

inference rules for probability with the axioms and inference rules of

S5n is sound and complete for measurable epistemic probability

structures.
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Adding probability to interpreted systems

A probability system is a tuple (R,PR1, . . .PRn) where

1. R is a set of runs

2. each PRi is a probability assignment that associates each point

(r,m) of R with a probability space

PRi(r,m) = (Wr,m,i,Fr,m,i, µr,m,i).

Generally, Wr,m,i will be a set of points of R.
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Assigning probability to runs

Suppose that

1. runs have finite length k + 1,

2. there is a probability distribution P0 on the initial states of the

system, and

3. for each run r and time j < k + 1, we can assign a probability to

each next possible state, i.e., there is a probability distribution

Pr,j over the set of states

{r′(j + 1) | r[0 . . . j] = r′[0 . . . j]}

at time j + 1 in runs that extend r[0 . . . j].
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Then we can assign a run r the probability

µR(r) = P0(r(0)) · Pr,0(r(1)) · Pr,1(r(2)) · . . . · Pr,k(r(k + 1))

Fact: µR is a probability distribution on the set of runs R of length

k + 1.
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Example- Tossing a coin

Suppose that Alice has a fair (1/2 H, 1/2 T) coin F and baised (1/3

H, 2/3 T) coin B in her pocket. She randomly (1/2, 1/2) picks a coin

and tosses it. What is the probability of heads?

Then

µR(FH) = PFH,0(F ) · PFH,1(FH) = 1/2 · 1/2 = 3/12

µR(BH) = PBH,0(B) · PBH,1(BH) = 1/2 · 1/3 = 2/12

So the probability of obtaining heads in a run is 5/12

We can draw this as a tree...
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Transition Probabilities from Probabilistic
Protocols

A probabilistic protocol for agent i (or the environment e) is a

mapping P that maps each local state s of agent i (or global state s)

to a probability space Pi(s) = (Ai,P(Ai), µi,s) over the set of actions

of agent i (the environment).

Given a transition function τ , and a joint probabilistic protocol P,

we define Pr,m as follows:

Pr,m(t) =
∑

a:τ(a)(r(m))=t

µe,r(m)(ae) · µ1,ri(m)(a1) · . . . µn,rn(m)(an)
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From probability on runs to probability on points

If U is a set of points and S a set of runs, both from a set of runs R,

define

S(U) = {r ∈ S | (r,m) ∈ U for some m}

U(S) = {(r,m) ∈ U | r ∈ S}
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Suppose that agents are synchronous (this is the easiest case to

handle).

We can now assign each agent i a probability space

PRi(r,m) = (Wr,m,i,Fr,m,i, µr,m,i). at each point (r,m) as follows:

Wr,m,i = Ki(r,m) = {(r′,m) | ri(m) = r′i(m)}

Fr,m,i = {Ki(r,m)(S) | S ∈ FR}

µr,m,i(U) = µR(R(U) | R(Ki(r,m))) for U ∈ Fr,m,i

Fact: This is a probability space.
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If agents have perfect recall, we can understand the evolution of their

probabilities as obtained by conditioning...

For U a set of points, define U− = {(r,m) | (r,m+ 1) ∈ U}

Proposition: If R is a system with synchronous perfect recall, then

for all points (r,m) and agents i, if U ∈ Fr,m+1,i then U− ∈ Fr,m,i

and

µr,m+1,i(U) = µr,m,i(U
− | Ki(r,m+ 1)−)
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Analysis of the Monty Hall Problem

Answer: what you should do depends on a number of extra

assumptions, in particular on Monty’s protocol.

Assume: the location of the car is uniformly distributed.

Case 1: whatever door you pick, Monty randomly opens another

door.

(It doesn’t help to switch)

Case 2: If you pick the door with a car, Monty randomly chooses

another door. If you pick a door with a goat, Monty chooses the door

with the other goat.

(It helps to switch).
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