Slide 1	COMP3152/9152 Lecture 11 Variants of Common Knowledge Ron van der Meyden	Slide 3	Say that \mathcal{I} is a <i>finite state interpreted system</i> if for all agents <i>i</i> , the set $L_i = \{r_i(n) \mid (r, n) \text{ a point of } \mathcal{I}\}$ is finite. (Note that the number of points is still infinite, as may be the number of environment states $r_e(n)$. Example: Let <i>E</i> be a finite state environment, as defined in Lecture 5. Then $\mathcal{I}^{obs}(E)$ is a finite state interpreted system.
Slide 2	An apparent paradox: Common Knowledge seems to be esential for coordinated action, BUT, in many contexts (e.g. asynchronous message passing, unreliable message passing, unbounded message delivery), common knowledge is hard to attain.	Slide 4	Theorem: Let \mathcal{I} be an interpreted finite state system, let l be the minimum of $ L_i $, and define $k = 2l - 1$. Then $\mathcal{I} \models C_G \phi \iff E_G^k \phi.$ So common knowledge collapses to a finite level of knowledge in such systems.

Slide 5	Recall from Lecture 5: In a system where agents have perfect recall, and a "hello" message is either delivered immediately, or with a delay of one tick of the clock, the fact "the message has been delivered" is never common knowledge. More generally, Scenario 1: if a message sent at time m is delivered at a random time between $m + 1$ and $m + \epsilon$, then for a "hello" message, the fact "the message has been delivered" is never common knowledge.	Slide 7	What is the difference in the two scenarios? In the first, Bob has uncertainty about when the message was sent. In the second, Bob is certain about the sending time, and there is a simultaneous event common to Alice and Bob: $time = m + \epsilon$.
Slide 6	A variant: Scenario 2: Suppose a message sent at time m is delivered by time $m + \epsilon$. Suppose Alice and Bob use the same global clock and have synchronous perfect recall. At time m , Alice sends to Bob: "this message is being sent at time m : hello". Then at time $m + \epsilon$, it is common knowledge to Alice and Bob that the message has been delivered.	Slide 8	Events An <i>event</i> in a system is a subset e of the set of points Event e is <i>local</i> to agent i if there is a set $X \subseteq L_i$ of agent i 's local states such that $(r, m) \in e$ iff $r_i(m) \in X$. A <i>state event</i> is an event e such that there exists a set X of global states such that $(r, m) \in e$ iff $r(m) \in X$.

Given a state event e, we can define an atomic proposition ϕ_e such Theorem: that $(\mathcal{I}, r, m) \models \phi_e$ iff $(r, m) \in e$. (a) For every formula ϕ the ensemble for G defined by Conversely, for every formula ϕ , there is an event $\mathbf{e}(i) = ev_{\mathcal{T}}(K_i C_G \phi)$ is perfectly coordinated. Slide 11 $ev_{\mathcal{I}}(\phi) = \{(r, m) \mid (\mathcal{I}, r, m) \models \phi\}$ (b) If \mathbf{e} is a perfectly coordinated ensemble for G, then for every $i \in G$ we have $\mathcal{I} \models \psi_{\mathbf{e}(i)} \Rightarrow K_i C_G \psi_{\mathbf{e}(i)}$. **Lemma:** An event e is local to process i in a system \mathcal{I} iff (b) If \mathbf{e} is a perfectly coordinated ensemble for G, then we have $\mathcal{I} \models \psi_e \Rightarrow K_i \psi_e.$ $\mathcal{I} \models \psi_{\mathbf{e}} \Rightarrow K_i C_G \psi_{\mathbf{e}}.$ **Lemma:** $\mathcal{I} \models \phi \Rightarrow K_i \phi$ iff $ev_{\mathcal{I}}(\phi)$ is local to process *i* in \mathcal{I} . Simultaneous Events An event ensemble for a group G is a mapping **e** from $i \in G$ to events **Temporal Imprecision** $\mathbf{e}(i)$ local to i. In real systems, clock drift is an issue. An event ensemble is *perfectly coordinated* if $\mathbf{e}(i) = \mathbf{e}(j)$ for all Slide 12 $i, j \in G$. A system \mathcal{R} has temporal imprecision if for all points (r, m) and processes $i \neq j$, there exists a point (r', m') such that $r'_i(m) = r_i(m)$ (Thus for all points (r, m), we have $(r, m) \in \mathbf{e}(i)$ iff $(r, m) \in \mathbf{e}(j)$. but $r'_{i}(m') = r_{j}(m+1)$. For an even ensemble **e**, define the proposition $\psi_{\mathbf{e}}$ by (i is unsure about j's rate of progress.) $\psi_{\mathbf{e}} = \bigvee_{i \in G} \psi_{\mathbf{e}(i)}$

Slide 9

lide 10

lide 13	Define ensemble \mathbf{e} to be <i>nontrivial</i> if there exists a run r and times m, m' such that $(r, m) \in \bigcup_{i \in G} \mathbf{e}(i)$ but $(r, m') \notin \bigcup_{i \in G} \mathbf{e}(i)$ Proposition: In a system with temporal imprecision, there are no nontrivial perfectly coordinated ensembles for G , if $ G \ge 2$. Corollary: If \mathcal{I} is a system with temporal imprecision, ϕ is any formula and $ G \ge 2$ then for all runs r and times m , if $(\mathcal{I}, r, m) \models C_G \phi$ then $(\mathcal{I}, r, 0) \models C_G \phi$.	Slide 15	Extend the language by adding a propostion x For each formula ϕ in the extended language, define $f_{\phi} : \mathcal{P}(Points(\mathcal{I})) \to \mathcal{P}(Points(\mathcal{I}))$ such that intuitively, $f_{\phi}(A)$ is the set of points satisfying ϕ if we interpret x as being true at a point (r, m) iff $(r, m) \in A$. Inductively, $f_x(A) = A$ $f_p(X) = \{(r, m) \mid \pi(r(m), p) = 1\}$ $f_{\neg \phi}(A) = Points(\mathcal{I}) \setminus f_{\phi}(A)$ $f_{\phi \land \psi}(A) = f_{\phi}(A) \cap f_{\psi}(A)$ $f_{K_i\phi}(A) = \{(r, m) \mid (r, m) \sim_i (r', m') \Rightarrow (r'm') \in f_{\phi}(A)\}$
lide 14	Fixpoints Consider the equivalence $C_G \phi \iff E_G(\phi \wedge C_G \phi)$ We can understand this as saying that $C_G \phi$ is a solution of the "equation" $x \iff E_G(\phi \wedge x)$ This can be made precise using functions $f: \mathcal{P}(Points(\mathcal{I})) \to \mathcal{P}(Points(\mathcal{I}))$	Slide 16	$f_{E_G\phi}(A) = \bigcap_{i \in G} f_{K_i\phi}(A)$ and $f_{C_G\phi}(A) = \bigcap_{l > 0} f_{E_G\phi}^l(A)$ where $f^0(A) = A$ and $f^{l+1}(A) = f(f^l(A)).$

The following justifies the intuitive interpretation of f_{ϕ} given above. Write $\phi^{\mathcal{I}}$ for $\{(r,m) \mid (\mathcal{I},r,m) \models \phi\}$. Then for every formula ϕ that does not contain x , we have $f_{\phi}(A) = \phi^{\mathcal{I}}$ More generally, for formulas ϕ that contain x , write $\phi[x/\psi]$ for the result of replacing all occurrences of x in ϕ by ψ . Then $f_{\phi}(\psi^{\mathcal{I}}) = (\phi[x/\psi])^{\mathcal{I}}$	Slide 19	Suppose $f : \mathcal{P}(S) \to \mathcal{P}(S)$ and $A \subseteq S$ A is a fixpoint of f if $f(A) = AB$ is a greatest fixpoint of f if B is a fixpoint of f and for all fixpoints A of f , we have $A \subseteq B$. B is a least fixpoint of f if B is a fixpoint of f and for all fixpoints $Aof f, we have B \subseteq A.$
Now note that $\mathcal{I} \models C_G \phi \iff E_G(\phi \wedge C_G \phi)$ is equivalent to $(C_G \phi)^{\mathcal{I}} = (E_G(\phi \wedge C_G \phi))^{\mathcal{I}}$ which is equivalent to $f_{E_G(\phi \wedge x)}(A) = A$ where $A = (C_G \phi)^{\mathcal{I}}$. Say: $(C_G \phi)^{\mathcal{I}}$ is a fixpoint of $f_{E_G(\phi \wedge x)}$	Slide 20	f is monotone if for all sets $A \subseteq B$, we have $f(A) \subseteq f(B)$. Lemma: If every occurrence of x in ϕ occurs in the scope of an even number of negation symbols, then the function f_{ϕ} is monotone. (Example: x occurs in the scope of an even number (viz. 0) of negation symbols in $E_G(\phi \land x)$.) Lemma: Every monotone function has a greatest and a least fipoint

9

lide 17

lide 18

ide 21	Mu-calculus Extend the language by adding operators for least and greatest fixpoints. For every monotone formula ϕ (such that x occurs in the scope of an even number of negation symbols), the following are formulas: $\mu x[\phi]$ - the least fixpoint of $\phi(x)$ $\nu x[\phi]$ - the greatest fixpoint of $\phi(x)$ Semantically: $f_{\mu x[\phi]}(A)$ is the least fixpoint of f_{ϕ} $f_{\nu x[\phi]}(A)$ is the greatest fixpoint of f_{ϕ} $(\mathcal{I}, r, m) \models \mu x[\phi]$ iff $(r, m) \in f_{\mu x[\phi]}(\emptyset)$ $(\mathcal{I}, r, m) \models \nu x[\phi]$ iff $(r, m) \in f_{\nu x[\phi]}(\emptyset)$	Slide 23	Properties of mu-calculus operators Lemma: let ψ be a monotone formula and let \mathcal{I} be an interpreted system. Then (a) $\models \psi[x/\nu x[\psi]] \iff \nu x[\psi]$, and (b) if $\mathcal{I} \models \phi \Rightarrow \psi[x/\phi]$ then $\mathcal{I} \models \phi \Rightarrow \nu x[\psi]$. Note that if we take ψ to be $E_G(\phi \land x)$, where $C_G \phi = \nu x \psi$, (a) says: $\models E_G(\phi \land C_G \phi) \iff C_G \phi$ If we take ψ to be $E_G(\psi \land x)$, then (b) says: if $\mathcal{I} \models \phi \Rightarrow E_G(\psi \land \phi)$ then $\mathcal{I} \models \phi \Rightarrow C_G \psi$.
lide 22	Common Knowledge expressed in mu-calculus $\models C_G(\phi) \iff \nu x(E_G(\phi \land x))$	Slide 24	 Approximations to Common Knowledge We have seen simultaneous agreement requires common knowledge of agreement common knowledge is sometimes impossible to obtain. Questions: Can we make do with weaker notions of agreement? What types of knowledge do such weaker forms of agreement require?

lide 25	Epsilon-coordination Say that an ensemble \mathbf{e} for G is ϵ -coordinated if the local events in \mathbf{e} never happen more than ϵ time units apart, i.e., if $(r, m) \in \mathbf{e}(i)$ for some $i \in G$, then there exists an interval $I = [m', m' + \epsilon]$ such that $m \in I$ and for all $j \in G$ there exists $m_j \in I$ such that $(r, m_j) \in \mathbf{e}(j)$.	Slide 27	Epsilon-group knowledge Define $E_G^{\epsilon} \phi$ by $(\mathcal{I}, r, m) \models E_G^{\epsilon} \phi$ if there exists an interval $I = [m', m' + \epsilon]$ such that $m \in I$ and for all $j \in G$ there exists $m_j \in I$ such that $(\mathcal{I}, r, m_j) \models K_j \phi$. In the example: $\mathcal{I} \models \mathtt{sent}_A(\mu) \Rightarrow E_{\{A,B\}}^{\epsilon}(\mathtt{sent}_A(\mu))$
lide 26	Example: suppose that messages sent by A at time m are guaranteed to be delivered to B by time $m + \epsilon$. Then the event \mathbf{e} for $\{A, B\}$ defined by $\mathbf{e}(i) = (K_i \mathtt{sent}_A(\mu))^T$ for $i \in \{A, B\}$ is ϵ -coordinated.	Slide 28	Epsilon-Common Knowledge $C_{G}^{\epsilon}\phi = \nu x[E_{G}^{\epsilon}(\phi \wedge x)]$ This has the following properties: $\models E_{G}^{\epsilon}(\phi \wedge C_{G}^{\epsilon}\phi) \iff C_{G}^{\epsilon}\phi$ If $\mathcal{I} \models \phi \Rightarrow E_{G}^{\epsilon}(\psi \wedge \phi)$ then $\mathcal{I} \models \phi \Rightarrow C_{G}^{\epsilon}\psi$. $\models C_{G}^{\epsilon}(\phi) \Rightarrow C_{G}^{\epsilon}(C_{G}^{\epsilon}\phi) \text{ (positive introspection)}$ (but not the other S5 properties!)

Relating Epsilon-coordination and Epsilon-Common Knowledge
Proposition: Let \mathcal{I} be an interpreted system and G a group of agents.
(a) For every formula ϕ , the ensemble e for <i>G</i> defined by $\mathbf{e}(i) = ev_{\mathcal{I}}(K_i C_G^{\epsilon} \phi)$ is ϵ -coordinated.
(b) If e is an ϵ -coordinated ensemble for G , then for every $i \in G$ we have $\mathcal{I} \models \psi_{\mathbf{e}(i)} \Rightarrow K_i C_G^{\epsilon} \psi_{\mathbf{e}(i)}$.
(c) If e is an ϵ -coordinated ensemble for G , then $\mathcal{I} \models \psi_{\mathbf{e}} \Rightarrow K_i C_G^{\epsilon} \psi_{\mathbf{e}}$.

Eventual Coordination

An ensemble **e** for G is eventually-coordinated if for every run r, if $(r,m) \in \mathbf{e}(i)$ for some $i \in G$, then for all $j \in G$ there exists m_j such that $(r,m_j) \in \mathbf{e}(j)$.

ide 30 This similarly corresponds to *eventual common knowledge*, defined by

$$C_G^{\Diamond}\phi = \nu x [E_G^{\Diamond}(\phi \wedge x)]$$

where

lide 29

 $(\mathcal{I}, r, m) \models E_G^{\Diamond} \phi$ if for each $i \in G$ there exists m_i such that $(\mathcal{I}, r, m_i) \models K_i \phi$.

More coordination concepts

Slide 31

Time-stamped coordination: each agent has a local clock. There exists a time t such that the event $\mathbf{e}(i)$ happens for each $i \in G$ at time t on agent i's local clock.

Probabilistic Coordination: there exists an ϵ such that the events $\mathbf{e}(i)$ happen simultaneously with probability $1 - \epsilon$.

A notion of common knowledge can be defined for each such that a similar correspondence holds.

15