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Lecture 11

Variants of Common Knowledge
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An apparent paradox:

Common Knowledge seems to be esential for coordinated action,

BUT, in many contexts (e.g. asynchronous message passing,

unreliable message passing, unbounded message delivery), common

knowledge is hard to attain.
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Say that I is a finite state interpreted system if for all agents i, the set

Li = {ri(n) | (r, n) a point of I}

is finite.

(Note that the number of points is still infinite, as may be the

number of environment states re(n).

Example: Let E be a finite state environment, as defined in Lecture

5. Then Iobs(E) is a finite state interpreted system.
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Theorem: Let I be an interpreted finite state system, let l be the

minimum of |Li|, and define k = 2l − 1. Then

I |= CGφ ⇐⇒ EkGφ.

So common knowledge collapses to a finite level of knowledge in such

systems.
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Recall from Lecture 5:

In a system where agents have perfect recall, and a “hello” message is

either delivered immediately, or with a delay of one tick of the clock,

the fact “the message has been delivered” is never common

knowledge.

More generally,

Scenario 1: if a message sent at time m is delivered at a random

time between m+ 1 and m+ ǫ, then for a “hello” message, the fact

“the message has been delivered” is never common knowledge.
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A variant:

Scenario 2: Suppose a message sent at time m is delivered by time

m+ ǫ. Suppose Alice and Bob use the same global clock and have

synchronous perfect recall.

At time m, Alice sends to Bob: “this message is being sent at time

m: hello”.

Then at time m+ ǫ, it is common knowledge to Alice and Bob that

the message has been delivered.
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What is the difference in the two scenarios?

In the first, Bob has uncertainty about when the message was sent.

In the second, Bob is certain about the sending time, and there is a

simultaneous event common to Alice and Bob: time = m+ ǫ.
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Events

An event in a system is a subset e of the set of points

Event e is local to agent i if there is a set X ⊆ Li of agent i’s local

states such that (r,m) ∈ e iff ri(m) ∈ X .

A state event is an event e such that there exists a set X of global

states such that (r,m) ∈ e iff r(m) ∈ X .
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Given a state event e, we can define an atomic proposition φe such

that (I, r,m) |= φe iff (r,m) ∈ e.

Conversely, for every formula φ, there is an event

evI(φ) = {(r,m) | (I, r,m) |= φ}

Lemma: An event e is local to process i in a system I iff

I |= ψe ⇒ Kiψe.

Lemma: I |= φ⇒ Kiφ iff evI(φ) is local to process i in I.
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Simultaneous Events

An event ensemble for a group G is a mapping e from i ∈ G to events

e(i) local to i.

An event ensemble is perfectly coordinated if e(i) = e(j) for all

i, j ∈ G.

(Thus for all points (r,m), we have (r,m) ∈ e(i) iff (r,m) ∈ e(j).

For an even ensemble e, define the proposition ψe by

ψe =
∨

i∈G

ψ
e(i)
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Theorem:

(a) For every formula φ the ensemble for G defined by

e(i) = evI(KiCGφ) is perfectly coordinated.

(b) If e is a perfectly coordinated ensemble for G, then for every

i ∈ G we have I |= ψ
e(i) ⇒ KiCGψe(i).

(b) If e is a perfectly coordinated ensemble for G, then we have

I |= ψe ⇒ KiCGψe.
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Temporal Imprecision

In real systems, clock drift is an issue.

A system R has temporal imprecision if for all points (r,m) and

processes i 6= j, there exists a point (r′,m′) such that r′i(m) = ri(m)

but r′j(m
′) = rj(m+ 1).

(i is unsure about j’s rate of progress.)
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Define ensemble e to be nontrivial if there exists a run r and times

m,m′ such that (r,m) ∈ ∪i∈Ge(i) but (r,m′) 6∈ ∪i∈Ge(i)

Proposition: In a system with temporal imprecision, there are no

nontrivial perfectly coordinated ensembles for G, if |G| ≥ 2.

Corollary: If I is a system with temporal imprecision, φ is any

formula and |G| ≥ 2 then for all runs r and times m, if

(I, r,m) |= CGφ then (I, r, 0) |= CGφ.
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Fixpoints

Consider the equivalence

CGφ ⇐⇒ EG(φ ∧ CGφ)

We can understand this as saying that CGφ is a solution of the

“equation”

x ⇐⇒ EG(φ ∧ x)

This can be made precise using functions

f : P(Points(I)) → P(Points(I))
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Extend the language by adding a propostion x

For each formula φ in the extended language, define

fφ : P(Points(I)) → P(Points(I))

such that intuitively, fφ(A) is the set of points satisfying φ if we

interpret x as being true at a point (r,m) iff (r,m) ∈ A.

Inductively,

fx(A) = A

fp(X) = {(r,m) | π(r(m), p) = 1}

f¬φ(A) = Points(I) \ fφ(A)

fφ∧ψ(A) = fφ(A) ∩ fψ(A)

fKiφ(A) = {(r,m) | (r,m) ∼i (r′,m′) ⇒ (r′m′) ∈ fφ(A)}
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fEGφ(A) =
⋂

i∈G

fKiφ(A)

and

fCGφ(A) =
⋂

l>0

f lEGφ
(A)

where f0(A) = A and f l+1(A) = f(f l(A)).
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The following justifies the intuitive interpretation of fφ given above.

Write φI for {(r,m) | (I, r,m) |= φ}. Then for every formula φ that

does not contain x, we have

fφ(A) = φI

More generally, for formulas φ that contain x, write φ[x/ψ] for the

result of replacing all occurrences of x in φ by ψ. Then

fφ(ψ
I) = (φ[x/ψ])I
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Now note that

I |= CGφ ⇐⇒ EG(φ ∧ CGφ)

is equivalent to

(CGφ)I = (EG(φ ∧ CGφ))I

which is equivalent to

fEG(φ∧x)(A) = A

where A = (CGφ)I .

Say: (CGφ)I is a fixpoint of fEG(φ∧x)
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Suppose f : P(S) → P(S) and A ⊆ S

A is a fixpoint of f if f(A) = A

B is a greatest fixpoint of f if B is a fixpoint of f and for all fixpoints

A of f , we have A ⊆ B.

B is a least fixpoint of f if B is a fixpoint of f and for all fixpoints A

of f , we have B ⊆ A.

Slide 20

f is monotone if for all sets A ⊆ B, we have f(A) ⊆ f(B).

Lemma: If every occurrence of x in φ occurs in the scope of an even

number of negation symbols, then the function fφ is monotone.

(Example: x occurs in the scope of an even number (viz. 0) of

negation symbols in EG(φ ∧ x).)

Lemma: Every monotone function has a greatest and a least fipoint.
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Mu-calculus

Extend the language by adding operators for least and greatest

fixpoints.

For every monotone formula φ (such that x occurs in the scope of an

even number of negation symbols), the following are formulas:

µx[φ] - the least fixpoint of φ(x)

νx[φ] - the greatest fixpoint of φ(x)

Semantically:

fµx[φ](A) is the least fixpoint of fφ

fνx[φ](A) is the greatest fixpoint of fφ

(I, r,m) |= µx[φ] iff (r,m) ∈ fµx[φ](∅)

(I, r,m) |= νx[φ] iff (r,m) ∈ fνx[φ](∅)
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Common Knowledge expressed in mu-calculus

|= CG(φ) ⇐⇒ νx(EG(φ ∧ x))
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Properties of mu-calculus operators

Lemma: let ψ be a monotone formula and let I be an interpreted

system. Then

(a) |= ψ[x/νx[ψ]] ⇐⇒ νx[ψ], and

(b) if I |= φ⇒ ψ[x/φ] then I |= φ⇒ νx[ψ].

Note that if we take ψ to be EG(φ ∧ x), where CGφ = νxψ, (a) says:

|= EG(φ ∧ CGφ) ⇐⇒ CGφ

If we take ψ to be EG(ψ ∧ x), then (b) says: if I |= φ⇒ EG(ψ ∧ φ)

then I |= φ⇒ CGψ.
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Approximations to Common Knowledge

We have seen

— simultaneous agreement requires common knowledge of agreement

— common knowledge is sometimes impossible to obtain.

Questions:

— Can we make do with weaker notions of agreement?

— What types of knowledge do such weaker forms of agreement

require?

12



Slide 25

Epsilon-coordination

Say that an ensemble e for G is ǫ-coordinated if the local events in e

never happen more than ǫ time units apart, i.e., if (r,m) ∈ e(i) for

some i ∈ G, then there exists an interval I = [m′,m′ + ǫ] such that

m ∈ I and for all j ∈ G there exists mj ∈ I such that (r,mj) ∈ e(j).
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Example: suppose that messages sent by A at time m are guaranteed

to be delivered to B by time m+ ǫ.

Then the event e for {A,B} defined by e(i) = (KisentA(µ))I for

i ∈ {A,B} is ǫ-coordinated.
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Epsilon-group knowledge

Define EǫGφ by

(I, r,m) |= EǫGφ if there exists an interval I = [m′,m′ + ǫ] such that

m ∈ I and for all j ∈ G there exists mj ∈ I such that

(I, r,mj) |= Kjφ.

In the example: I |= sentA(µ) ⇒ Eǫ{A,B}(sentA(µ))
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Epsilon-Common Knowledge

CǫGφ = νx[EǫG(φ ∧ x)]

This has the following properties:

|= EǫG(φ ∧ CǫGφ) ⇐⇒ CǫGφ

If I |= φ⇒ EǫG(ψ ∧ φ) then I |= φ⇒ CǫGψ.

|= CǫG(φ) ⇒ CǫG(CǫGφ) (positive introspection)

(but not the other S5 properties!)
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Relating Epsilon-coordination and
Epsilon-Common Knowledge

Proposition: Let I be an interpreted system and G a group of

agents.

(a) For every formula φ, the ensemble e for G defined by

e(i) = evI(KiC
ǫ
Gφ) is ǫ-coordinated.

(b) If e is an ǫ-coordinated ensemble for G, then for every i ∈ G we

have I |= ψ
e(i) ⇒ KiC

ǫ
Gψe(i).

(c) If e is an ǫ-coordinated ensemble for G, then I |= ψe ⇒ KiC
ǫ
Gψe.
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Eventual Coordination

An ensemble e for G is eventually-coordinated if for every run r, if

(r,m) ∈ e(i) for some i ∈ G, then for all j ∈ G there exists mj such

that (r,mj) ∈ e(j).

This similarly corresponds to eventual common knowledge, defined by

C♦
Gφ = νx[E♦

G(φ ∧ x)]

where

(I, r,m) |= E♦
Gφ if for each i ∈ G there exists mi such that

(I, r,mi) |= Kiφ.
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More coordination concepts

Time-stamped coordination: each agent has a local clock. There

exists a time t such that the event e(i) happens for each i ∈ G at

time t on agent i’s local clock.

Probabilistic Coordination: there exists an ǫ such that the events

e(i) happen simultaneously with probability 1 − ǫ.

A notion of common knowledge can be defined for each such that a

similar correspondence holds.
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