
Slide 1

COMP3152/9152

Lecture 10

Applications to Security

Ron van der Meyden

Slide 2

Chaum’s Dining Cryptographers protocol

(Symbolic Model Checking the Knowledge of the Dining

Cryptographers R. van der Meyden and K. Su, 17th IEEE Computer

Security Foundations Workshop, Asilomar, June 2004, pp. 280-291)

1

Slide 3

C
1 C

3

C
2

Slide 4

C
1 C

3

C
2

Your dinner has been paid for by a party

who wishes to remain anonymous.

2

Slide 5
C
1 C

3

C
2

Was it one

of us?

Slide 6
C
1 C

3

C
2

…or the

NSA?

3

Slide 7

Knowledge Theoretic Specification

For Cryptographer C1:

¬paid(C1) ⇒

Knows C1 paid(NSA)

∨ [Knows C1 (paid(C2) ∨ paid(C3))∧

¬ Knows C1 paid(C2) ∧

¬ Knows C1 paid(C3)]

Similarly for the others ...

Slide 8
C
1 C

3

C
2

4

Slide 9
C
1 C

3

C
2

Slide 10

C
1

C
3

C 2

Tails

1. Each C
i
 tells only his right

neighbour what he tossed.

5

Slide 11

C
1 C

3

C
2

2. Each C
i
 announces whether the two

coin tosses are equal – unless he paid.

Slide 12

C
1 C

3

C
2

2. Each C
i
 announces whether the two

coin tosses are equal – unless he paid.

6

Slide 13

C
1 C

3

C
2

3. An odd number of “diff.” indicates

one of the C
i
 paid.

equaldiff.
equal

Slide 14

No. of Cryptographers: 3 4 5 10 20

fixed ordering 0.3 2.3 26.8 - -

with sifting .7 1.8 6.9 66 519

Table 1: Runtimes of Dining Cryptographers Verification (Seconds)

7

Slide 15

An observation

Given the protocol, the pattern of variable values observed by

cryptographer 1 over time is very predictable:

– paid[1] is constant

– said[i] changes only in the final step, for i = 1, . . . , n

– coin[left] changes in step 2, then is constant

– coin[right] changes in step 3, then is constant

Upshot: we can reduce the representation of o0, . . . , o5 from 5 copies

of the above variables to 1.

Slide 16

8

Slide 17

Another Security Protocol Example:
Oblivious Transfer

Specification:

Alice has two messages m0, m1 ∈ {0, 1}k, unknown to Bob.

Bob selects whether he wants to receive m0 or m1.

Bob should learn only the message he selected.

Alice should not learn which message Bob selected.

Slide 18

Rivest’s solution,
using an offline trusted third party

1. Setup. Ted chooses r0, r1 ∈ {0, 1}k randomly and sends these

values to Alice.

Ted chooses d ∈ {0, 1} and sends d and rd to Bob.

2. Request. Bob computes e = c ⊕ d, where ⊕ denotes exclusive or,

and sends it to Alice.

3. Reply. Alice computes f0 = m0 ⊕ re and f1 = m1 ⊕ r1−e and

sends f0 and f1 to Bob.

4. Result. Bob computes m = fc ⊕ rd.

9

Slide 19

Intransitive Noninterference

What, indeed, is intransitive noninterference?, R. van der Meyden,

Proc. European Symposium on Research in Computer Security,

Dresden, Sept 2007, LNCS Vol. 4734, pp. 235-250.

Slide 20

Noninterference

Proposed by Goguen and Meseguer 1982

Context: Multi-level secure systems

partially ordered security levels ⇒ transitive policies

Haigh and Young 87: extension to intransitive policies, deterministic

systems

Rushby 1992: further results and corrections to Haigh and Young

van der Meyden 2007: improvement of Rushby theory

10

Slide 21

Noninterference policies

Let D be a set of security domains.

A noninterference policy is a reflexive relation ֌⊆ D × D

u ֌ v means

“actions of domain u are permitted to interfere with domain v”,

or

“information is permitted to flow from domain u to domain v”

Slide 22

Example

Public ֌ Secret ֌ Top-Secret

Public ֌ Top-secret

but

Secret 6֌ Public, Top-Secret 6֌ Secret, Top-Secret 6֌ Public

11

Slide 23

Semantics for Transitive Policies

For each u ∈ D define the function purgeu : A∗ → A∗ such that

purgeu(α) is the subsequence of all actions a in α such that

dom(a) ֌ u.

The system M is said to be secure with respect to the policy ֌ when

for all α ∈ A∗ and domains u ∈ D, we have

obsu(s0 · α) = obsu(s0 · purgeu(α)).

An equivalent formulation:

For all sequences α, α′ ∈ A∗ such that purgeu(α) = purgeu(α′), we

have obsu(s0 · α) = obsu(s0 · α′).

Slide 24

Motivation for Intransitive Policies

Downgrading:

H ֌ D ֌ L

Channel Control:

RED

CRYPTO

BYPASS

BLACK

(header)

(body)

12

Slide 25

Deterministic System Model

Machines of the form 〈S, s0, A,→, obs, dom〉 where

1. S is a set of states,

2. s0 ∈ S is the initial state,

3. A is a set of actions,

4. dom : A → D associates each action to an element of the set of

security domains D,

5. →: S × A → S is a deterministic transition function, and

6. obs : S × D → O associates an observation in some set O with

each security domain.

Notation: s · α for the state reached by performing the sequence of

actions α ∈ Actions∗ from state s.

Slide 26

Haigh and Young’s Semantics (1987)

Given a sequence of actions a1 . . . an ∈ Actions∗ and domain u , the

intransitive purge ipurgeu(α) is the subsequence of all actions ai

such that there exists

i = i1 < i2 < . . . < ik

with

dom(ai1) ֌ dom(ai2) ֌ . . . ֌ dom(aik
) ֌ u

13

Slide 27

Example:

A B D E

C

a b a c a d a c b

E

ipurge E

a b c d

Slide 28

Haigh and Young’s definition: IP-security

A system M is IP-secure with respect to a (possibly intransitive)

policy ֌ if for all u ∈ D and all sequences α, α′ ∈ A∗ with

ipurgeu(α) = ipurgeu(α′), we have obsu(s0 · α) = obsu(s0 · α′).

14

Slide 29

(Perfect Recall) Knowledge in Asynchronous
Systems

Define the view of domain u with respect to a sequence α ∈ A∗ to be

the sequence of all observations of u and actions of u while running

α, with stuttering observations reduced to a single occurrence:

E.g., if running α = hhlh produces o1o1o1lo2o2 at L then then

viewL(α) = o1lo2

define ∼u on sequences of actions by α ∼u α′ if viewu(α) = viewu(α).

α |= Kuφ if α′ |= φ for all α′ ∼u α

Slide 30

Example
H

H

D

D

L

1 1

2
2

Define the system M with

1. actions: h1, h2, d1, d2, l of domains H1, H2, D1, D2, L respectively.

2. states: the set of all strings in A∗.

3. transitions: → (α, a) = αa for α ∈ A∗ and a ∈ A,

4. obsu(α) = [ipurgeu(α)].

15

Slide 31

Let α1 = h1h2d1d2

Then obsL(α1) = [ipurgeL(α1)] = [α1]

Let p=“there was an h1 before an h2”

p is a fact about H1, H2.

α1 |= KLp

Slide 32

But

viewD1
(α1)

= viewD1
(h1h2d1d2)

= [ǫ] ◦ [h1] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]

= [ǫ] ◦ [ǫ] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]

= viewD1
(h2h1d1d2)

Similarly, viewD2
(α1) = viewD2

(h2h1d1d2)

So

α1 |= KLp ∧ ¬D{D1,D2}p

16

Slide 33

An alternative definition - TA security

Given a policy ֌, define, for each agent u ∈ D, the function tau,

with domain A∗, inductively by tau(ǫ) = ǫ, and, for α ∈ A∗ and

a ∈ A,

tau(αa) =







tau(α) if dom(a) 6֌ u

(tau(α), tadom(a)(α), a) if dom(a) ֌ u

Define a system M to be TA-secure with respect to a policy ֌ if for

all agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have

obsu(s0 · α) = obsu(s0 · α′).

Slide 34

How these definitions are related

Theorem 1

1. P-secure ⇒ TA-secure ⇒ IP-secure.

2. If ֌ is transitive then P-secure = TA-secure = IP-secure.

17

Slide 35 Unwinding and Access Control Models

Slide 36

Access Control

A system with structured state is a machine 〈S, s0, A,→, obs, dom〉

together with

1. a set N of names,

2. a set V of values, and functions

3. contents : S × N → V , with contents(s, n) interpreted as the

value of object n in state s,

4. observe : D → P(N), with observe(u) interpreted as the set of

objects that domain u can observe, and

5. alter : D → P(N), with alter(u) interpreted as the set of

objects whose values domain u is permitted to alter.

18

Slide 37

For a system with structured state, when u ∈ D and s is a state,

define stateu(s) : observe(u) → V by

stateu(s)(n) = contents(s, n) for n ∈ observe(u).

Define a binary relation ∼oc
u of observable content equivalence on S

for each domain u ∈ D, by s ∼oc
u t if stateu(s) = stateu(t).

Slide 38

Rushby’s Reference Monitor Assumptions

RM1. If s ∼oc
u t then obsu(s) = obsu(t) .

RM2. If s ∼oc
dom(a) t and either contents(s · a, n) 6= contents(s, n) or

contents(t · a, n) 6= contents(t, n) then

contents(s · a, n) = contents(t · a, n)

RM3. If contents(s · a, n) 6= contents(s, n) then n ∈ alter(dom(a)).

RM2 is equivalent to the following: For all states s, either

1. for all t ∼oc
dom(a) s, we have contents(t ·a, n) = contents(t, n), or

2. for all t ∼oc
dom(a) s, we have contents(s · a, n) = contents(t · a, n)

19

Slide 39

Consistency of an access control system with a policy:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u ֌ v.

Proposition 1 (Rushby 92) Suppose M is a system with structured

state that satisfies RM1-RM3 and AOI. Then M is IP-secure for ֌.

Slide 40

A weaker notion of Access Control

[RM2 ′] For all actions a states s, t and names

n ∈ alter(dom(a)), if s ∼oc
dom(a) t and

contents(s, n) = contents(t, n) we have

contents(s · a, n) = contents(t · a, n).

Example: n is a block of memory, a writes to a single location

Say M a system with structured states is a weak access control

system compatible with ֌ if it satisfies RM1, RM2 ′, RM3 and AOI.

20

Slide 41 Proposition 2 If M is a weak access control system compatible with

֌ then M is TA-secure (hence IP-secure) for ֌.

Slide 42

Unwinding Conditions

Suppose we have for each domain u an equivalence relation ∼u on

the states of M .

OC: If s ∼u t then Ou(s) = Ou(t). (Output Consistency)

SC: If s ∼u t then s · a ∼u t · a. (Step Consistency)

LR: If not dom(a) ֌ u then s ∼u s · a. (Left Respect)

If these conditions are satisfied then M is secure with respect to a

transitive policy (Goguen & Meseguer 84).

21

Slide 43

Completeness of Unwinding (Transitive Policies)

Proposition 3 (Rushby 92) Suppose M is P-secure with respect to

the transitive policy ֌. Then there exist equivalence relations ∼u on

the states of M with respect to which M satisfies OC, SC and LR.

(Specifically, s ≈u t if for all strings α in A∗ we have

Ou(s · α) = Ou(t · α).)

Slide 44

Unwinding Intransitive Noninterference

WSC: If s ∼u t and s ∼dom(a) t then s · a ∼u t · a.

(Weak Step Consistency)

Proposition 4 (Rushby 92) Suppose that ∼u are equivalence

relations on the states of a system M that satisfy OC,WSC and LR.

Then M is IP-secure for ֌.

(But no completeness result.)

22

Slide 45

Unfolding a system

Given a system M = 〈S, s0,→, obs, dom〉 with actions A, define the

system uf(M) = 〈S′, s′0,→
′, obs′, dom〉 with actions A by

1. S′ = A∗

2. s′0 = ǫ

3. →′ (α, a) = αa, for α ∈ S′ and a ∈ A

4. obs′u(α) = obsu(s0 · α) (RHS in M)

uf(M) is bisimilar to M (in the expected sense)

Slide 46

Say that a system M with states S admits a weak access control

interpretation compatible with ֌ if there exists

1. a set of names N

2. a set of values V and functions

3. observe : D × S → P(N) ,

4. alter : D × S → P(N) and

5. contents : N × S → V

with respect to which M is a weak access control system compatible

with ֌.

23

Slide 47

Theorem 2 The following are equivalent

1. M is TA-secure with respect to ֌

2. uf(M) admits a weak access control interpretation compatible

with ֌;

3. there exist equivalence relations ∼u on the states of uf(M)

satisfying OC,WSC and LR;

(So, weak unwinding incomplete for IP-security on two counts:

unwinding is complete for the stronger TA-security, wrt uf(M)

rather than M).

24

