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Applications to Security

Ron van der Meyden
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Chaum’s Dining Cryptographers protocol

(Symbolic Model Checking the Knowledge of the Dining

Cryptographers R. van der Meyden and K. Su, 17th IEEE Computer

Security Foundations Workshop, Asilomar, June 2004, pp. 280-291)
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Your dinner has been paid for by a party

who wishes to remain anonymous.
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Was it one

of us?
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…or the

NSA?
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Knowledge Theoretic Specification

For Cryptographer C1:

¬paid(C1) ⇒

Knows C1 paid(NSA)

∨ [Knows C1 (paid(C2) ∨ paid(C3))∧

¬ Knows C1 paid(C2) ∧

¬ Knows C1 paid(C3)]

Similarly for the others ...
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Tails

1. Each C
i
 tells only his right

neighbour what he tossed.
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2. Each C
i
 announces whether the two

coin tosses are equal – unless he paid.
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2. Each C
i
 announces whether the two

coin tosses are equal – unless he paid.
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3. An odd number of “diff.” indicates

one of the C
i
 paid.

equaldiff.
equal
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No. of Cryptographers: 3 4 5 10 20

fixed ordering 0.3 2.3 26.8 - -

with sifting .7 1.8 6.9 66 519

Table 1: Runtimes of Dining Cryptographers Verification (Seconds)

7

Slide 15

An observation

Given the protocol, the pattern of variable values observed by

cryptographer 1 over time is very predictable:

– paid[1] is constant

– said[i] changes only in the final step, for i = 1, . . . , n

– coin[left] changes in step 2, then is constant

– coin[right] changes in step 3, then is constant

Upshot: we can reduce the representation of o0, . . . , o5 from 5 copies

of the above variables to 1.
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Another Security Protocol Example:
Oblivious Transfer

Specification:

Alice has two messages m0, m1 ∈ {0, 1}k, unknown to Bob.

Bob selects whether he wants to receive m0 or m1.

Bob should learn only the message he selected.

Alice should not learn which message Bob selected.
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Rivest’s solution,
using an offline trusted third party

1. Setup. Ted chooses r0, r1 ∈ {0, 1}k randomly and sends these

values to Alice.

Ted chooses d ∈ {0, 1} and sends d and rd to Bob.

2. Request. Bob computes e = c ⊕ d, where ⊕ denotes exclusive or,

and sends it to Alice.

3. Reply. Alice computes f0 = m0 ⊕ re and f1 = m1 ⊕ r1−e and

sends f0 and f1 to Bob.

4. Result. Bob computes m = fc ⊕ rd.
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Intransitive Noninterference

What, indeed, is intransitive noninterference?, R. van der Meyden,

Proc. European Symposium on Research in Computer Security,

Dresden, Sept 2007, LNCS Vol. 4734, pp. 235-250.
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Noninterference

Proposed by Goguen and Meseguer 1982

Context: Multi-level secure systems

partially ordered security levels ⇒ transitive policies

Haigh and Young 87: extension to intransitive policies, deterministic

systems

Rushby 1992: further results and corrections to Haigh and Young

van der Meyden 2007: improvement of Rushby theory
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Noninterference policies

Let D be a set of security domains.

A noninterference policy is a reflexive relation ֌⊆ D × D

u ֌ v means

“actions of domain u are permitted to interfere with domain v”,

or

“information is permitted to flow from domain u to domain v”
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Example

Public ֌ Secret ֌ Top-Secret

Public ֌ Top-secret

but

Secret 6֌ Public, Top-Secret 6֌ Secret, Top-Secret 6֌ Public
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Semantics for Transitive Policies

For each u ∈ D define the function purgeu : A∗ → A∗ such that

purgeu(α) is the subsequence of all actions a in α such that

dom(a) ֌ u.

The system M is said to be secure with respect to the policy ֌ when

for all α ∈ A∗ and domains u ∈ D, we have

obsu(s0 · α) = obsu(s0 · purgeu(α)).

An equivalent formulation:

For all sequences α, α′ ∈ A∗ such that purgeu(α) = purgeu(α′), we

have obsu(s0 · α) = obsu(s0 · α′).
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Motivation for Intransitive Policies

Downgrading:

H ֌ D ֌ L

Channel Control:

RED

CRYPTO

BYPASS

BLACK

(header)

(body)
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Deterministic System Model

Machines of the form 〈S, s0, A,→, obs, dom〉 where

1. S is a set of states,

2. s0 ∈ S is the initial state,

3. A is a set of actions,

4. dom : A → D associates each action to an element of the set of

security domains D,

5. →: S × A → S is a deterministic transition function, and

6. obs : S × D → O associates an observation in some set O with

each security domain.

Notation: s · α for the state reached by performing the sequence of

actions α ∈ Actions∗ from state s.
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Haigh and Young’s Semantics (1987)

Given a sequence of actions a1 . . . an ∈ Actions∗ and domain u , the

intransitive purge ipurgeu(α) is the subsequence of all actions ai

such that there exists

i = i1 < i2 < . . . < ik

with

dom(ai1) ֌ dom(ai2) ֌ . . . ֌ dom(aik
) ֌ u
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Example:

A B D E

C

a     b     a     c     a     d     a     c     b

E

ipurge E

a   b   c   d
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Haigh and Young’s definition: IP-security

A system M is IP-secure with respect to a (possibly intransitive)

policy ֌ if for all u ∈ D and all sequences α, α′ ∈ A∗ with

ipurgeu(α) = ipurgeu(α′), we have obsu(s0 · α) = obsu(s0 · α′).
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(Perfect Recall) Knowledge in Asynchronous
Systems

Define the view of domain u with respect to a sequence α ∈ A∗ to be

the sequence of all observations of u and actions of u while running

α, with stuttering observations reduced to a single occurrence:

E.g., if running α = hhlh produces o1o1o1lo2o2 at L then then

viewL(α) = o1lo2

define ∼u on sequences of actions by α ∼u α′ if viewu(α) = viewu(α).

α |= Kuφ if α′ |= φ for all α′ ∼u α
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Example
H

H

D

D

L

1 1

2
2

Define the system M with

1. actions: h1, h2, d1, d2, l of domains H1, H2, D1, D2, L respectively.

2. states: the set of all strings in A∗.

3. transitions: → (α, a) = αa for α ∈ A∗ and a ∈ A,

4. obsu(α) = [ipurgeu(α)].
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Let α1 = h1h2d1d2

Then obsL(α1) = [ipurgeL(α1)] = [α1]

Let p=“there was an h1 before an h2”

p is a fact about H1, H2.

α1 |= KLp
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But

viewD1
(α1)

= viewD1
(h1h2d1d2)

= [ǫ] ◦ [h1] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]

= [ǫ] ◦ [ǫ] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]

= viewD1
(h2h1d1d2)

Similarly, viewD2
(α1) = viewD2

(h2h1d1d2)

So

α1 |= KLp ∧ ¬D{D1,D2}p
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An alternative definition - TA security

Given a policy ֌, define, for each agent u ∈ D, the function tau,

with domain A∗, inductively by tau(ǫ) = ǫ, and, for α ∈ A∗ and

a ∈ A,

tau(αa) =







tau(α) if dom(a) 6֌ u

(tau(α), tadom(a)(α), a) if dom(a) ֌ u

Define a system M to be TA-secure with respect to a policy ֌ if for

all agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have

obsu(s0 · α) = obsu(s0 · α′).
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How these definitions are related

Theorem 1

1. P-secure ⇒ TA-secure ⇒ IP-secure.

2. If ֌ is transitive then P-secure = TA-secure = IP-secure.

17

Slide 35 Unwinding and Access Control Models
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Access Control

A system with structured state is a machine 〈S, s0, A,→, obs, dom〉

together with

1. a set N of names,

2. a set V of values, and functions

3. contents : S × N → V , with contents(s, n) interpreted as the

value of object n in state s,

4. observe : D → P(N), with observe(u) interpreted as the set of

objects that domain u can observe, and

5. alter : D → P(N), with alter(u) interpreted as the set of

objects whose values domain u is permitted to alter.
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For a system with structured state, when u ∈ D and s is a state,

define stateu(s) : observe(u) → V by

stateu(s)(n) = contents(s, n) for n ∈ observe(u).

Define a binary relation ∼oc
u of observable content equivalence on S

for each domain u ∈ D, by s ∼oc
u t if stateu(s) = stateu(t).
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Rushby’s Reference Monitor Assumptions

RM1. If s ∼oc
u t then obsu(s) = obsu(t) .

RM2. If s ∼oc
dom(a) t and either contents(s · a, n) 6= contents(s, n) or

contents(t · a, n) 6= contents(t, n) then

contents(s · a, n) = contents(t · a, n)

RM3. If contents(s · a, n) 6= contents(s, n) then n ∈ alter(dom(a)).

RM2 is equivalent to the following: For all states s, either

1. for all t ∼oc
dom(a) s, we have contents(t ·a, n) = contents(t, n), or

2. for all t ∼oc
dom(a) s, we have contents(s · a, n) = contents(t · a, n)
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Consistency of an access control system with a policy:

AOI. If alter(u) ∩ observe(v) 6= ∅ then u ֌ v.

Proposition 1 (Rushby 92) Suppose M is a system with structured

state that satisfies RM1-RM3 and AOI. Then M is IP-secure for ֌.
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A weaker notion of Access Control

[RM2 ′] For all actions a states s, t and names

n ∈ alter(dom(a)), if s ∼oc
dom(a) t and

contents(s, n) = contents(t, n) we have

contents(s · a, n) = contents(t · a, n).

Example: n is a block of memory, a writes to a single location

Say M a system with structured states is a weak access control

system compatible with ֌ if it satisfies RM1, RM2 ′, RM3 and AOI.
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Slide 41 Proposition 2 If M is a weak access control system compatible with

֌ then M is TA-secure (hence IP-secure) for ֌.
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Unwinding Conditions

Suppose we have for each domain u an equivalence relation ∼u on

the states of M .

OC: If s ∼u t then Ou(s) = Ou(t). (Output Consistency)

SC: If s ∼u t then s · a ∼u t · a. (Step Consistency)

LR: If not dom(a) ֌ u then s ∼u s · a. (Left Respect)

If these conditions are satisfied then M is secure with respect to a

transitive policy (Goguen & Meseguer 84).
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Completeness of Unwinding (Transitive Policies)

Proposition 3 (Rushby 92) Suppose M is P-secure with respect to

the transitive policy ֌. Then there exist equivalence relations ∼u on

the states of M with respect to which M satisfies OC, SC and LR.

(Specifically, s ≈u t if for all strings α in A∗ we have

Ou(s · α) = Ou(t · α).)
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Unwinding Intransitive Noninterference

WSC: If s ∼u t and s ∼dom(a) t then s · a ∼u t · a.

(Weak Step Consistency)

Proposition 4 (Rushby 92) Suppose that ∼u are equivalence

relations on the states of a system M that satisfy OC,WSC and LR.

Then M is IP-secure for ֌.

(But no completeness result.)
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Unfolding a system

Given a system M = 〈S, s0,→, obs, dom〉 with actions A, define the

system uf(M) = 〈S′, s′0,→
′, obs′, dom〉 with actions A by

1. S′ = A∗

2. s′0 = ǫ

3. →′ (α, a) = αa, for α ∈ S′ and a ∈ A

4. obs′u(α) = obsu(s0 · α) (RHS in M)

uf(M) is bisimilar to M (in the expected sense)
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Say that a system M with states S admits a weak access control

interpretation compatible with ֌ if there exists

1. a set of names N

2. a set of values V and functions

3. observe : D × S → P(N) ,

4. alter : D × S → P(N) and

5. contents : N × S → V

with respect to which M is a weak access control system compatible

with ֌.

23

Slide 47

Theorem 2 The following are equivalent

1. M is TA-secure with respect to ֌

2. uf(M) admits a weak access control interpretation compatible

with ֌;

3. there exist equivalence relations ∼u on the states of uf(M)

satisfying OC,WSC and LR;

(So, weak unwinding incomplete for IP-security on two counts:

unwinding is complete for the stronger TA-security, wrt uf(M)

rather than M).
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