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Knowledge in Distributed Systems

(An Introduction)

Ron van der Meyden

Slide 2

The main problem unique to distributed systems is a lack of (global)

knowledge. It is difficult (probably impossible) for one node to know

everything about the rest of the network. Yet global knowledge

seems to be required to answer questions such as “Where is the file

A”, “Is there a deadlock”, [or] “What is the best way to answer the

question.... ” (Gray, 1979)

“Once the sender receives the acknowledgement, it knows that the

current packet has been delivered; it can then safely discard the

current packet and send the next.”
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Your dinner has been paid for by a party

who wishes to remain anonymous.
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Was it one

of us?
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…or the

NSA?
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Knowledge Theoretic Specification

We want a protocol that will get us to a state where...

If C1 did not pay, then either

1. C1 knows that the NSA paid, or

2. C1 knows that either C2 or C3 paid, but does not know which

one.

Similarly for the others ...
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Knowledge Based Programs

. . .

A knowledge-based program:

wait until Know(position in Goal);

halt.
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The Muddy Children

n (very smart) children have been out playing in the garden. They

were supposed to keep clean, but some of them have got mud on

their forehead. They can’t see their own forehead, but can see the

forehead of every other child. Father comes along ....
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Version 1: Father asks “Which of you know whether you have mud

on your forehead?” Repeats the question....

Version 2: Father says “At least one of you has a dirty forehead.”

then asks “Which of you know whether you have mud on your

forehead?” Repeats the question....

What happens? Why is there a difference?
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Plan

Introduction, Semantic models for Knowledge

Logics of Knowledge - Axioms and Model Checking

Semantic Models for Knowledge and Time

Properties of Knowledge and Time

Dynamics of Common Knowledge

Model Checking Knowledge and Time

Knowledge-based programs

Applications to Distributed Algorithms

Applications to computer security

Variants of Common Knowledge

The logic of knowledge and probability

Connections to economics: epistemic game theory
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Textbook

Reasoning about Knowledge, Fagin, Halpern, Moses and Vardi, MIT

Press, 2nd edition, 2003.

Assessment

6 problem sets, due weeks 2,4,6,8,10,12

Final Mark = best 5/6 each worth 20%

Slide 14 Semantic Models for Knowledge

Reading, FHMV Ch 1 & 2
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Propositional (Boolean) Logic

Let Φ be a set of atomic propositions, each intended to represent a

sentence.

E.g.

muddyk representing “Child k is muddy”

holdsa(c) representing “player a holds card c”
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Logical operators

¬ - Not

∧ - And

∨ - Or

⇒ - implies, if ... then ...

⇐⇒ – if and only if

8



Slide 17

Formulas of Propositional Logic

The set of formulas of propositional logic are defined by

1. If p ∈ Φ then p is a formula.

2. If φ is a formula then ¬φ is a formula

3. If φ1, φ2 are formulas then so is φ1 ∧ φ2.

4. Nothing is a formula unless it can be shown to be a formula

using the above.
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All other boolean operators can be defined using only ¬ and ∧

φ1 ∨ φ2 is ¬((¬φ1) ∧ (¬φ2))

φ1 ⇒ φ2 is (¬φ1) ∨ φ2

φ1 ⇐⇒ φ2 is (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)
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Examples:

p

p ∧ ¬p

(p ∧ q) ⇒ p
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Semantics of Propositional Logic

A state of the world determines which sentences are true.

Represent this by an assignment α : Φ → {true, false}

Write α |= φ for “φ is true with respect to assignment α”

α |= p if α(p) = true, for p ∈ Φ

α |= ¬φ if not α |= φ

α |= φ1 ∧ φ2 if α |= φ1 and α |= φ2
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Validity

A formula φ of propositional logic is valid, (or a tautology), written

|= φ, if α |= φ for all assignments α.

Examples:

|= p⇒ p

|= φ ∨ ¬φ ( for all formulas φ)

|= ((p ∧ q) ⇒ r) ⇐⇒ (p⇒ (q ⇒ r))
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A Language for Knowledge

Suppose that there are n agents.

The formulas of the logic of knowledge are defined by

1. If p ∈ Φ then p is a formula

2. If φ is a formula then ¬φ is a formula

3. If φ1, φ2 are formulas then φ1 ∧ φ2, is a formula

4. If φ is a formula, then so is Kiφ, for i = 1 . . . n

5. Nothing is a formula unless it can be shown to be a formula

using the above.
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Examples:

K2muddy3

K1K2muddy3

K1¬K2muddy3

¬K1¬K2muddy3
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Political Knowledge
(Donald Rumsfeld, 2003)

As we know

There are known knowns

There are things we know we know

We also know

There are known unknowns

That is to say

We know there are some things

We do not know

But there are also unknown unknowns

The ones we don’t know we don’t know
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Semantics for Knowledge: Kripke Structures

A Kripke structure for n agents is a tuple (S, π,K1, . . . ,Kn) where

1. S is a set of states,

2. π : S → Φ → {true, false} associates an assignment with every

state,

3. Ki ⊆ S × S is an equivalence relation on S, for each i = 1 . . . n
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R ⊆ S × S is an equivalence relation on S if

1. (Reflexivity) (s, s) ∈ R for all s ∈ S.

2. (Symmetry) If (s, t) ∈ R then (t, s) ∈ R, for all s, t ∈ S.

3. (Transitivity) If (s, t) ∈ R and (t, u) ∈ R then (s, u) ∈ R, for all

s, t, u ∈ S.
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Semantics

We now treat formulas as being true/false at a state in a Kripke

structure.

Write (M, s) |= φ for “φ is true at state s in structure M .”

(M, s) |= p if π(s)(p) = true, for p ∈ Φ

(M, s) |= ¬φ if not (M, s) |= φ

(M, s) |= φ1 ∧ φ2 if (M, s) |= φ1 and (M, s) |= φ2

(M, s) |= Kiφ if (M, t) |= φ for all t such that (s, t) ∈ Ki
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Example: Cards

Suppose there are three cards A,B,C. Players 1 and 2 get one card

each, the other remains face down.

Represent a state by a tuple (x, y) where x, y ∈ {A,B,C} and x 6= y.

x is the card held by player 1

y is the card held by player 2

Propositions: holdsa(c) where a ∈ {1, 2} is an agent and

c ∈ {A,B,C} is a card.

π((x, y))(holdsa(c)) = true iff (a = 1 and c = x) or (a = 2 and

c = y)

(x, y)K1(x
′, y′) iff x = x′

(x, y)K2(x
′, y′) iff y = y′
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Why not just treat worlds as assignments to the basic propositions?

States also “contain information about what is known.”

Example: suppose player 1 might be blind.

States are now tuples (x, y, b) where x, y ∈ {A,B,C} and b ∈ {0, 1}

represents whether 1 is blind

π((x, y, b))(holdsa(c)) = true iff (a = 1 and c = x) or (a = 2 and

c = y)

(x, y, b)K1(x
′, y′, b′) iff b = b′ and (x = x′ or b = 1)

(x, y, b)K2(x
′, y′, b′) iff y = y′

Note π((x, y, 0)) = π((x, y, 1))
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Properties of Knowledge

K1. Kiϕ ∧Ki(ϕ⇒ ψ) ⇒ Kiψ

K2. Kiϕ⇒ ϕ

K3. Kiϕ⇒ KiKiϕ

K4. ¬Kiϕ⇒ Ki¬Kiϕ
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Validity

Write |= φ if (M, s) |= φ for all structures M and states s of M .

If |= ϕ then |= Kiϕ

If |= ϕ and |= ϕ⇒ ψ then |= ψ.
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Common and Distributed Knowledge

Add the following to the language: if φ is a formula and G ⊆ {1 . . . n}

is a group of agents, then the following are formulas..

EGφ — everyone in the group G knows φ

CGφ — it is common knowledge in the group G that φ

DGφ — it is distributed knowledge in the group G that φ
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Semantics

Define Ek
Gφ by E0

Gφ = φ and Ek+1

G φ = EGE
k
Gφ.

Extend the semantics by the following clauses:

(M, s) |= EGφ if (M, s) |= Kiφ for all i ∈ G

(M, s) |= CGφ if (M, s) |= Ek
Gφ for all k = 1, 2, . . .

(M, s) |= DGφ if (M, t) |= φ for all t such that (s, t) ∈ Ki for all i ∈ G
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An alternate formulation of common knowledge

Let G be a group of agents.

Say state t is G-reachable from state s in k steps if there exists a

sequence s0, s1, . . . , sk of states such that s0 = s, sk = t and for all

j = 0 . . . k there exists i ∈ G such that sj Ki sj+1

Say state t is G-reachable from state s if there exists k ≥ 0 such that

t is G-reachable from s in k steps.
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Lemma:

(M, s) |= Ek
Gφ iff (M, t) |= φ for all t that are G-reachable from s in k

steps

(M, s) |= CGφ iff (M, t) |= φ for all t that are G-reachable from s
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Properties of Common Knowledge

Write M |= φ if M, s |= φ for all states s of M .

C1. M |= EGϕ ⇐⇒
∧m

i=1
Kiϕ

C2. M |= CGϕ⇒ EG(ϕ ∧ CGϕ)

RC. If M |= ϕ⇒ EG(ψ ∧ ϕ) then M |= ϕ⇒ CGψ
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Properties of Distributed Knowledge

|= D{i}φ ⇐⇒ Kiφ

|= DGφ⇒ DG′φ if G ⊆ G′

Slide 38 Kripke Structure for Muddy Children
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