

Slide 1

lide 13	Textbook Reasoning about Knowledge, Fagin, Halpern, Moses and Vardi, MIT Press, 2nd edition, 2003. Assessment 6 problem sets, due weeks 2,4,6,8,10,12 Final Mark = best 5/6 each worth 20%	Slide 15	Propositional (Boolean) Logic Let Φ be a set of atomic propositions, each intended to represent a sentence. E.g. muddy _k representing "Child k is muddy" holds _a (c) representing "player a holds card c"
lide 14	Semantic Models for Knowledge Reading, FHMV Ch 1 & 2	Slide 16	Logical operators \neg - Not \land - And \lor - Or \Rightarrow - implies, if then \iff - if and only if

 Formulas of Propositional Logic The set of formulas of propositional logic are defined by 1. If p ∈ Φ then p is a formula. 2. If φ is a formula then ¬φ is a formula 3. If φ₁, φ₂ are formulas then so is φ₁ ∧ φ₂. 4. Nothing is a formula unless it can be shown to be a formula using the above. 	Slide 19 ormula	Examples: p $p \land \neg p$ $(p \land q) \Rightarrow p$
All other boolean operators can be defined using only \neg a $\phi_1 \lor \phi_2$ is $\neg((\neg \phi_1) \land (\neg \phi_2))$ $\phi_1 \Rightarrow \phi_2$ is $(\neg \phi_1) \lor \phi_2$ $\phi_1 \iff \phi_2$ is $(\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1)$	nd ∧ Slide 20	Semantics of Propositional Logic A state of the world determines which sentences are true. Represent this by an assignment $\alpha : \Phi \to \{\texttt{true}, \texttt{false}\}$ Write $\alpha \models \phi$ for " ϕ is true with respect to assignment α " $\alpha \models p$ if $\alpha(p) = \texttt{true}$, for $p \in \Phi$ $\alpha \models \neg \phi$ if not $\alpha \models \phi$ $\alpha \models \phi_1 \land \phi_2$ if $\alpha \models \phi_1$ and $\alpha \models \phi_2$

lide 21	Validity A formula ϕ of propositional logic is <i>valid</i> , (or <i>a tautology</i>), written $\models \phi$, if $\alpha \models \phi$ for all assignments α . Examples: $\models p \Rightarrow p$ $\models \phi \lor \neg \phi$ (for all formulas ϕ) $\models ((p \land q) \Rightarrow r) \iff (p \Rightarrow (q \Rightarrow r))$
lide 22	 A Language for Knowledge Suppose that there are n agents. The formulas of the logic of knowledge are defined by 1. If p ∈ Φ then p is a formula 2. If φ is a formula then ¬φ is a formula

Slide	23

Slide 24

 K_2 muddy₃ K_1K_2 muddy₃

Examples:

 $K_1 \neg K_2 \texttt{muddy}_3$

 $\neg K_1 \neg K_2$ muddy₃

Political Knowledge (Donald Rumsfeld, 2003)

As we know There are known knowns There are things we know we know We also know There are known unknowns That is to say We know there are some things We do not know But there are also unknown unknowns The ones we don't know we don't know

lide 25	 Semantics for Knowledge: Kripke Structures A Kripke structure for n agents is a tuple (S, π, K₁,, K_n) where 1. S is a set of states, 2. π : S → Φ → {true, false} associates an assignment with every state, 3. K_i ⊆ S × S is an equivalence relation on S, for each i = 1n 	Slide 27	Semantics We now treat formulas as being true/false at a state in a Kripke structure. Write $(M, s) \models \phi$ for " ϕ is true at state s in structure M ." $(M, s) \models p$ if $\pi(s)(p) = \texttt{true}$, for $p \in \Phi$ $(M, s) \models \neg \phi$ if not $(M, s) \models \phi$ $(M, s) \models \phi_1 \land \phi_2$ if $(M, s) \models \phi_1$ and $(M, s) \models \phi_2$ $(M, s) \models K_i \phi$ if $(M, t) \models \phi$ for all t such that $(s, t) \in \mathcal{K}_i$
lide 26	 R ⊆ S × S is an equivalence relation on S if 1. (Reflexivity) (s, s) ∈ R for all s ∈ S. 2. (Symmetry) If (s,t) ∈ R then (t, s) ∈ R, for all s, t ∈ S. 3. (Transitivity) If (s,t) ∈ R and (t,u) ∈ R then (s,u) ∈ R, for all s, t, u ∈ S. 	Slide 28	Example: Cards Suppose there are three cards A, B, C . Players 1 and 2 get one card each, the other remains face down. Represent a state by a tuple (x, y) where $x, y \in \{A, B, C\}$ and $x \neq y$. x is the card held by player 1 y is the card held by player 2 Propositions: holds _a (c) where $a \in \{1, 2\}$ is an agent and $c \in \{A, B, C\}$ is a card. $\pi((x, y))(holds_a(c)) = true iff (a = 1 and c = x) or (a = 2 andc = y)(x, y)\mathcal{K}_1(x', y') iff x = x'(x, y)\mathcal{K}_2(x', y') iff y = y'$

29	Why not just treat worlds as assignments to the basic propositions? States also "contain information about what is known." Example: suppose player 1 might be blind. States are now tuples (x, y, b) where $x, y \in \{A, B, C\}$ and $b \in \{0, 1\}$ represents whether 1 is blind $\pi((x, y, b))(\text{holds}_a(c)) = \text{true}$ iff $(a = 1 \text{ and } c = x)$ or $(a = 2 \text{ and } c = y)$ $(x, y, b)\mathcal{K}_1(x', y', b')$ iff $b = b'$ and $(x = x' \text{ or } b = 1)$ $(x, y, b)\mathcal{K}_2(x', y', b')$ iff $y = y'$ Note $\pi((x, y, 0)) = \pi((x, y, 1))$	Slide 31	Validity Write $\models \phi$ if $(M, s) \models \phi$ for all structures M and states s of M . If $\models \varphi$ then $\models K_i \varphi$ If $\models \varphi$ and $\models \varphi \Rightarrow \psi$ then $\models \psi$.
e 30	Properties of Knowledge K1. $K_i \varphi \wedge K_i (\varphi \Rightarrow \psi) \Rightarrow K_i \psi$ K2. $K_i \varphi \Rightarrow \varphi$ K3. $K_i \varphi \Rightarrow K_i K_i \varphi$ K4. $\neg K_i \varphi \Rightarrow K_i \neg K_i \varphi$	Slide 32	Common and Distributed Knowledge Add the following to the language: if ϕ is a formula and $G \subseteq \{1 \dots n\}$ is a group of agents, then the following are formulas $E_G \phi$ — everyone in the group G knows ϕ $C_G \phi$ — it is common knowledge in the group G that ϕ $D_G \phi$ — it is distributed knowledge in the group G that ϕ

lide

lide

ide 33	Semantics Define $E_G^k \phi$ by $E_G^0 \phi = \phi$ and $E_G^{k+1} \phi = E_G E_G^k \phi$. Extend the semantics by the following clauses: $(M, s) \models E_G \phi$ if $(M, s) \models K_i \phi$ for all $i \in G$ $(M, s) \models C_G \phi$ if $(M, s) \models E_G^k \phi$ for all $k = 1, 2,$ $(M, s) \models D_G \phi$ if $(M, t) \models \phi$ for all t such that $(s, t) \in K_i$ for all $i \in G$	Slide 35	Lemma: $(M, s) \models E_G^k \phi \text{ iff } (M, t) \models \phi \text{ for all } t \text{ that are } G \text{-reachable from } s \text{ in } k \text{ steps}$ $(M, s) \models C_G \phi \text{ iff } (M, t) \models \phi \text{ for all } t \text{ that are } G \text{-reachable from } s$
ide 34	An alternate formulation of common knowledge Let G be a group of agents. Say state t is G-reachable from state s in k steps if there exists a sequence s_0, s_1, \ldots, s_k of states such that $s_0 = s, s_k = t$ and for all $j = 0 \ldots k$ there exists $i \in G$ such that $s_j \mathcal{K}_i s_{j+1}$ Say state t is G-reachable from state s if there exists $k \ge 0$ such that t is G-reachable from s in k steps.	Slide 36	Properties of Common Knowledge Write $M \models \phi$ if $M, s \models \phi$ for all states s of M . C1. $M \models E_G \varphi \iff \bigwedge_{i=1}^m K_i \varphi$ C2. $M \models C_G \varphi \Rightarrow E_G(\varphi \land C_G \varphi)$ RC. If $M \models \varphi \Rightarrow E_G(\psi \land \varphi)$ then $M \models \varphi \Rightarrow C_G \psi$

Properties of Distributed Knowledge

 $\models D_{\{i\}}\phi \iff K_i\phi$ $\models D_G\phi \Rightarrow D_{G'}\phi \text{ if } G \subseteq G'$

lide 38

Kripke Structure for Muddy Children