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Chapter 1

Introduction

This manual explains how to use MCK, a prototype model checker for temporal epistemic specifications. It assumes
some familiarity with the idea of model checking [9, 10, 18], and temporal and epistemic logics [12], but is otherwise
self-contained.

This chapter introduces the general scenario to which the MCK system may be applied (Section 1.1) and describes
an abstract model that underlies the system (Section 1.2). The semantics of the constructs of the MCK systems is
most easily understood with respect to this model. The MCK system itself uses a more concrete syntax designed to
facilitate the encoding of examples. The remainder of the manual describes this concrete syntax and its associated
semantics. Chapter 2 discusses the language used to model a scenario in MCK. The language used to describe the
specifications that MCK checks in these scenarios is discussed in Chapter 3. MCK implements a variety of model
checking algorithms, which are described in Chapter 4. In addition to epistemic logic specifications, the system now
also supports probabilistic knowledge; this capability is described in Chapter 5. Chapter 6 presents a number of
examples that can be analysed using the system. The system supports debugging of models and specifications by
means of a counter-example game and visualization capability, that is described in Chapter 7. The description of
syntax and semantics in these chapters is semi-formal; a formal abstract syntax for the inputs to MCK is presented in
Appendix A, and Appendix B provides a formal operational semantics for MCK programs.

1.1 The Model Checking Scenario
The overall scenario that can be analysed using the system has the following general structure. We consider that we
are modelling a situation where some number of agents (which might be players in a game, actors in an economic
setting, or processes, programs or components in a computational setting) interact in the context of an environment.
A state of the system consists of a state of the environment together with a local state for each of the agents. The
agents have the capacity to perform certain actions in this environment. The effect of actions is to change the state of
the system. Each of the agents performs these actions acccording to a protocol, or set of rules, which describes the
allowable choices of the next action at each point of time. The agents have incomplete information about the state of
the system: their possible information is limited by the fact that they are able to observe only part of the state at each
instant of time.

The MCK system can be applied to the analysis of this type of setting by the use of model checking techniques.
The input to the MCK system consists of a file, or set of files, that describe:

1. the environment in which the agents operate, including:

• the possible states of the environment,

• the initial states of the environment,

• the names of agents operating in this environment,

• how the agents’ actions change the state of the environment,
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• (optionally) a set of fairness conditions, which constrain the infinitary behaviour of the system (ensuring,
e.g. that some agent is not kept waiting forever for a requested event to occur);

2. the protocol by which each of the named agents chooses their sequence of actions, including:

• the structure of local states maintained by the agent to make such choices and record other useful informa-
tion,

• the possible initial values of the agent’s local states, and

• a description of what parts of the state are observable to the agent;

3. a number of specification formulas, expressing some property of the way that the agent’s knowledge evolves
over time.

Both the possible state changes described in the environment and the agents’ choices of action may be non-
deterministic, which means that the system may evolve over time in a potentially large number of different ways. The
output produced by the MCK system is, for each of the specification formulas, an answer to the question of whether,
for the scenario modelled, the agents’ knowledge is in fact guaranteed to evolve according to the specification, for
every possible evolution of the system.

The MCK system currently allows several different approaches to the description of the temporal and epistemic
aspects of the specification formulas. In the epistemic dimension, agents may use their observations in a variety of
ways to determine what they know. One way (the observational interpretation of knowledge) is to make inferences
about the state based just on their latest observation. Another way (the clock interpretation of knowledge), permitting
more information to be extracted, is to compute knowledge using both the current observation and the current clock
value. Finally, even more information can be extracted by the agent if it uses a complete record of all its observations to
date to determine what it knows (this is called the perfect recall interpretation of knowledge, and comes in synchronous
and asynchronous variants). In the temporal dimension, the specification formulas may describe the evolution of the
system using the temporal logic CTL∗, which combines LTL and CTL and can express behaviour along a single
computation as well as the branching structure of all possible computations. The system currently supports different
combinations of all these parameters to different degrees: in some cases this is because the implementation remains to
be undertaken, in others because there are inherent computational reasons why the problem is difficult or impossible
to implement.

Figure 1.1 presents an example of the input file to the system, modelling a scenario in which there is a single agent
in the environment, a robot called Robot (running the protocol "robot") operating in an environment consisting
of 8 possible positions, and sensing the position using a noisy sensor, whose values are recorded in the variable
sensor, which is observable to the agent. The example contains a single specification formula, indicated by the
construct spec obs, which indicates that the knowledge operator Knows is to be interpreted using the observational
interpretation for knowledge. A more elaborate version of this example is discussed at greater length in section 6.1.

In addition to determining whether a specification formula is true or false in a given scenario, the system provides
additional forms of support for the analysis of such scenarios, such as permitting the user to check the model by
navigating through executions of the scenario, and presenting counter examples when specification formulas are found
to be false.

1.2 Background Theory
This section describes an abstract mathematical model that underlies the MCK system. It is closely related to models
used in works including [21, 22, 23], which present some of the algorithms and data structures that underlie the analysis
performed by the MCK system. (These papers themselves use a variety of formal modellings, and the differences
between these papers and the model described here is largely a matter of mathematical presentation.) The remainder
of the manual provides a more concrete syntax and semantics for the model developed here.

We first present an abstract view of the semantics of MCK programs that is adequate from the point of view of
the main constructs of the specification language used in MCK. From this perspective, a system comprised of a set of
interacting agents is, at each point of time, in some global state. Write G for the set of all possible global states of the
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system. A run is a possible history of such states, and can be modelled by an infinite sequence r = s0, s1, s2, . . . where
each sk ∈ G. We write r(m) for the m-th state in this sequence.

The behaviour of a system is typically non-deterministic, as agents may have a choice of what actions to perform
at any given point of time, and the environment may also model non-deterministic events such as communication links
failures and delays. We may model this non-determinacy by representing the system as a set R of runs, intuitively all
the possible ways that the history of the system may evolve.

In general, agents are not able to observe the entire state of the system. We model this by means of a function
Oi : G → Oi, for each agent i where Oi is the set of observations made by agent i. Intuitively, Oi(s) is the information
that is visible to agent i when the system is in the global state s. Based on their observations, agents are able to make
inferences about the situation in which they find themselves, i.e., the particular state, time and past and future history.
We model such a situation as a point, represented as a pair (r,m), where r is a run and m ∈ N is a time.

In order to determine what they know, agents may make use of their observations in a variety of ways. We capture
the specific way that the agents use their observations for purposes of computing knowledge by assigning them a local
state with respect to a view at each point of the system. We write rx

i (m) for the local state of agent i at the point
(r,m), where x is the view. The simplest view is the observational view obs, where the agent uses just its current
observation to determine what it knows. The local state in this case is defined by robsi (m) = Oi(r(m)). Somewhat
more informative to the agent is the clock view clock, defined by rclocki (m) = (m,Oi(r(m))). Here the agent uses
both its current observation and the current global clock value to determine what it knows. Most informative is the
synchronous perfect recall view, defined by rspri (m) = 〈Oi(r(0)), . . . ,Oi(r(m))〉. Here the agent uses its complete
sequence of observations to the current time to determine what it knows. A variant of this, is the asynchronous
perfect recall view, rapri (m) defined from rspri (m) by replacing every maximal subsequence of consecutive identical
observations Oi(r(k)) = . . . = Oi(r(m)) by a single copy of this observation. Intuitively, this captures that while the
agent is able to remember all its observations, it does not have access to a global clock, so does not necessarily know
for what length of time it was making each observation.

For each view x, we may define a relation of indistinguishability on points: two points (r,m) and (r′,m′) are said
to be indistinghuishable to agent i, written (r,m) ∼x

i (r′,m′) if the agent has the same local state with respect to the
view at those two points, i.e. if rx

i (m) = (r′)x
i (m′). Intuitively, the set of all points that are indistinguishable from a

point (r,m) is the set of all points that the agent considers to be possibly the current point, when using the information
capture in that view. We may therefore say that agent i knows (with respect to view x) that a formula φ holds at a point
(r,m) if φ holds at all points (r′,m′) such that (r′,m′) ∼x

i (r,m). In MCK, the statement that agent i knows φ is written
as Knows i φ, with the view indicated at the level of the larger formula of which this statement is a part.

The above definitions suffice to give semantics to the specification language of MCK. (In addition to the knowledge
operator just defined, there is a variety of temporal logic operators. These are defined in Chapter 3.) In order to enable
the user to describe the system in which a formula is to be checked, MCK provides a systems modelling language
that consists of two parts. The set of runs of a system is taken to be generated by the agents each running a protocol
by which they choose actions available to them in a given environment. The global states G are made up of two
components: a state of the environment and a protocol state for each of the agents.

Abstractly, we model the environment as a finite-state transition system, with the transitions labelled by the agents’
actions. For each agent i = 1 . . . n let Ai be a set of actions associated with agent i. MCK currently provides a number
of concrete action types, including concurrent read and write to shared variables (which are modelled as part of
the environment state), as well as a construct that concurrently sends a signal to the environment and updates local
variables as a function of local and environment variables.

A joint action consist of an action for each agent, i.e., the set of joint actions is the cartesian product A = A1 ×

. . . × An. Define a finite environment for n agents to be a tuple E of the form 〈S e, Ie, τe〉 where the components are as
follows:

1. S e is a finite set of states of the environment. (Concretely, these are given in MCK by specifying a set of typed
variables.)

2. Ie is a subset of S e, representing the possible initial states of the environment. (Concretely, this is specified in
MCK by a constraint on the environment variables, or a program that constructs the initial states .)

3. τe : S e ×A→ P(S e) is a function mapping each state of the environment se and joint action a to the set τe(se, a)
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of possibilities for the next state of the environment when a is performed in state se. (Concretely this is given in
MCK by writing a nondeterministic program that computes this state transition function.)

The behaviour of agents is given concretely in MCK by writing a program that describes their choice of action at
each point of time. Each such program defines a set of states S i, given concretely by means of a set of variables, which
includes the program counter, a special variable whose value is the position in the program at which control resides at
the given point in time. Together, the states of the environment and these protocol states determine the set of global
states G: these consist of tuples 〈se, s1, . . . , sn〉 comprised of a state se in S e and a state si in S i for each agent i.

Abstractly, agent i’s program defines not just the protocol states S i, but in fact a tuple 〈S i, Ii, Pi, µi〉, where

1. Ii is the set of possible initial states of the protocol.

2. Pi : G → P(Ai) is a function mapping global states to a set of possible actions for the agent.

3. τi : G×A→ P(S i) is a function that describes how the protocol state (including the program counter) is updated
when a joint action occurs.1

Using these components, we may now define a global initial state to be a global state 〈se, s1, . . . , sn〉 such that
se ∈ Ie and si ∈ Ii for each agent i. Moreover, we define a global state transition relation T on global states as follows.
If there are n agents, sT s′, where s = 〈se, s1, . . . , sn〉 and s′ = 〈s′e, s

′
1, . . . , s

′
n〉 if there is a joint action a = 〈a1, . . . , an〉

such that for each agent i, ai ∈ Pi(s) is an action that may be selected by agent i’s protocol, the state s′e ∈ τe(se, a) is
one of the possible outcomes of performing the joint action, and for each agent i, the state s′i ∈ τi(s, a) is one of the
possible results of updating the protocol state accordingly.

One final component in the abstract systems model for MCK is a (generalized Büchi) fairness condition, repre-
sented abstractly by a tuple 〈α0, ..., αn〉, where each αi is a subset of the set of global states G. Concretely, each αi is
given in MCK by a formula satisfied by the states in αi. Intuitively, in each run, for each i, there is a state si ∈ αi that
occurs infinitely often.

We may now define the set of runs generated when the agents execute their protocols in the given enviroment as
the set of all runs r = s0, s1, . . ., where the sk ∈ G are global states, such that s0 is a global initial state, and for for each
k ≥ 0, we have skT sk+1, i.e, there is a transition from sk to sk+1, and the fairness conditions 〈α0, ..., αn〉 are satisfied,
i.e., for each 0 ≤ i ≤ n, there exists a state s ∈ αi such that sm = s for infinitely many m.

1.3 Installation and Invocation
The program is implemented in Haskell and makes use of extensions only implemented by the Glasgow Haskell
Compiler (http://haskell.org/ghc/). The graphical user interface is built using the Qt framework (http:
//qt-project.org/). In previous versions (version 0.2.0 and earlier), it used David Long’s Binary Decision
Diagram (BDD) package (http://www-2.cs.cmu.edu/˜modelcheck/bdd.html). From version 0.3.0
onwards, the program can also use BuDDy (http://sourceforge.net/projects/buddy/), and CUDD
(http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html) and is typically distributed with CUDD.
Each of the three BDD packages (Long’s BDD package, BuDDy and CUDD) has a Haskell binding that is in-
cluded in the HBDD library included with the distribution. The bounded model checking functionality uses Picosat
(http://fmv.jku.at/picosat/).

See the file README for detailed installation instructions and the distribution license (available using the call mck
-l) for information concerning license conditions arising from this associated software.

Invocation
The mck program currently implements three approaches to model checking, each of which provides a number of
model checking algorithms tailored for specific classes of formulas and knowledge semantics (see Chapter 4). The

1We remark that these definitions of Pi and τi are somewhat more general than MCK currently supports. For example, we do not presently
have a construct in MCK that allows an agent’s choice of protocol state update to depend directly on protocol states of another agent. Similarly, an
agent’s choice of action can presently depend only on its current protocol state plus its current observation of the state of the environment. However,
we may include more liberal constructs (e.g., handshakes between agents), in later versions.
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default approach is by symbolic model checking using binary decision diagrams. Bounded model checking is also
supported. The final approach is by explicit state model checking. Explicit state model checking is only likely to
terminate on small models and is included primarily to permit visualization and counter-example game playing on
such models. These features are also supported for the counter-examples produced by bounded model checking.

The program accepts the following flags, which are displayed when the program is run without input:

• -b[Int] or -bmc[=Int]: Use bounded model checking, with bound Int.

• -c or --counter-examples: generate counter-example traces

• -d[Int] or --debug[=Int]: Output BDD debugging info and stats (symbolic model checking only). This
is not particularly useful for end users.

• -e or --environment: Output the environment information.

• -f or --formula: Output the BDD formulas in human-readable form (symbolic model checking only). This
is not particularly useful for end users.

• -g or --game: Play game on failed specifications (explicit state and bounded model checking only).

• -k or --es-check: Use explicit state model checking instead of the default symbolic model checking.

• -l: print out license terms

• -m or --es-model: Output explicit states model information (explicit state model checking only).

• -o File or --var-order=File: Output the BDD variable order to a file (symbolic model checking only).

• -p or --protocol: Output the pre-processed protocol information.

• -r[s|w] or --reorder[=s|w]: Enable BDD variable re-ordering (symbolic model checking only). The
two methods are sifting and window-based sifting (see the corresponding BDD package’s manpage for details).

Note that, for all but the simplest examples, some kind of variable ordering information must be supplied. If this
is unknown, using -rs usually greatly reduces memory consumption, although it is somewhat time-inefficient
(this may also depend on the BDD package used).

• -s File or --set-var-order=File: Load BDD variable ordering from a file (symbolic model checking
only).

• -u: this is for use by the mck GUI, in order to obtain results in XML format.

• -v or --visualize: Invoke the visualizer. (see section 7.1).

• -x or --es-context: Output exlicit states model context (explicit states model checking only). This is not
particularly useful for end users.

Not all combinations of these flags are supported, and a flag will be ignored if it is given in an incompatible
context. For example, the -g flag will not take effect when using symbolic model checking. Similarly, the -f flag
will be ignored when using explicit state model checking.

The program expects the filename of an input script to be supplied. It will search the current directory for files
matching the names of any protocols that are used in an input script but not defined there. See Section 6.2 for an
example of this.

Graphical User Interface
In addition to the command line invocation, a graphical user interface is available for the system. This is described in
detail in Chapter 8.
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−− There are 8 positions in the world.
−− If the robot is really at position p, then the sensor will have a
−− value ∈ {p − 1, p, p + 1}, for a truncating interpretation of arithmetic.
type Pos = {0. .7}

position : Pos
sensor : Pos
halted : Bool

init cond = position == 0 /\ sensor == 0 /\ neg halted 10

agent Robot "robot" ( sensor )

−− At each time step, the environment moves the robot one step to the
−− right, and generates a new sensor reading.
transitions
begin

if Robot.Halt −> halted := True
fi;
if neg halted −> position := position + 1 20

fi;
if True −> sensor := position − 1
[ ] True −> sensor := position
[ ] True −> sensor := position + 1
fi

end

spec obs = G (sensor >= 3 <=> Knows Robot position in {2. .4})

−− The “car handbrake” protocol. 30

−− In order to stop moving, the robot only needs to yank it once.
protocol "robot" (sensor : observable Pos)

begin
do neg (sensor >= 3) −> skip
[ ] break −> <<Halt>>
od

end

Figure 1.1: A simplified version of the robot example.
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Chapter 2

The Input Language

This chapter provides an informal description of the language used to describe the model checking scenario (Sec-
tion 1.1). A more formal description is given in Appendix A (syntax) and Appendix B (semantics).

An input script consists of a collection of environment declarations, one or more specifications, and one or more
protocols, as illustrated in Figure 2.1. Both environments and agent protocols are described using a simple program-
ming language. We proceed by describing the lexical conventions, the role of types, the structure of programs, then
cover the variety of environment declarations and finally agent protocols. Specifications and fairness constraints are
covered in Chapter 3.

2.1 Lexical Structure
The lexical structure of the language follows Haskell [20] closely. Specifically:

Comments begin with ‘−−’ and terminate at the end of the line they appear on.

Block Comments begin with ‘{−’ and are terminated with ‘−}’.

Constants start with an upper-case letter, and can be followed by any number of a mix of alphanumeric characters
and underscores. These are used in enumerated types (Section 2.2), actions and agent names.

Variables start with a lower-case letter followed by any number of a mix of alphanumeric characters and underscores.
Program variables and labels belong to this class.

Relational variables start with an underscore followed by any number of a mix of alphanumeric characters and
underscores. These are used in µ-calculus specifications (Section 3.5).

2.1.1 Reserved Words
The reserved words in the MCK input language, of which there are many, are spelt out in the formal syntax given in
Appendix A.

2.2 Types
All types are finite sets. Types can be introduced by either explicitly enumerating their elements (enumerated types),
or by specifying a range of integers (arithmetic types). For example, in the following,

type Int3 = {0. .7}
type Weekday = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
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Int3 is an arithmetic type and Weekday is an enumerated type. The only primitive pre-defined type is Bool, which
behaves as if it were defined by:

type Bool = {False,True}

The concrete syntax for type declarations can be found in Section A.1. Lexically, the type name and elements are
Constants, and elements do not have to have a unique type. Note that this ad hoc overloading of constants restricts
the allowable structure of expressions (see Sections 2.3 and A.3).

All defined types (but not Bool) are totally-ordered, so can be used in relational expressions in the natural way.
The canonical ordering on the elements is the textual order in which they are defined. For example, in the context of
the above declarations, we have 2 < 5 and Tue < Fri.

To declare that a variable x has a type T , we write x : T .

Arrays

Environment variables can be given an array type using the standard C syntax, e.g.

x : Bool[3]

declares x as an array of length 3. All arrays are indexed from 0. Only one-dimensional arrays are available at present.
Arrays are best thought of as a list of variables, (with names x[0], x[1], x[2] in the above case) since indexing an

array by an expression (e.g., x[i], where i is a variable) is not permitted. The only exception to this is the special index
self, in the context of an agent protocol, which can be thought of as a macro for the agent number associated to
that agent. (For example, inside an instance of a protocol, with the agent assigned number 3, x[self] refers to x[3].)
The utility of this is in abstracting a protocol from the concrete number of agents present in a given scenario. See
Section 6.2 for an example.

2.3 Expressions
The expression sub-language is used in formulas, branching statements and the right-hand-sides of assignment state-
ments. The syntax of expressions depends on the type of the value that they represent, and the context in which they
appear. There are three types of expressions: Boolean, Numerical and Enumerated expressions. The full syntax is
spelt out in Section A.3, and what follows is an overview.

• Boolean expressions are formed from the constants True, False and atomic propositions using the boolean
operators /\ (and), \/ (or), => (implication), <=> (bi-implication) and xor.

• Numerical expressions are formed from numerical constants and variables using the operators + and −. Since the
language has only finite types, the interpretation of these operators is truncating: a value less than the minimum
value in the type is interpreted as the minimum value, and similarly any value greater than the maximum value
is interpreted as the maximum.

• Enumerated expressions are formed from the elements and variables of enumerated type, together with the
monadic operators next and prev, which refer to successors and predecessors in the linear order on the type,
with a rotating interpretation at the endpoints.

Expressions can mention any appropriately typed variables that are defined in the context in which they occur.
In the context of the type definitions in Section 2.2 and x : Int3 with value 3, and a:Weekday with value Sun, basic

expressions of the following forms are valid, and are evaluated to the specified value (we write e ⇒ v for e evaluates
to v):

Operator Examples
Enumeration x in {1, 2, 4} ⇒ False, x in {3..7} ⇒ True.
Equality x == 2⇒ False, x /= 3⇒ False.
Relational x > 3⇒ False, x >= 3⇒ True, x < 3⇒ False, x <= 3⇒ True.
Truncating Arithmetic x + 1⇒ 4, x − 4⇒ 0.
Rotating Adjacency next(a)⇒Mon, prev(a)⇒ Sat.
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It is envisaged that other forms of arithmetic will be useful, and these will be implemented in the future.
As all types are enumerated, we have very liberal overloading rules. Indeed, the type checker simply computes

an approximation to what values an expression can take on and ensures it’s a subset of Bool, in the case of boolean
formulas, or of the type of the variable being assigned to otherwise.

2.4 Programs
Programs are used to describe agent protocols, as well as in the environment description to represent transitions and
initial states. This section describes the basic constructs of the program language, which is an imperative language with
(probabilistic) nondeterminism, reminiscent of Dijkstra’s guarded commands [8]. The only substantial deviation from
his presentation is the addition of a break branch in a do statement which is executed when the do loop terminates (i.e.
when all other conditions are false). Why this is important is discussed in more detail in Sections 6.1 and Appendix B.

Not all of the constructs of the language are treated as consuming time when they execute. In particular, evaluation
of an expression and selection of a branch of a conditional statement are treated as taking no time. This enables the
representation of the selection of the next atomic action to execute by traversal of a nested conditional statement.

Atomic Statements

Atomic statements are the basic unit of the language, corresponding to parts of a state transition in the temporal
semantics. In the context of an agent protocol, atomic statements take one unit of time to execute. In the context of an
initialization or transition clause, atomic statements are treated as taking no time to execute.

The variables whose values may change on the occurrence of an atomic statement depend on the context. In the
context of the environment (in a transitions and initialization clause), only environment variables are affected (but this
implicitly causes changes to the agent parameter variables that are aliased to these variables.) In an agent protocol, the
agent’s local variables may be directly affected by the atomic statement, but the statement also emits a signal to the
environment that may cause changes to the environment variables. A signal sig emitted by agent agt is represented in
the environment description by the atomic proposition agt.sig.

Skip: The primitive skip is an atomic statement that consumes unit time. In the context of a transitions or initializa-
tion clause, it changes no variables. In the context of an agent protocol, it changes no local variables, but emits
the signal NilAction to the environment. (The transition clause in the environment may change environment
variables as a result.)

Assignment: The assignment statement evaluates an expression and assigns its value to a variable. This type of
statement has the form

v := expr

where v is variable and expr is an expression whose values are of the same type as v.

Nondeterministic Satisfying Assignment: The syntactic structure for a nondeterministic satisfying assignment is as
follows:

[[var list | formula]]

The var list is a comma separated list of variables. The formula is a propositional formula over all variables
defined in the context in which this statement occurs, and the primed versions of variables in var list. (If v is
a variable, then its primed version is another variable written as v′.) The primed variables represent the values
of the variables in var list after this statement has executed. Intuitively, this statement says “change only the
variables in var_list, so as to make the relationship formula hold between the current values of all variables
and the new values”. Since there may be many possible choices of values that satisfy the formula, this statement
is nondeterministic. (It may also be interpreted probabilistically, see Chapter ??.)

For example, when x, y, z are variables of type {1..10},

[[x | True ]]
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represents a nondeterministic choice of any of the values 1..10 to the variable x, (and no change to any other
variable), and

[[x, y | x′ <= y′ /\ y′ <= z]]

chooses new values for both x and y, depending on the current value of z. For example, if the current value of
z is 1, then the possible new assignments to the pair (x, y) are (0, 0), (0, 1), (1, 1). If the current value of z is 2,
then the possible new assignments to (x, y) are (0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2).

The nontderministic satisfying assignment operation may be used in initialization and transition clauses, and in
agent protocols. In the context of an agent protocol, the variables in var list must be local to that protocol. In
the context of an initialization or transition clause, these variables must be global (environment) variables.

It is assumed that the formula has at least one solution for all fair reachable states in the system. The onus is on
the user to ensure that this is the case. In a future version of the system, we plan to provide a debugging facility
to detect situations in which there is no solution.

Actions: Atomic statements in the context of agent protocols have the dual effect of updating local variables as well
as emitting a signal to the environment. Actions are a special form of atomic statement that is used to represent
this type of dual effect. (The signal emitted to the environment is used to update the environment variables in a
way that is described in Section 2.5.6.)

An action has one of two forms:
<< Action >>

or
<< Action | var1 := expr1; ... ; varn := exprn >> .

Here Action has lexical type constant, and is the name of the signal that this atomic statement emits to the
environment. For each agent AgentName that may perform this action (as determined by its protocol), there
is a special atomic proposition AgentName.Action that may be referred to in the context of the environment.
When emitted by agent AgentName, the proposition AgentName.Action is true during the transition computation
performed by the environment.

Note that var1, ..., varn must be distinct local variables. The intuitive semantics of the assignments is that the
values of the expri are computed in the state before the action is performed, and the assignments are carried out
in parallel (and simultaneously with the environment transition computation) to produce the agent’s protocol
state after the action is performed.

Implicit Actions: In the context of protocols, the other types of atomic statements are treated as implicitly
generating the special signal NilAction. That is, skip is treated as if defined by

[skip] = << NilAction >>

assignments are treated as if defined by

[var := expr] = << NilAction | var := expr >>

and the statement [[var list | formula]] is treated as issuing << NilAction >> to the environment in addition to
updating the variables in var list so as to satisfy formula. The simplified action form

<< var1 := expr1; ...; varn := exprn >>

is also permitted, this is treated as if defined by

[<< var1 := expr1; ...; varn := exprn >>] = << NilAction | var1 := expr1; ...; varn := exprn >>.

Shared Variable Read/Write: The semantics of actions is generally specified in the transitions clause of the
environment. A special case of actions is provided, which captures the idiom of concurrent read/write on shared
variables.
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The read form for actions:
<< local var := environment var.read() >>

or
<< local var := environment var.read() | var1 := expr1; ... ; varn := exprn >> ,

assigns the value of an environment variable to a local variable, taking into account concurrent writes.

The write form:
<< environment var.write(expr) >>

or
<< environment var.write(expr) | var1 := expr1; ... ; varn := exprn >>

provides a way for an agent to assign a value to a shared variable.

In each of these statements, environment var must be the local name of the environment variable (i.e., the
parameter variable that is bound to the environment variable, see Section 2.6.1).

Programming Constructs

Alternatives: The non-deterministic choice statement has the form:

if cond1 → C1 ... [] condi → Ci ... [otherwise→ Co] fi

where each command Ci is eligible for execution only if the corresponding condition condi evaluates to true in
the current state. If, for all i, condi evaluates to false, then Co is executed. If the otherwise branch is absent then
an implicit otherwise→ skip is introduced.

Traversing the if, evaluating the conditions condi, entering a branch via→ and exiting this statement through fi
are treated as if they consume no time.

Repetition: The non-deterministic iteration statement has the form:

do cond1 → C1 ... [] condi → Ci ... [otherwise→ Co] [break→ Cb ]od

where each command Ci is eligible for execution only if it’s corresponding condition condi evaluates to true in
the current state, a process which is repeated until all conditions evaluate to false. At this time the Cb statement
is executed if the break branch is present; otherwise the system implicitly executes the skip command.

Traversing the do, evaluating the conditions condi, entering a branch via→ and exiting this statement through
od are treated as if they consume no time.

Sequential Composition: An arbitrary number of statements C1, ...,Cn to be executed in sequence can be aggregated
by writing: begin C1; ...; Cn end.

Traversing the begin or end are treated as if they take no time.

Derived forms

Some other common programming idioms are supported as derived forms. The following give the expansion [·] of
these in terms of the core language.

if-then-else: A choice construct derived from if. The expansion is as follows:

[if cond then C1 else C2] = if cond → C1 [] neg cond → C2 fi

while: A repetition construct derived from do. The expansion is as follows:

[while cond do C] = do cond → C [] break→ skip od

Intuitively, C is executed until cond becomes false. The break→ skip branch means that it takes 1 time step
to exit the while loop.
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2.5 The Environment
This section describes the environment declarations that specify which agents exist, and the environment through
which they communicate. The environment declarations specify a set of types, introduce a set of variables, introduce
definitions relating to these variables, describe the initial states of the environment, introduce the agents (naming the
protocols they run and their binding to the environment variables), describe how states of the environment are updated
using a transitions clause, and give fairness conditions on runs. The formal syntax is presented in Section A.1. Note
that these declarations must appear in the script in the same order as they are presented here.

2.5.1 Types
The first set of declarations introduce zero or more types, as specified in Section 2.2.

2.5.2 Shared Variables
A state of the environment is an assignment to a set of variables declared in the environment section. These variables
are declared with a sequence of statements of the form

variablename : typename

where typename specifies a type.
Conceptually, these variables can be viewed as shared by the agents in the system. However, agents are generally

not able to observe and update all these variables - the agent declaration statement (described below) specifies which
variables each agent is able to access. The transitions section (described below) describes how the agent’s actions
cause changes in the environment variables.

2.5.3 Definitions
Definitions may be introduced in order to abbreviate boolean expressions in the environment declaration or in agent
protocols. The syntax for definitions is

define 〈varid〉 = 〈expression〉

where 〈expression〉 is a boolean expression. Definitions are handled like macros: any occurrence of the defined variable
is replaced by its corresponding expression before processing of the script.

In the environment section, definitions are placed after variable declarations and before the initial condition, and
〈expression〉 may contain environment variables, and agent qualified local variables, actions and labels.

The user is responsible for ensuring that the defined term is valid for any context (specification formula, transitions
section, initial condition, fairness condition) where it is used. (E.g., an expression containing agent actions cannot be
used in formulas.)

2.5.4 Initial condition
The initial values of the environment variables are constrained by the initialization statement. The initial state of the
environment need not be unique. In some cases, it is convenient to generate the possible initial states by means of a
program, starting from some default values. This is done in a two-phase process, using a statement of the form

initialization
from 〈fromPart〉
begin
〈program〉

end
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Intuitively, the 〈fromPart〉 specifies a set of starting states from which the construction of initial states begins. The
actual initial states are then constructed as the states reached after running the program block from these starting states.
The 〈fromPart〉 may be either

• uni f orm: this specifies that each assignment to the variables yields a starting state; (The terminology is due to
the fact that in the probabilistic setting, these states are equipped with the uniform distribution, see Chapter 5.)

• all init: this specifies that there is a unique starting state, the state in which every variable takes the least value
in its type.

After constructing a set of environment states according to the from part, the initialization proceeds by executing
〈program〉 from each of these starting states, and collecting the resulting final states. Each of these final states is a
possible initial state of the environment.

For cases where a formula suffices to describe the initial states, the initialization statement can be replaced by the
statement

init cond = f ormula

where f ormula is a boolean formula over the variables. In this case, every environment state satisfying the formula is
initial (with uniform distribution in the probabilistic setting).

The initialization statement (and in particular, the program it contains) is treated as taking no time to run, it is
simply an artefact for the definition of initial states.

2.5.5 Agent Bindings
The next set of declarations bind distinct agent names to the protocols they run, and instantiate each protocol’s envi-
ronment parameters. There must be at least one agent in the system. Each declaration has the form

agent AgentName "protocol name" (var list)

where var list is a comma separated list of variables that have been previously declared for the environment. This
statement introduces an agent named AgentName to the environment, which will run the protocol named protocol name,
as declared later in the script. The protocol declaration will include a list of parameter variables for this protocol: the
number and types of these much match with the variables used in the agent declaration.

The effect of the agent declaration statement is to alias the instances of the parameter variables in the context of the
agent to the corresponding environment variables. Note that this introduces the possibility of having multiple names
for the same variable. The usual problem of interference when two parameters are bound to the same environment
variable does not arise, because updates to environment variables are made only within the environment rather than
within agent protocols.

2.5.6 Transition Specification
The next part of the environment description specifies how environment states change over time, using an optional
transitions clause.

In the execution semantics, at each step of the computation, the agents first simultaneously choose an atomic
statement (see Section 2.4) to perform. The statement has both a local effect and sends a signal to the environment. The
environment resolves the set of signals it receives from the agents in order to determine the values of the environment
variables in the next state. (The local effects and the effect on the environment happen in the same transition and do
not interfere with each other.)

The effect on the environment is determined in two phases. The first phase deals with the specialised read/write
form for actions, in order to support the perspective that the environment variables are shared variables on which
the agents may perform concurrent read/write operations. (This phase is always executed in the same way, and no
statement needs to be added for this to be enabled.) The second phase processes the other signals sent by the agents
to the environment, using the transitions clause, which provides a way to program how the environment variables are
updated.

13



Phase 1: The input to the first phase is a set of signals of the form AgentName.environment var.write(value) and
AgentName.environment var.read, where AgentName indicates the agent performing the action. This set of signals
is treated as a set of concurrent read and write actions on the environment variables, with the order unspecified.
This makes the semantics nondeterministic: simultaneous reads and writes to a variable are resolved to any of the
possible interleavings of these actions. For example, if x has value 0 the set of actions A1.x.write(1), A2.x.write(2),
A3.x.read(), could result in the value for x that is read by A3 being any of 0, 1 or 2, and, independently, the value of x
in the successor state being either 1 or 2.

Phase 2: In phase 2, the remaining signals sent by the agents to the environment are processed. This processing is
done using a program that is described in the transitions clause, which has the form

transitions
begin
〈program〉
end

Here 〈program〉 is a program as described in Section 2.4, but with the following syntactic restrictions:

• Only non-looping constructs are allowed (no do or while loops).

• The guards of conditional statements are boolean expressions formed from atomic propositions over environ-
ment variables, agent-qualified actions (AgentName.Action) and agent-qualified labels (AgentName.label).

An example of the use of this mechanism is the robot example of Section 6.1.
The combined effect on environment variables from the shared variable operations in Phase 1, followed by the pro-

gram in the transitions clause in Phase 2 is interpreted atomically, as if it occurred in a single step of computation taking
unit time. Since the both the shared variable operations and the transitions clause program may be non-deterministic,
there may be many successor states for each starting state.

2.5.7 Fairness Constraints
The final section of the environment declaration concerns the fairness constraints in the system. MCK supports fairness
constraints in the manner described in [9, Section 7] and [10, Section 6.3]. Briefly, a fairness constraint filters the runs
of the system by accepting only those along which a given propositional formula is satisfied infinitely often. This is
explained in more detail in Chapter 1.

The fairness declaration section consists of a sequence of statements of the form

fairness = 〈formula〉

where 〈formula〉 is a boolean formula. The effect of each such statement is to restrict the runs of the system to those
in which the formula is satisfied infinitely often. (Since there may be multiple such statements, the effect is like that
of a generalized Büchi automaton fairness condition.)

The formula may be constructed from atomic propositions built using environment variables, variables local to
agents (in the form AgentName.variable) and labels local to agents (in the form AgentName.label; see Section 2.6.5.)

Some examples of the use of the fairness statement are give in Section 6.4.

2.6 Agent Protocols
A protocol defines an agent’s behaviour. In particular, it specifies how the agent maintains its local variables and emits
actions into the environment, as a function of the input it receives from the environment. The behaviour is described
using a program of the type defined in Section 2.4.

The basic structure of protocols is illustrated in Figure 2.1, and is more formally spelt out in Section A.2. The
structure consists of a header, local variable declaration, definitions, initial condition, and program, described in the
following sections.
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2.6.1 Protocol Header
The protocol header is a statement of the form

protocol "protocol name" (parameter list)

where parameter list is a comma-separated list of variable declarations. Each of these variable declarations is of one
of the forms

var : type

or
var : observable type .

The latter form declares that the variable var is one of the variables used in the construction of the agent’s observation.
In order to allow arbitrary length arrays to be passed in from the environment, type may be the special type form
basic type[], which matches an arbitrary length array. The user is responsible for consistency of indexing in this
case. The keyword self (see Section 2.2) provides one possible index in this case. (See Section 6.2 for an example
of this combination.)

The agent declaration in the environment aliases the local instances of the variables in the header to shared
variables in the environment. The type of the environment variable and the aliasing protocol header variable should be
the same.

Conceptually, the semantics of the header variables is somewhat like “call-by reference”, in that fresh copies are
not created for the agent-local instances. However, in order to prevent concurrency problems, the body of the protocol
may not assign directly to the header variables, so many of the usual subtleties do not arise.

The protocol may “read” the header variables by using them in its expressions. In this case the phased temporal
semantics needs to be borne in mind. At each program step, such references to these header variables in the protocol’s
program section will refer to the “current” values of the aliased variable, i.e., their values in the global state from
which the next transition of the system will be taken. The value of the expressions using these current values are used
to select the next action that the agent performs, which has the general form

<< Action | var1 := expr1; ... ; varn := exprn >>

As noted above the expressions expri in this construct are also evaluated using the “current” values of the variables they
contain. After this, the signal Action is emitted to the environment, which uses it to update the environment variables
as part of the transition to the next global state of the system. The updated values of the environment variables are
then available to the agent in this next state via the aliasing by parameter variables. (In case Action is a shared variable
read, the result is written to the local variable indicated.)

2.6.2 Local Variable Declaration
The next block of the protocol text is a declaration of the local variables and their types, using a sequence of statements
of the forms

var : type

or
var : observable type .

As with parameter variables, the latter type of declaration indicates that the variable is part of what is observable to
the agent for the purposes of the epistemic semantics.

2.6.3 Initialization
The local variable declaration is followed by a statement that describes the initial values of the local variables. This
can be of the form of a where clause or an initialization clause.

The former has the form
where 〈formula〉
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where 〈formula〉 is either a boolean formula over atoms constructed from the local variables, or the construct all init,
which abbreviates the formula that states that all local variables have the least value in their corresponding type. The
initial state of each instance of the protocol is non-deterministically taken to be one of the assignments satisfying the
formula.

Alternately, an initialization clause with syntax and semantics as described in Section 2.5.4 may be used, but
operating on local variables rather than environment variables.

2.6.4 Definitions
Definitions in the form

define 〈var〉 = 〈expression〉

may also be included in a protocol. In this case, 〈expression〉 may contain variables local to the agent. The defined
variable may be referred to in the environment as usual as Agt.〈var〉.

In applying MCK to verifying that a concrete protocol implements a knowledge-based program, one wants to
check that the conditions in the protocol correspond to a formula about the agent’s knowledge. This leads to a need to
refer to the conditions both in the protocol and in their specifications. Definitions help to abbreviate the specification
and to keep it aligned to the protocol when changes are made to the protocol. (See Section 6.1 for an example of the
use of conditions in knowledge-based program verification.)

2.6.5 Protocol Program
The final part of the protocol text is a program block of the form

begin
〈program〉
end

The variables occurring in the list of environment parameters, the local variables and the definitions form the context
for this program block: no other variables may occur in 〈program〉. Compared to the transition statement in the
environment, this program has some extra flexibility in its syntax: it may contain looping constructs, actions, and
make use of labels. These are described in the following sections.

Actions

Actions and the associated execution semantics have already been described above in Section 2.4 and Section 2.5.6.
Note that at each step of the temporal semantics, every agent nondeterministicallly selects one of the enabled actions.
The corresponding signals are simultaneously emitted to the environment, which uses them to compute the next state
of the environment variables. A more precise description of the execution semantics is given in Appendix B.

Labels

All program statements C in a protocol can be given a (not necessarily unique) label, which is written as follows:

label :: C

where label belongs to the Variable lexical class. Explication of the semantics of labels requires a distinction to be
drawn between state transitions that are enabled versus those which are taken. For example, when control reaches the
following program fragment:

do
True −> l0 :: var := 0;

[ ] True −> l1 :: var := 1;
[ ] True −> l2 :: var := 2;
od
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we have that all branches of the if statement are enabled, but only one can be (non-deterministically) taken.
Each label label in the protocol being run by agent AgentName is associate to an atomic proposition AgentName.label,

which evaluates to True if and only if a statement labelled by label is enabled in AgentName’s protocol. (Thus, when
control reaches the above statement, all of the propositions AgentName.l0, AgentName.l1 and AgentName.l2 are true.
If there are several statements with the same label, then the proposition is true if any of them are enabled.

The propositions associated to labels may be used within specifications, fairness constraints and in expressions in
the environment transitions specification. Section 6.4 gives an example involving all three types of use.

While it is tempting to try to use labels to specify which branches of if, do and and while should be treated fairly,
some care is required, since the truth of a label propositions represents that the program location is enabled, rather than
that the corresponding program statement will be taken. Consider, for example, the constraint that the middle branch
in the above example is executed infinitely often. It is tempting to write the fairness constraint as:

fairness = AgentName.l1

but this merely asserts that the branch is enabled infinitely often, and does not rule out runs where it is never actually
taken. The simplest solution is to use a variable var (inserting a new variable if necessary) that tracks when a branch
is taken, and re-formulate the constraint in terms of it. Thus (provided control is guaranteed to reach this statement)

fairness = var == 1

captures the constraint that the middle branch be infinitely often taken. Similarly,

fairness = (neg l1) \/ var == 1

says that infinitely often, location l1 is not enabled, or the corresponding branch has been taken; this is equivalent to
the statement that if location l1 is forevermore enabled, then eventually the corresponding branch is taken.
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−− Types. (zero or more)
type TypeName0 = { . . . elements . . . }
. . .
type TypeNameT = { . . . elements . . . }

−− Shared variables. (zero or more)
varDec0 : Type
. . .
varDecN : Type 10

define def0 = . . boolean expression involving shared variables . . .
. .
define defL = . . boolean expression involving shared variables . . .

−− Environment initial condition. (optional)
init cond = . . . boolean expression involving env variables . . .

−− Agent bindings. (at least one)
agent AgentName1 "protocol for agent 1" ( . . . env variables . . . ) 20

. . .
agent AgentNameM "protocol for agent M" ( . . . env variables . . . )

−− Transitions clause. (optional)
transitions
begin

. . . statements, no loops . . .
end

30

−− Fairness constraints. (zero or more)
fairness = . . . Boolean formula . . .

−− Specifications. (at least one)
<specification type> = . . . temporal and knowledge formula . . .

−− Protocol declarations. (zero or more - can be in a separate file) 40

protocol "first protocol name" ( . . . env parameters . . . )
−− Agent-local variables (zero or more)
localVar0 : Type
. . .
localVarK : Type
−− Agent-local initial condition. (optional)

where . . . boolean expression involving local variables . . .

define def0 = . . boolean expression involving local variables . . .
. . 50

define defL = . . boolean expression involving local variables . . .

begin
. . . statements . . .

end

Figure 2.1: The structure of an input script.
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Chapter 3

The Specification Language

MCK supports a rich specification language (a combination of CTL∗ with epistemic and mu-calculus operators) that is
able to express a number of aspects of knowledge and time, and admits a range of different semantics for knowledge,
depending on the view of the agents (observational, clock or synchronous/asynchronous perfect recall, as described in
Section 1.2). In this chapter we describe the syntax of the specification language. The full language is not supported
in all cases: depending on the knowledge semantics and the model checking algorithm selected, syntactic restrictions
may be required. These restrictions are described in the next chapter, on algorithms.

3.1 General Form of Specifications
Specifications are of the form: 〈spectype〉 [ ‘"’ Comment ‘"’ ] = 〈formula〉. The Comment is optional; if present, the
model checker will output it along with the formula. The precise form of the 〈formula〉 is specified below.

In general, specification identifiers 〈spectype〉 have the form spec x or spec x y, where x is a keyword
identifying the view on which the semantics for the agent’s knowledge is based (either obs for observational, clk for
clock, apr for asynchronous perfect recall, or spr for synchronous perfect recall), and y is a keyword identifying the
algorithm to be used for model checking. The options for the algorithm are described in the next chapter.

3.2 The Propositional Core
Basic propositions in this language can be formed in several ways:

Boolean variables can be used directly: environment variables are denoted by their names, and agent variables can
be accessed as AgentName.variable.

Equality of terms is written as t1 == t2, where t1,t2 are terms of the same type. Inequality is written as t1 / = t2.

Relational expressions between arithmetic or enumerated terms include t1 < t2, t1 <= t2, t1 > t2, t1 >= t2, x in S
where x is a variable or constant and S is a concrete set, e.g. {3, 5, 7}.

Label references of the form AgentName.label, where label is a label occurring in the protocol being run by agent
AgentName. (See Section 2.6.5.)

The usual boolean connectives (Section A.6) can be used to combine propositions.

3.3 Linear Temporal Logic
Linear Temporal Logic is a well-known linear-time logic used (for example) in SPIN [14]. Informally, the available
operators and semantics are as follows:
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Operator Description
F f eventually f .
G f always f .
f U g f until g.
f R g f release g.
X f f in the next state.

The formula f Ug requires that g holds at some time in the future, and f holds at all times before that time. The
formula f Rg is similar, but by contrast does not require that f holds at some time in the future; it says that g holds
(possibly forever) until it is released by an occurrence of f . This can be defined in terms of the other operators as
f Rg = ¬(¬ f U¬g) = G(g) ∨ (gU( f ∧ g)). LTL can directly encode fairness conditions, but it is also possible to use
CTL fairness constraints (Section 2.5.7).

An example of using LTL specifications is the following simple, not-fully-correct mutual exclusion algorithm.

turn1 : Bool
turn2 : Bool

−− Non-deterministic choice of who goes first.
init cond = turn1 xor turn2

agent M1 "mutex" ( turn1, turn2 )
agent M2 "mutex" ( turn2, turn1 )

−− Safety 10
spec obs = G neg (M1.in cs /\ M2.in cs)

−− Non-blocking
spec obs = G (((F M1.left cs) /\ neg M1.in cs) => F M1.trying)
spec obs = G (((F M2.left cs) /\ neg M2.in cs) => F M2.trying)

−− Non-strict sequencing (fails)
spec obs = EF (M1.in cs /\ E[M1.in cs

U (neg M1.in cs /\ E[neg M2.in cs U M1.in cs])])
20

−− Liveness (need to consider fairness)
spec obs = G (((F M2.left cs) /\ M1.trying) => F M1.in cs)
spec obs = G (((F M1.left cs) /\ M2.trying) => F M2.in cs)

protocol "mutex" ( env turn1 : observable Bool, env turn2 : Bool )
in cs : Bool

where neg in cs

begin
while True do 30
begin

while env turn1 /= True do trying :: skip;
−− Critical section
in cs := True;
do in cs −> skip
[ ] in cs −> in cs := False
[ ] break −> skip
od;
−− End critical section
left cs :: << env turn1.write(False) >>; 40
<< env turn2.write(True) >>

end
end
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3.4 Branching Time Temporal Logic
The branching time temporal logic CTL∗ is obtained by adding a branching operator A so that A f that says that the
formula f holds on all possible futures from the current state. Its dual operator E is defined by E f = ¬A¬ f , which
expresses that there exists a possible future satisfying f .

In CTL∗, the branching operator A can be arbitrarily nested with the linear time operators of LTL. Computation
Tree Logic is a well-known fragment of CTL∗used (for example) in SMV [10], that restricts the use of the branching
operator so that it always occurs directly in combination with a temporal operator. The available operators and an
informal semantics are as follows:

Operator Description
AX f f in all next states.
EX f f in at least one next state.

A[ f U g] on all paths, f until g.
E[ f U g] on at least one path, f until g.
A[ f R g] on all paths, f release g.
E[ f R g] on at least one path, f release g.

AF f On all paths, in some future state, f .
EF f On at least one path, in some future state, f .
AG f On all paths, in all future states, f .
EG f On at least one path, in all future states, f .

An example appears in Figure 3.1. In English, the specification might be rendered as “in all reachable states, there
exists a future state where A.var is the case”. The set of reachable states is subject to fairness constraints (see below).

3.5 µ-calculus Constructs
The µ-calculus adds greatest and least fixed-points to the branching-time model that CTL uses, and can indeed express
all (unfair) CTL constructs. Concretely, in spec obs specifications the following two operators can be used:

gfp Z f greatest fixed point of f wrt variable Z.

lfp Z f least fixed point of f wrt variable Z.

with the constraints that all relational variables (such as Z) used in f fall under an even number of negations, and
that the specification as a whole is closed with respect to relational variables.

For example, the (unfair) CTL operator EG f can be written as gfp Z ( f ∧ EX Z).
Note that the evaluation of fixpoints in MCK is quite naive at the moment as the Emerson-Lei algorithm (or a

more-recent refinement) isn’t implemented. See [10, Chapter 7] for details.

3.6 Knowledge Modalities
The knowledge modality is written Knows Agent formula. The various semantics for this operator were spelt out in
Section 1.2.

For the clock and observational semantics, a common knowledge operator is also available, written CK {Agent1, ...,Agentn}
formula (formula is common knowledge to the specified agents), or CK formula (formula is common knowledge to
all agents).

3.7 Exponentiation of operator prefixes
It is sometimes useful to iterate a sequence of modalities, and this is supported by the notation Oˆn φ, where O is a
sequence of modal operators and n is a positive natural number, which abbreviates O O ...O φ, where there are n copies
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of O. For example, one common use of this notation is in formulas Xˆn(φ), stating that φ holds n steps in the future.
(Previous versions of MCK supported the notation X n φ for this: for backwards compatibility, this is still supported,
but deprecated.) Another example is (Knows A Knows B)ˆ2 p, expressing Knows A Knows B Knows A Knows B p.

3.8 Local Next
In the context of specifications dealing with agents operating asynchronously, it is of interest to specify what an agent
knows after it has made a given number of distinct observations, which cannot be done using the next-time operator X.
The local next operator XK can be used for this purpose. This is used in the syntactic form XK AgentName φ, where
φ is a formula that may contain agent AgentName’s knowledge operators, but no temporal operators or knowledge
operators involving other agents. The meaning of this formula is that “if there exists a later time where the agent’s
local state differs from its current local state, then while the agent is in that next local state, the formula φ holds. Note
that this means that if there is, on the current run, no future time where the agent’s local state differs from its current
local state, then the formula is trivially true. This construct can presently only be used in the context of asynchronous
perfect recall specifications of the form (XK AgentName)ˆn φ, asserting that φ describes the agent’s knowledge in all
situations where its asynchronous perfect recall local state consists of n + 1 observations.

3.9 Resolution of Ambiguity
MCK will accept ambiguous specification formulas such as Knows A p ∧ Knows B q, which could be parsed either as
(Knows A p) ∧ (Knows B q), or as Knows A (p ∧ Knows B q). The system uses operator priorities and associativity
rules to resolve these ambiguities; this particular example is parsed as (Knows A p) ∧ (Knows B q). How the system
has resolved an ambiguity can always be seen from the way that the formula is printed out when model checking.

Details of operator priority and associativity rules are given in Appendix A. However, since changes to the lan-
guage may cause the operator priority rules to change from version to version, we recommend that users avoid relying
on these, and prefer to write unambiguous formulas through sufficient use of parentheses.

agent A "while" ()

fairness = A.var

spec obs ctl = AG AF A.var

protocol "while" ()
var : Bool

where neg var
10

begin
do True −> var := False
[ ] True −> var := True
od

end

Figure 3.1: An example of a CTL specification.
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Chapter 4

Model Checking Algorithms

MCK supports several different types of model checking algorithms for temporal epistemic model checking. This
chapter describes these algorithms, syntactic restrictions and semantic assumptions under which they apply, and addi-
tional features supported in some cases. A summary is given in Table 4.1.

Semantics Flag Algorithm Formula Restrictions Type Game Visual. C-trace

spec obs

spec obs ctl CTL / lfp / gfp / K / CK BDD

spec obs ctls CTL∗ / K / CK BDD

-k spec obs es CTL / K / CK ESMC
√ √

-b Int spec obs bmc ctl Int (univ) CTL / K / CK BMC
√ √

-b Int spec obs bmc Int (univ) CTL∗ / K / CK BMC

spec clk

spec clk xn leading Xˆn / K / CK BDD
√

spec clk ctl nested AX / EX / K / CK BDD

spec clk nested A / X / K / CK BDD

spec clk g leading G / K / CK BDD
√

-b Int spec clk bmc Int (univ) A / R / G / X / K / CK BMC

spec spr

spec spr xn leading Xˆn / K1 BDD
√

spec spr nested A / X / K / CK BDD

spec spr g leading G / K1 BDD
√

-b Int spec spr bmc Int (univ) A / R / G / X / K / CK BMC

spec apr spec apr xn leading XK1ˆn / K1 BDD
√

spec apr g leading G / K1 BDD
√

Table 4.1: Algorithms in MCK

The choice of algorithm used can be controlled in one of two ways: either as part of the command line call of MCK,
using one of the command line flags (e.g., mck -k for explicit state model checking), or as part of the identifier of
a specification statement. In general, specification identifiers have the form spec x or spec x y, where x is a
keyword identifying the view on which the semantics for the agents’ knowledge is based (either obs for observational,
clk for clock, spr for synchronous perfect recall, or apr for asynchronous perfect recall – see Section 1.2), and y
is a keyword identifying the algorithm to be used for model checking. The algorithms available are based on a variety
of approaches: symbolic model checking using Binary Decision Diagrams (BDD), Explicit State Model Checking
(ESMC), or Bounded Model Checking (BMC), but the details for each approach vary with the knowledge semantics
and formula type.

When an algorithm is explicitly identified in a specification statement, that algorithm is always used to model
check the specification. If the algorithm part y is omitted, then the algorithm to be applied is determined by the system
according to the following rules. If no flag is given on the command line, then the default approach of BDD-based
model checking is used. If an algorithm flag applicable to the specification’s knowledge semantics is given on the
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command line, then this flag is used to select the algorithm. If several flags applicable to a specification are given on
the command line, the first applicable one is selected. If several algorithms are available that have the same selected
flag then the first algorithm in the table that is consistent with the syntax of the formula is applied.

In general, the algorithms for the observational semantics are more efficient than those for the clock semantics,
which are in turn more efficient than those for the two perfect recall semantics. Since the algorithms for the observa-
tional semantics also work on the more expressive temporal syntax, it is recommended to specify properties that do
not require epistemic operators using spec obs.

4.1 Explicit State Model Checking
Explicit state model checking works by explicitly constructing all reachable states of the system and then inductively
labelling these states with the subformulas of the specification formula that hold at these states. This is essentially the
classical approach to model checking [6], extended in the obvious way to handle epistemic operators. This algorithm
works only for the observational semantics, and formulas in the language fragment based on CTL with knowledge and
common knowledge operators. It is invoked using either the construct spec obs es or using spec obs together
with the command line flag -k.

While explicit state model checking can only be expected to be effective on small models, it has the advantage that
it generates information that enables the complete state space of the system to be visualized (using the -v command
line flag), which may be useful for debugging the model. It also produces information for the debugging game (invoked
using flag -g) to be played on the model. See Chapter 7 for a description of these features.

4.2 Binary Decision Diagram Symbolic Model Checking
MCK’s default algorithms (invoked without command line flags) use symbolic model checking techniques based on
binary decision diagrams (BDD’s). There are several algorithms, depending on the semantics for knowledge.

The BDD based model checking algorithms in MCK do not presently allow either state space visualization or the
counter-example game to be used. Support for the counter-example game may be added in a future release. However,
several of these algorithms do support a simpler counter-example facility, the generation of a single counter-example
trace on which the specification fails (invoked using the -c flag).

4.2.1 BDD Algorithms for Observational Semantics
The system has two algorithms for dealing with the combination of knowledge and time under the observational
semantics, depending on whether the temporal basis is the branching time logic CTL or the logic CTL∗, which includes
the linear time logic LTL.

The specification statement spec obs ctl invokes an extension of the BDD-based model checking algorithm
for the temporal logic CTL [3, 19], where epistemic operators for knowledge and common knowledge have been added
to the language, as well as mu calculus operators. Fairness constraints are handled following the techniques in [13].

Formulas based on CTL∗ operators plus knowledge and common knowledge operators are handled using the spec-
ification statement spec obs ctls. The mu-calculus operators may not be used in this case. The associated
algorithm first transforms the CTL∗-based formula into a CTL-based formula, using techniques from [7], and then
applies the CTL-based model checker.

For statements spec obs and an invocation without command line flags, whichever of the above cases applies
to the syntax of the formula is invoked.

4.2.2 BDD Agorithms for Clock Semantics
Clock Semantics is handled by two BDD-based model checking algorithms that work for fragments of CTLKn and
LTLKn, respectively.

The specification statement spec clk xn works on formulas of the form Xˆn φ, where φ is a formula that
may contain boolean, knowledge and common knowledge operators (nested arbitrarily), but not temporal operators.
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The algorithm works by constructing a BDD representation of the states of the system at time n and then applying
BDD-based techniques to model check the formula φ on that representation.

The statement spec clk nestedworks on formulas in the language fragment based on the temporal operators
A, X with boolean, knowledge and common knowledge operators, nested arbitrarily. The algorithm in this case
constructs a BDD representation of paths of length equal to the maximal depth of temporal nesting, and uses this as
a basis for BDD-based model checking of the formula. (This is a generalization of the algorithm for the construct
spec clk ctl nested from earlier versions of MCK, which allowed the operators AX, EX and Ki, nested
arbitrarily. This is still supported for backward compatibility, and may be more efficient when the formula can be
expressed in this fragment.)

The specification statement spec clk g works on formulas of the form G φ, where φ is a formula that may
contain boolean, knowledge and common knowledge operators (nested arbitrarily), but not temporal operators. The
algorithm works by constructing a loop of BDD representations of the states of the system and then applying BDD-
based techniques to model check the formula φ on all those representations. Each BDD representation is the set of
states that is possible on a specific time.

For statements spec clk and an invocation without command line flags, the first of the above cases that applies
to the syntax of the formula is invoked.

Counter-example traces are supported for two of these algorithms, spec clk xn and spec clk g, and can
be invoked by using the -c flag (see Section 7.3).

4.2.3 BDD Agorithms for Synchronous Perfect Recall Semantics

The synchronous perfect recall semantics for knowledge is handled by three BDD-based model checking algorithms
that work for fragments of CTL∗Kn.

The specification statement spec spr xn works on formulas of the form Xˆn φ, where φ is a formula that
may contain boolean operators and just one agent’s knowledge operator, nested arbitrarily, but not temporal operators
or common knowledge operators. The algorithm works by constructing a BDD representation of the mapping from
sequences of observations to time n for the agent to the sets of states of the system that are consistent with those
observations. BDD-based techniques are then used to model check the formula φ on that representation. The algorithm
is described in more detail in [23].

The specification statement spec spr g works on formulas of the form G φ, where φ is a formula that may
contain boolean operators and just one agent’s knowledge operator, nested arbitrarily, but not temporal operators or
common knowledge operators. The algorithm in this case constructs all reachable knowledge states of the agent in
question, where a knowledge state is the set of states that the agent considers to be possible, given its sequence of
observations. The knowledge states are represented as BDD’s.

The statement spec spr nested works on formulas in the language fragment based on the boolean operators
and modal operators A, X, Ki, nested arbitrarily. The algorithm in this case constructs a BDD representation of paths
of length equal to the maximal depth of temporal nesting, and uses this as a basis for BDD-based model checking of
the formula.

For statements spec spr and an invocation without command line flags, the first of the above cases that applies
to the syntax of the formula is invoked.

Counter-example traces are supported for two of these algorithms, spec spr xn and spec spr g, and can
be invoked by using the -c flag (see Section 7.3).

4.2.4 BDD Algorithms for Asynchronous Perfect Recall

Two algorithms are provided for the asynchronous perfect recall semantics. Counter-example traces are supported for
these algorithms, and can be invoked by using the -c flag (see Section 7.3).

The specification statement spec apr xn works on formulas of the form (XK A)n φ, where A is an agent and
φ is a formula that may contain boolean operators and just agent A’s knowledge operator, nested arbitrarily, but no
temporal operators or common knowledge operators. Here (XK A) is the local next-time operator, see Section 3.8.
The algorithm works by constructing a BDD representation of the mapping from sequences of observations of length
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Figure 4.1: The bounded model checking procedure

n for the agent to the sets of states of the system that are consistent with those observations. BDD-based techniques
are then used to model check the formula φ on that representation.

The specification statement spec apr g works on formulas of the form G φ, where φ is a formula that may
contain boolean operators and just one agent’s knowledge operator, nested arbitrarily, but not temporal operators or
common knowledge operators. The algorithm in this case constructs all reachable knowledge states of the agent
in question, where a knowledge state is the set of states that agent considers to be possible, given its sequence of
observations. The knowledge states are represented as BDD’s. The formula φ is then checked for satisfaction in all
the reachable knowledge sets.

4.3 Bounded Model Checking
MCK provides bounded model checking for several temporal epistemic logics and knowledge semantics. Bounded
model checking, abbreviated as BMC, aims at refuting, instead of justifying, a specification by using a counterexample
in the system. Figure 4.1 gives an overview of the workflow when using MCK’s bounded model checker.

For bounded model checking, the specification is required to be a formula in the universal fragment of a logic. The
universal fragment of a logic requires that the negation operator may apply only to atomic propositions, and all modal
operators are universal operators such as AG and Ki.

Bounded model checking relies on the fact that for universal formulas, a small part of the model may suffice to
serve as a counter-example that demonstrates that the formula is false. Inspection of this counter-example helps to
identify the error in the specification or model. For branching and temporal-epistemic logic, these counter-examples
require several fragments (prefixes) of runs of the system.

The procedure for finding a counterexample starts from run fragments of length 1. If the model checker cannot
find a counterexample of length i ≥ 1, it will proceed to length i + 1, until a bound k is reached. The bound k should
be explictly assigned by the user. This can be done either by using a generic specification statement spec x and the
command line flag -bInt, where Int is a positive integer, or by giving the bound in the specification statement, e.g.
spec obs bmc Int.

A BMC encoding takes as input the binary representation of the system, a specification to be checked and a length
i ≤ k of run fragments, and outputs an encoded formula. MCK transforms the encoded formula into conjunctive
normal form (CNF) and then uses a SAT solver to decide whether it is satisfiable or not. The embedded SAT solver is
PicoSAT (see http://fmv.jku.at/picosat/).

4.3.1 Bounded Model Checking for Observational Semantics
There are two specification statements spec obs bmc ctl and spec obs bmc for bounded model checking
with respect to the observational semantics.

The statement spec obs bmc ctl uses a BMC encoding for the universal fragment ACTLKn defined by the
grammar

ψ = ¬p | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Kiψ | CGψ | AXψ | AGψ | AFψ | A(ψUψ) | A(ψRψ).

Several encoding functions have appeared in other bounded model checkers for this temporal epistemic logic. The
one implemented in MCK is described in [15], together with theoretical and experimental results on its performance
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Semantics Algorithm Formula Restrictions Type Subsumed by
spec obs spec obs ltl LTL / K / CK BDD spec obs ctls
spec spr spec spr ltl nested X / K BDD spec spr nested

Table 4.2: Deprecated Algorithms

compared to other implementations. When a spec obs bmc ctl specification fails, MCK is able to present the
counterexample found by bounded model checking to the user in two ways: visualization (invoked using the -v flag)
and by playing the interactive game (invoked using the -g flag). See Chapter 7 for a description of visualization
and the interactive game. We note that in the case of bounded model checking, only the states that occur in the
counter-example are visualized, rather than all states of the system, as is done for explicit state model checking.

The statement spec obs bmc works for the richer universal fragment ACTL∗Kn, defined by the grammar

ψ = ¬p | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Kiψ | CGψ | Aψ | Xψ | Gψ | Fψ | ψUψ | ψRψ.

Note that here the branching operator A does not need to be directly coupled with a temporal operator. For example
A(F p ∨ Fq) is a formula of this language, but not of ACTLKn.

Visualization and the counter-example game are not presently supported in this case.
In case spec obs is used together with command line flag -b, spec obs bmc ctl is used provided the

formula is in the smaller fragment ACTLKn, otherwise spec obs bmc is used.

4.3.2 Bounded Model Checking for Clock Semantics
Bounded model checking for the clock semantics is supported through the statement spec clk bmc. The formula
must be in the language fragment given by the grammar

ψ = ¬p | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Kiψ | CGψ | Aψ | Xψ | ψRψ | Gψ

in this case. Visualization and the counter-example game are not presently supported.

4.3.3 Bounded Model Checking for Synchronous Perfect Recall Semantics
Bounded model checking for the synchronous perfect recall semantics is supported through the statement spec obs bmc.
The formula must be in the language fragment given by the grammar

ψ = ¬p | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Kiψ | CGψ | Aψ | Xψ | ψRψ | Gψ

in this case. Visualization and the counter-example game are not presently supported.
The system does not presently support bounded model checking for the asynchronous perfect recall semantics.

4.4 Deprecated Specification Statements
The specification statements in Table 4.1 encompass all the functionality in the system. In some cases, the algo-
rithms generalise algorithms from previous versions of MCK, which used specification statements with more restric-
tive nomenclature. Table 4.2 lists these statements and the new statements under which they are subsumed. For
backwards compatibility, these older statements are still supported, but their use is deprecated.
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Chapter 5

Model Checking Probabilistic Knowledge

MCK implements an algorithm for the verification of probabilistic knowledge, that works on models in the form
of partially observed discrete time Markov chains. (That is, all branching is treated probabilistically when dealing
with probabilistic specifications: the combination of nondeterminism and probability is not presently supported.) The
underlying theory is described in greater detail in [16]. The present chapter describes the syntactic features involved
when dealing with probabilistic models and specifications.

5.1 Probabilistic Input Language
The input language for the probabilistic algorithm is a simple extension on the input language for non-deterministic
algorithms, as described in Chapter 2. All non-deterministic statements are interpreted as probabilistic statements
with uniform distributions over the choices, and some extra syntax is provided to indicate non-uniform probabilities
in the case of branching statements. One restriction is required: no fairness statements may be used in the presence
of probabilistic specifications, since the interaction of probability and fairness is problematic when there are unfair
transitions with non-zero probability.

5.1.1 Probabilistic Satisfying Assignment
In the context of probabilistic specifications, the nondeterministic satisfying assignment construct is interpreted prob-
abilistically. The nondeterministic interpretation of [[Vars | f ormula]] yields, from each state, a set of possible
successor states. The probabilistic interpretation gives each of these possible successors equal probability.

For example, when x, y, z are variables of type {1..10},

[[x | True ]]

represents a probabilistic choice of new value to the variable x, each with probability 1/10 (and no change to any other
variable), and

[[x, y | x′ <= y′ /\ y′ <= z]]

chooses new values for both x and y, depending on the current value of z, with a uniform distribution over the
combined choices. Thus, if the current value of z is 1, then the possible new assignments to the pair (x, y) are
(0, 0), (0, 1), (1, 1), each with probability 1/3. If the current value of z is 2, then the possible new assignments to
(x, y) are (0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), each with probability 1/6.

5.1.2 Shared Variables
The interpretation of concurrent read/write on shared variables introduces nondeterminism. The present system pro-
vides only limited support for the probabilistic interpretation of this nondeterminism. A model is said to be conflict-free
if no reachable state enables a simultaneous read and write, or two simultaneous writes, on the same variable. The
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inherent nondeterminism of read/write actions does not occur in the case of conflict free models. MCK presently
supports only the conflict-free case of read/write actions in the presence of probabilistic specifications. The onus is on
the user to ensure that the model is conflict-free when read/write and probabilistic specifications are combined.

5.1.3 Conditional Statements
Conditional statements such as if and do enable, at each state, a set of choices for the next step of execution. In the
probabilistic interpretation, each of these occurs with equal probability. That is, if a condition is false at a state, then
the corresponding action occurs with probability zero, and the probability is distributed uniformly across the remaining
enabled branches.

For example, in the statement

if
True − > x := 1
[] x < 3 − > x := x + 1
[] x = 1 − > x := x + 2

if

at a state where x = 1, all three branches have probability 1/3 of executing, and at a state where x = 2, the first two
branches have probability 1/2 and the last has probability 0.

In order to represent non-uniform distributions, additional syntax is available that enables weighting of the branches
of conditional statements. The weighted probabilistic if statement has the form

if p1 : cond1 → C1 ... [] pi : condi → Ci ... [otherwise→ Co] fi

and the probabilistic do statement has the form

do p1 : cond1 → C1 ... [] pi : condi → Ci ... [otherwise→ Co] [break→ Cb ] od .

Here the pi are real numbered weights that represent the relative likelihood between the enabled branches. The
probabilities associated to the enabled branches in a given state are obtained by normalization.

For example, for the statement

if
1 : True − > x := 1
[] 2 : x < 3 − > x := x + 1
[] 3.0 : x = 1 − > x := x + 2

if

at a state where x = 1, the three branches have probability 1/6, 2/6, and 3/6 of executing, respectively, and at a state
where x = 2, the first two branches have probability 1/3 and 2/3 and the last has probability 0.

Note that if the weights are omitted, then they are implicitly interpreted as equal to 1 on all branches, so that all
enabled branches are always equally weighted.

5.1.4 Initialization
The probabilistic interpretation assumes that agents have a common prior, i.e., that they all assign the same probability
to initial states. The prior on initial states is the product of the probability distributions constructed using the initial-
ization statements in the environment and agent protocols. The form of these statements in the probabilistic case is the
same as described in Section 2.5.4 and 2.6.3.

When the from part of an initialization statement is uniform, the starting states have the uniform distribution,
when it is all init, the unique starting state has probability 1. Note that the program part of the initialization
statement may contain probabilistic branching statements, which update the probability distribution. The resulting
final distribution at the end of executing the program in the initialization statement, starting from the distribution on
the starting states, gives the distribution on the initial states of the model. In the case of an init cond or where
statement, the initial states are given a uniform distribution.

30



5.2 The Probabilistic Specification Language
The probabilistic specification language extends that of Chapter 3 by adding constructs that talk about the probabilistic
knowledge of agents. The basic probability terms are given in the following table:

Modality Description
Prob Agent f Agent’s current probability of f .
Prior Agent f Agent’s prior probability of f .

Prob Agent ( f | g) Agent’s current probability of f under the condition g.
Prior Agent ( f | g) Agent’s prior probability of f under the condition g.

In each case, f and g are required to be boolean formulas that may refer to local, environment and agent-qualified
variables. Each form has the type of a real number in the interval [0, 1]. The prior forms refer to the agent’s proba-
bility at the initial state in the run at which the formula is being evaluated. This is useful for specifications such as
Xˆ5 ((Prob i φ) == (Prior i φ)), which says that the agent does not increase its degree of belief about φ in the first 5
steps of the computation.

Basic probability terms and real numbers may be combined using the operators +, ∗, to form probability terms.
Atomic propositions are then derived of the form t1Rt2, where t1, t2 are probability terms and R is one of the relations
==, / =, <, <=, > or >=.

Only a limited temporal semantics is presently supported, however: the specification formula to be checked should
be in the form of Xˆk φ with the only modal operators in φ being the knowledge modality Ki and the probability
modalities Pri and Priori, for a single, fixed agent i. (These operators may be nested and combined with boolean
operators.)

Two epistemic semantics are supported for specifications in this form: synchronous perfect recall and clock seman-
tics. (Observational and asynchronous perfect recall semantics would imply that the combination of nondeterminism
and probability need to be dealt with: the system does not yet attempt to support this.) In both cases only one model
checking algorithm is available, that is called xn. Thus, invocation of the algorithm can be done with either of the
specification identifiers: spec spr xn or spec clk xn. The forms spec spr or spec clk in which the
algorithm is omitted will default to these.

The underlying algorithm is a symbolic model checking algorithm based on OBDD and MTBDD [5], and is an
extension of the xn algorithm for the cases of spr and clk semantics. It works by constructing BDD representa-
tions of the mapping from sequences of observations to time n for the agent to the sets of states of the system that
are consistent with those observations. BDD-based techniques are then used to model check the formula φ on that
representation. The details of the algorithm and some experimental results are described in the paper [16].

The usual variable reordering heuristics for the BDD-based algorithms are available in the probabilistic case, and
the counterexample trace facility works with these operators.

5.3 Precision and Threshold
The probability operators take real values in the range [0, 1]. The precision of the computation is 10−16 by the default
setting of CUDD package. To enable a comparison between two probabilities, a threshold of 10−10 is used. Given two
probabilities x and y,

• if |x − y| ≤ 10−10 then we decide that x = y,

• if x − y > 10−10 then we decide that x > y,

• other relational operations are deduced from the above two operations.
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Chapter 6

Examples

This chapter illustrates the kinds of properties the model checker can verify, and some of the subtleties that may arise
when formalising a system.

6.1 The Robot example

0 1 2 3 4 5 6 7

Goal region

Figure 6.1: Autonomous Robot

This example is taken from [2]. To quote the summary found in [11]:

A robot travels along an endless corridor, which in this example is identified with the natural numbers.
The robot starts at 0 and has the goal of stopping in the goal region {2, 3, 4}. To judge when to stop the
robot has a sensor that reads the current position. (See Figure 6.1.) Unfortunately, the sensor is inaccurate;
the readings may be wrong by at most 1. The only action the robot can actively take is halting, the effect
of which is instantaneous stopping. Unless this action is taken, the robot may move by steps of length 1 to
higher numbers. Unless it has taken its halting action, it is beyond its control whether it moves in a step.

A sound and complete solution to this problem is to do nothing while the sensor has a value of less than 3, and
halt as soon as it takes on a value of 3 or more. (The naive solution of halting iff the sensor reads 3 is sound but not
complete.)

In order to model check an implementation of the robot’s control policy, we need to restrict the environment to a
finite number of locations. We have arbitrarily chosen to have 8 distinct locations, but any number greater than 4 is
sufficient.

Bearing this restriction in mind, the following script implements the scenario and the proposed protocol:

−− There are 8 positions in the world.
−− If the robot is really at position p, then the sensor will have a
−− value ∈ {p − 1, p, p + 1}, for a truncating interpretation of arithmetic.
type Pos = {0. .7}
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incpos : Bool
position : Pos
sensor : Pos
halted : Bool

10
init cond = incpos /\ position == 0 /\ sensor == 0 /\ neg halted

agent Robot "robot" ( sensor )

−− At each time step the environment might move the robot one step to the
−− right, and always generates a new sensor reading.
transitions
begin

if neg halted /\ neg Robot.Halt −>
begin 20

position := position;
incpos := False

end
[ ] neg halted /\ neg Robot.Halt −>

begin
position := position + 1;
incpos := True

end
[ ] Robot.Halt −> halted := True
fi; 30
if True −> sensor := position − 1
[ ] True −> sensor := position
[ ] True −> sensor := position + 1
fi

end

−− Rule out the traces where the environment stops trying to advance.
fairness = incpos \/ halted

−− Knowledge-based program specification agrees with the implementation. 40
spec obs = G (Robot.test <=> Knows Robot position in {2. .4})

−− The “car handbrake” protocol.
−− In order to stop moving, the robot only needs to yank it once.
protocol "robot" (sensor : observable Pos)

define test = sensor >= 3

begin
do neg test −> skip 50
[ ] break −> <<Halt>>
od

end

Note that timing is critical in this example: the robot must have continuous control over the emitted Actions,
and must be able to register its intention to halt with the environment before the environment decides to move it any
further. These two constraints mean that using a while construct, with the implied skip-on-exit, is not sufficient for
correctness. This “timing gap” is illustrated by this (incorrect) protocol:

protocol "robotbroken-agent-protocol.mck" (sensor : observable Pos)

begin
while neg (sensor >= 3) do skip;
<<Halt>>

end

The sequence of (position, sensor, robot action) values:
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〈(0, 0,Nil), (1, 0,Nil), (2, 1,Nil), (3, 2,Nil), (4, 3,Nil), (5, 4,Halt), ...〉

is an example of a run where the robot decides it wants to stop when it receives a sensor reading of 3, but doesn’t
manage to assert the halted action until it has moved past the goal region.

6.2 The Dining Cryptographers
The problem solved by this protocol is framed as follows [4]:

Three cryptographers are sitting down to dinner at their favorite three-star restaurant. Their waiter in-
forms them that arrangements have been made with the maı̂tre d’hôtel for the bill to be paid anonymously.
One of the cryptographers might be paying for the dinner, or it might have been the NSA (US National
Security Agency). The three cryptographers respect each other’s right to make an anonymous payment,
but they wonder whether the NSA is paying.

(The details of the model checking of this protocol are given at length in [23].)
Assuming that at most one cryptographer is paying, the following protocol will allow all cryptographers to discover

whether the NSA or one of their fellows is paying:

protocol "dc-agent-protocol.mck"
(

paid : observable Bool,
chan left : Bool,
chan right : Bool,
said : observable Bool[ ] −− the broadcast variables.

)

coin left : observable Bool
coin right : observable Bool 10

where all init

begin
−− The enviroment tells us whether we paid or not.
−− The agent decides the coin toss to the right.
[[coin right|True]];
<< chan right.write(coin right) >>;
<< coin left := chan left.read() >>;
<< said[self].write(coin left xor coin right xor paid) >>

end 20

The following enviroment implements the scenario for three cryptographers:

paid : Bool[3]
chan : Bool[3]
said : Bool[3]

initialization
from all init
begin
if True −> paid[0]:= True
[ ] True −> paid[1]:= True
[ ] True −> paid[2]:= True 10
fi
end

−− Agents are numbered in the order they appear.
agent C0 "dc-agent-protocol.mck" (paid[0], chan[0], chan[1], said)
agent C1 "dc-agent-protocol.mck" (paid[1], chan[1], chan[2], said)
agent C2 "dc-agent-protocol.mck" (paid[2], chan[2], chan[0], said)
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This protocol illustrates the utility of arrays of environment variables – in this case simply to implement a broad-
cast. As the number of agents scales, initialization statement has the advantage over the init cond statement in this
case of being able to express the initial states linearly rather than quadratically.

The specifications for this example can be done either using knowledge operators, or, more precisely, using prob-
abilistic knowledge.

−− This talks about the knowledge of the first agent.
spec spr xn = X 4

(neg paid[0]) => ((Knows C1 (neg paid[0])
/\ (neg paid[1])
/\ (neg paid[2]))

\/ ((Knows C1 (paid[1] \/ paid[2]))
/\ (neg (Knows C1 paid[1]))
/\ (neg (Knows C1 paid[2]))))

10
−− A probabilistic version . . .
spec spr xn = X 4 (neg paid[0]) => ( (Prob C0 paid[1]) == (Prob C0 paid[2]) /\

( (Prob C0 paid[1]) == 0 \/ (Prob C0 paid[1]) == 0.5 ) )

6.3 Shared Variables Example
The following example illustrates what happens when several agents attempt to concurrently read and write different
values to an environment variable. All of the specifications in this example hold.

type Three = {One, Two, Three}

envVarDef : Three

init cond = envVarDef == One

agent WF "conflicting_env_write_Two" ( envVarDef )
agent WT "conflicting_env_write_Three" ( envVarDef )
agent R "conflicting_env_write_read" ( envVarDef )

10
spec obs = neg EX envVarDef == One
spec obs = EX envVarDef == Two
spec obs = EX envVarDef == Three
spec obs = EX (envVarDef == Two /\ R.var == One)
spec obs = EX (envVarDef == Two /\ R.var == Two)
spec obs = EX (envVarDef == Two /\ R.var == Three)
spec obs = EX (envVarDef == Three /\ R.var == One)
spec obs = EX (envVarDef == Three /\ R.var == Two)
spec obs = EX (envVarDef == Three /\ R.var == Three)

20
protocol "conflicting_env_write_Two" (envVar : Three)
begin
<< envVar.write(Two) >>

end

protocol "conflicting_env_write_Three" (envVar : Three)
begin
<< envVar.write(Three) >>

end
30

protocol "conflicting_env_write_read" (envVar : Three)
var : Three

where all init
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begin
<< var := envVar.read() >>

end

In essence, the resulting value of envVarDef is one of the values written to it.

6.4 Fairness
An example of using a fairness declaration to eliminate undesired runs is shown in Figure 3.1. The constraint
fairness = A.var ensures that the runs that, after some finite period of time, forevermore have var false are elimi-
nated.

A more complex example is given in Figure 6.2, where we encode a nondeterministic Buchi automaton using
the initial condition, transitions specification and fairness constraint to express the property that always, if Action1 is
infinitely often enabled, then it is eventually taken.
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type BuchiState = {S0,S1,S2,S3}

b l0: BuchiState

init cond = b l0 == S0

agent A "prot1" ()
10

transitions
begin
if

b l0 == S0 /\ A.Action1 −> b l0 := S1
[ ] b l0 == S0 −> skip
[ ] b l0 == S0 −> b l0 := S2

−− being in S1 means that we just saw A.Action1
−− we immediately switch to another state
[ ] b l0 == S1 −> b l0 := S2 20

[ ] b l0 == S1 −> b l0 := S0

−− once in S2, we must never again have A.l0
[ ] b l0 == S2 /\ A.l0 −> b l0 := S3
[ ] b l0 == S2 /\ (neg A.l0) −> skip

−− once in S3, we cannot satisfy the acceptance condition
[ ] b l0 == S3 −> skip

fi
end 30

fairness = b l0 in {S1,S2}

spec obs ctls = "Always, if we are at l0 infinitely often, then we eventually do Action1"
G( (G (F A.l0)) => F A.didAction1 )

protocol "prot1" () 40

didAction1: Bool
looping: Bool

where looping /\ (neg didAction1)

begin
−− we can choose to fall out of the loop at any time, in which case
−− we are only finitely often at l0, otherwise we are there infinitely often
while looping do 50

begin
l0:: if True −> <<Action1 | didAction1 := True>>

[ ] True −> <<Action2>>
[ ] True −> looping := False

fi;
−− didAction1 is true for just one step
didAction1 := False

end
end

60

Figure 6.2: Encoding a Buchi automaton for a fairness constraint
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Chapter 7

Debugging: Visualization and Interactive
Game

MCK provides several types of support for debugging of models and specifications, depending on the type of speci-
fication and model checking algorithm used. When using explicit state model checking or bounded model checking,
one can use visualization of the statespace (or counter-example, in the case of bounded model checking) and an inter-
active game played between the user and the system in a variant of Hintikka game semantics for modal logic. A more
primitive debugging mode is available for perfect recall specifications, where a single path on which a formula fails
can be obtained. (We plan to give a more encompassing and unified treatment of these capabilities in later releases of
the system.)

7.1 Visualization

The visualization functionality is invoked using mck -v. In combination with spec obs es, the visualization shows
the entire statespace of the system, as generated in explicit model checking (so is only useful for systems with small
statespaces.) In combination with spec obs bmc ctl, the visualization shows the states that take part in a counter-
example for a failing specification.

The states visualized are output as a file in the Graphviz1 graph visualization “dot” format. MCK then invokes a
visualization tool on this file. By default this is the zgrviewer2. The user can override this default in two ways.
One is to give the invocation command for the visualization tool using full path name as a parameter, i.e. using mck
-v<tool>. (For zgrviewer, we would use <tool>="java -jar <path>/zgrviewer-<version>.jar
-Pdot".) If this has not been done, then the system will use the invocation command in the environment variable
MCK VISUALIZER, if this has been set, otherwise fall back to a search for the default.

7.2 Interactive Game

An interactive game, played between the user and the system, can be generated from each specification formula. The
game is structured so that on failing specifications, the system has a winning strategy in the game. The system will
play this strategy, so the user will be unable to win the game. (If the user ever wins on a failing specification, this
is a bug in mck and should be reported!) However, the process of playing the game will draw the user’s attention to
specific states of the model and specific parts of the specification, by following evaluation of the formula on states of
the model. In effect, the system’s winning strategy amounts to showing the user a counter-example to the specification.

1see http://www.graphviz.org/
2See http://zvtm.sourceforge.net/zgrviewer.html.
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Besides helping the user to understand why a specification has failed, the game can also be used to allow the user
to explore the structure of the model. For example, the effect of playing the game on the (invalid) specification

spec obs es = EF neg Knows A True

is to allow the user to construct a path in the model from an initial state, followed by a move from the final state of
this path to another state that is indistinguishable to agent A. This allows the user to explore both the temporal and the
epistemic structure of the model.

The following gives an informal account of the interactive debugging game as implemented in MCK. For a more
formal presentation, see the paper [17].

In the current version, the interactive game functionality can be used in combination with the specification types
spec obs es and spec obs bmc ctl (see chapter 4).

The game mode can be invoked by supplying the -g flag when invoking the program. When a specification that
has been model checked using spec obs es and spec obs bmc ctl fails, the user will be prompted to play game
on this specification. If the user answers yes, then game mode is entered. Otherwise, the program continues with
the next specification. (Game mode is only entered when a specification fails, but the user may invoke playing of the
game on a formula φ that holds by model checking the formula ¬φ using spec obs es. Note that does not work with
spec obs bmc ctl because if φ is universal then its negation will not be universal.)

When game mode is invoked, information will be output to a file <input script>.game.info. The infor-
mation in <input script>.game.info is intended for inspection by the user playing the game, and contains
the following:

Environment: The environment information includes agent bindings and environment protocol. This is the same
information as is output when using the -e flag.

Agent Protocols: The pre-processed agent protocol information includes internally assigned labels for tracking pro-
tocol statement locations. This is the same information as is output when using the -p flag.

Explicit states model or Encoded Model: The explicit states model information includes the internally assigned
state numbers, state valuations, transition relations, and agent equivalence classes according to observational
semantics. This is the same information as is output when using the -m flag. The algorithm spec obs -
bmc ctl does not compute the whole state space, so in this case the information output is the encoded model
information, which includes agent information, formula representations of initial condition and transition rela-
tion, current and next state variables, types of variables, and fairness constraints. This is the same information
as is output when using the -f flag.

The user may find it helpful to refer to the game file <input script>.game.info when playing game, since
the interactions between the system and the user are in terms of the information stated in this game file.

7.2.1 States of the Game
A typical state of the game is given by (1) a state of the model (called the focus state), (2) a formula (called the focus
formula) and (3) a role for the user. The focus formula will be a subformula of the failing specification or one of the
atomic propositions {Fair,Reach, Init}, asserting that the focus state is fair, reachable or initial. When dealing with
certain path quantifiers, some more complicated types of game state arise:

1. When dealing with focus formulas EF f , AG f , E[ f1U f2], A[ f1U f2], CG f , and reachability claims, one of the
players will be required to construct a fair path or knowledge chain and show that formulae hold in some
states. A fair path s1...sn is a sequence of fair states such that there are transitions from state si to si+1 for
all 1 ≤ i ≤ n − 1. A knowledge chain s1...sn is a sequence of fair and reachable states such that there are
indistinguishability relations for some agent in G from state si to si+1 for all 1 ≤ i ≤ n − 1.

2. When dealing with focus formulas EG f and AF f , and fairness claims, one of the players will be required to
construct a fair full-cycle path and show that formulae hold in some states in the path or in some states in the

40



loop of the path. A full-cycle path s1...sn is a sequence of fair states such that sn = si, for some 1 ≤ i ≤ n − 1,
and there are transitions from state s j to s j+1 for all 1 ≤ j ≤ i− 1. Moreover, we call the part si...sn−1 the loop in
this full-cycle path. A full-cyle path is fair if each of the fairness conditions in the model are satisfied at some
state in the loop.

7.2.2 The Roles of Players
At each round of the game, one of the players (the system or the user) can make a move, depending on the focus
formula and the roles of the players.

The user’s role can be VERIFIER, in which case the game state corresponds to an assertion by the user that the
focus formula is true in the focus state, or REFUTER, in which case the game state corresponds to an assertion by the
user that the focus formula is false in the focus state. The system will always take on the opposite role.

The game starts at an initial state of the model, with the failing specification as the focus formula, and the user in
the role of the VERIFIER. The roles of the players change during the game depending on the specific formula being
played.

7.2.3 Winning Conditions
The following combinations decide the winner of the game:

Game states at which the focus formula is an atomic proposition p determine the winner, depending on the focus
state s:

• If p is true at s, the VERIFIER wins. (Thus the user wins if she is the VERIFIER, otherwise the system is the
VERIFIER, so the user loses).

• If p is false at s, the REFUTER wins. (Thus the user wins if she is the REFUTER, otherwise the system is the
REFUTER, so the user loses).

7.2.4 Unfair States
It is possible to write programs that have reachable states that can never occur on a fair run. We call such a reachable
state an unfair state. Since the semantics is based on fair runs, unfair states are ignored during model checking.
However the existence of unfair reachable states is typically a bug that the user will want to be able to diagnose.
If such states exist when using explicit model checker, before the game starts, the user will be prompted to decide
whether they should be included when playing the game. If the user answers yes, unfair states will show up when they
are valid next states. Otherwise, unfair states will be invisible to the user.

If the user ever makes a game move leading to an unfair state, the user will become the VERIFIER for a fairness
claim for this state. This requires constructing a fair full-cycle path from this state.

7.2.5 Unreachable States
When making a move of the game where the user is requested to choose from a set of states, the user also has the
option of constructing a state. It is possible for the user to construct an unfair or an unreachable state t. In this case,
the game will proceed in a mode where the user is required to justify its fairness or reachability. The reachability of
this state is justified by constructing a path from an initial state to the given state. The construction of the path is done
backwards, i.e. the first step is to construct a state s such that there is a transition from s to t. Path construction then
continues with s, and play would terminate with a win for the user if an initial state were ever reached. (However,
since the state is unreachable, this will never happen.)

7.2.6 Game Rules and Interactions
When game mode is first entered, the game starts at an initial state. The user will be prompted to select one of the
initial states in which the specification fails.
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During the game, when the program asks for input from the user, the user is given several options for the next step
of the game, including the option to construct a new state. Additionally, the user is given the opportunity to quit or
undo previous moves of the game. There are two ways in which previous moves can be undone. The first is called
Backtracking, which returns play to the previous game state. The backtracking option is available to the user in each
step during the play. The second is called Skipback, and is available when the user is constructing a path. If Skipback
is applied, the play will return to the starting state of path construction. When using either of these options to return to
a previously visited game state, the user will be reminded of the choices previously made from this state.

The following describes the game rules and interactions for each type of focus formula. When the game state
is not final (there is no winner at that state), each type of formula determines whether it is the REFUTER or the
VERIFIER’s move, and a set of choices available to this player for their next move in the game, each associated with
a transition to a new game state. If it is the user’s move, the user will be offered a set of choices for the next move of
the game. When it is the system’s move, the system will display the set of choices available to the system, as well as
the choice it has taken.

If unfair states are being displayed, the user will never be able to win the game by choosing an unfair state. If the
user chooses an unfair state, he/she will be required to construct a full-cycle path such that all fairness constraints are
satisfied in this path. This will be impossible, but the process helps the user understand why it is an unfair state.

Atomic Propositions
If the focus formula is atomic, there is a winner and the game state is final. See the winning conditions above.

f ∧ g

It is the REFUTER’s move to choose which conjunct the REFUTER believes is false. Play proceeds on the same
focus state with the chosen subformula as the new focus formula and the players in the same roles.

f ∨ g

It is the VERIFIER’s move to choose which disjunct the VERIFIER believes is true. Play proceeds on the same
focus state with the chosen subformula as the new focus formula and the players in the same roles.

¬ f

Play proceeds on the same focus state with the subformula f as the new focus formula and the players exchanging
their roles.

f xor g

The formula will be unfolded into (¬ f ∧ g) ∨ ( f ∧ ¬g).

f → g

The formula will be unfolded into ¬ f ∨ g.

f ↔ g

The formula will be unfolded into ( f → g) ∧ (g→ f ).

EX f

The formula EX f will be transformed into AX¬ f with the players exchanging their roles.
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EF f

The formula EF f will be transformed into AG¬ f with the players exchanging their roles.

E[ f Ug]

It is the VERIFIER’s move to construct a fair path to a state where the VERIFIER believes that the formula g holds,
such that the formula f holds in all previous states before the final state in the path. Then, the REFUTER should
counter-assert this fact by choosing whether the formula g does not hold in the final state or the formula f does not
hold in one of the states before the final state in the path or the final state is unfair. Play proceeds on the chosen
state as the new focus state with the subformula f or g or atomic proposition Fair as the new focus formula and the
players’ roles staying the same. In case the user is the VERIFIER, path construction and counterclaim is handled
incrementally. The formula is unfolded into g∨ ( f ∧EX(E[ f Ug])) and the user offered a choice of disjuncts. The path
construction will be terminated by the user’s choosing of the left disjunct or the fact that a full-cycle path is completed.
The completion of a full-cycle path is regarded as a failure of the VERIFIER.

EG f

The formula EG f will be transformed into AF¬ f with the players exchanging their roles.

AX f

It is the REFUTER’s move to construct a successor fair state where the REFUTER believes the formula f does not
hold. Then, the VERIFIER should counter-assert this fact by choosing whether the formula f holds on that state or
the state is unfair. Play proceeds on the constructed state as the new focus state with the subformula ¬ f or atomic
proposition Fair as the new focus formula and the players exchanging their roles.

In case the user is the REFUTER, the state may be chosen from a list of valid states, or constructed by the user
by assigning values to each variable. In the latter case, the state constructed may be unreachable or unfair, and play
continues with the reachability or fairness subgame. See Sections 7.2.4 and 7.2.5.

AF f

It is the REFUTER’s move to construct a full-cycle fair path, starting from the current focus state, where the RE-
FUTER believes the formula f does not hold in all states in the path. Then, the VERIFIER should counter-assert
this fact by choosing whether ¬ f or one of the fairness constraints fails in the chosen path. If formula ¬ f is chosen,
then the VERIFIER will choose from the path a state where the VERIFIER believes the chosen formula does not
hold. If one of the fairness constraints is chosen, then the REFUTER will choose from the loop a state where they
believe that the chosen fairness constraint holds. Play proceeds on the chosen state as the new focus state with the
formula ¬ f or one of the fairness constraints as the new formula and the players exchanging their roles. In case the
user is the REFUTER, path construction and counterclaim is handled incrementally. The formula is unfolded into
( f ∨ AX(AF f )) and the user offered a choice of disjuncts. The path construction will be terminated by the user’s
choosing of the left disjunct or the fact that a full-cycle path is completed.

A[ f Ug]

The formula A[ f Ug] will be unfolded into ¬(EG¬g ∨ E[¬gU(¬g ∧ ¬ f )]).

AG f

It is the REFUTER’s move to construct a fair path, starting from the current focus state, where the REFUTER
believes that the formula ¬ f holds in the final state of the path. Then, the VERIFIER should counter-assert this fact
by choosing whether the formula f holds on the final state or the final state is unfair. Play proceeds on the final state
as the new focus state with the subformula ¬ f or atomic proposition Fair as the new focus formula and the players
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exchanging their roles. In case the user is the REFUTER, path construction and counterclaim is handled incrementally.
The formula is unfolded into ( f ∧AX(AG f )) and the user offered a choice of conjuncts. The path construction will be
terminated by the user’s choosing of the left conjunct or the fact that a full-cycle path is completed. The completion
of a full-cycle path is regarded as a failure of the REFUTER.

A[ f Rg]

The formula A[ f Rg] will be unfolded into ¬E[¬ f U¬g].

E[ f Rg]

The formula E[ f Rg] will be unfolded into EGg ∨ E[gU( f ∧ g)].

K A f

It is the REFUTER’s move to choose or construct a fair and reachable state which agent A is unable to distinguish
from the current focus state (i.e. observable variables have the same value in both states) and where the REFUTER
believes the formula f does not hold. Then, the VERIFIER should counter-assert this fact by choosing whether the
formula f holds on that state or the state is unfair or the state is unreachable. Play proceeds on the chosen state as the
new focus state with ¬ f or Fair or Reach as the new focus formula and the players exchanging their roles.

In case the user is the REFUTER, the state may be chosen from a list of valid states, or constructed by the user
by assigning values to each variable. In the latter case, the state constructed may be unreachable or unfair, and play
continues with the reachability or fairness subgame. See Sections 7.2.4 and 7.2.5.

CK {A1, . . . , An} f

It is the REFUTER’s move to construct a knowledge chain s0, . . . , sk, with s0 equal to the current focus state s, and
the REFUTER believes the formula f does not hold in the last state sk in the sequence. Then, the VERIFIER should
counter-assert this fact by choosing whether the formula f holds on the final state sk or one of the states s j with
0 ≤ j ≤ k on the path is unfair or unreachable. Play proceeds on the state sk as the new focus state with subformula
¬ f as the new focus formula or state s j as the new focus state with atomic proposition Fair or Reach as the new focus
formula, and the players exchanging their roles. In case the user is the REFUTER, the construction and counterclaim
is handled incrementally. The formula is unfolded into (

∧n
i=1(K Ai ( f ∧ CK {A1, . . . , An} f ))) and the user offered a

choice of conjuncts. The path construction will be terminated by the user’s choosing of the conjunct f or the fact that
a full-cycle path is completed. The completion of a full-cycle path is regarded as a failure of the REFUTER.

Fair

The atomic proposition Fair will be transformed into EGTrue with the players’ roles staying the same.

Reach

The atomic proposition Reach will be transformed into EFInit, played using the reversed temporal transition relation,
with the players’ roles staying the same.

Init

The atomic proposition Init will be decided directly, depending on the focus state s. If s is an initial state, then the
VERIFIER wins, otherwise the REFUTER wins.
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7.3 Clock and Perfect Recall Counterexamples
The game has not yet been implemented for specifications that use clock or perfect recall semantics: we intend to
implement this in the future. For the moment, a simpler debugging facility exists. This is available only for the
specification types spec clk xn, spec clk g, spec spr xn, spec spr g, spec apr xn and spec apr g. These
specification types admit formulas of the form Xˆn φ or Gφ or (XK A)ˆn φ, where φ is a formula with knowledge and/or
probability operators but not temporal operators. When a specification of one of these types fails, and MCK has been
invoked using the -c flag, the system will print out an execution such that φ fails at the final point of this execution.
This does not give a full explanation of the reason for the failure of the epistemic part of the specification, so the user
is required to manually analyze the trace to determine the reason for this failure.
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Chapter 8

The Graphical User Interface

In addition to the command line invocation, a graphical user interface is available for the system. The interface
assumes that a local installation of the Qt framework is available, and requires some configuration before use. See the
Readme.txt file in the distribution for details.

The interface is invoked in Linux by calling the program xmck. On a Macintosh, click on the mck.app icon or,
from the command line, call mck.app/Contents/MacOS/mck. Due to differences in the implementation of Qt
on these platforms, there may be some differences in behaviour of the interface.

8.1 Configuration and Preferences
The entry “Preferences” on the main “System” menu opens a window where some basic installation parameters should
be set at first use. These are:

• mck bin: the location of the MCK command-line program binary

• dot bin: the location of the tool used to visualize dot files (e.g. Graphviz http://www.graphviz.org)

• workspace: a workspace directory. The interface will store its temporary files as a subdirectory tmp of this
directory.

8.2 Menu Bar
The top level menu bar provides a main menu for general MCK features as well as one menu corresponding to each of
the active interface tabs. The main “System” menu has items including “About” (MCK version and license information
for this release), “Preferences” (see above), and “Quit”. The “Edit” menu bar contains items relating to edit actions
such as “Find” in the currently active window.

The main purpose of the remaining menus is to provide open and save functionality relating to each of the active
tabs in the interface. The “File” menu relates to complete MCK scripts (typically with suffix .mck, but this is optional).
The “Environment”, “Protocol” and “Specification” tabs relate to the component parts of such scripts. The interface
has a window for each part, and supports loading and saving these parts via the correponding menus. The suffixes
used on the corresponding files are .env, .spec, and .prot. Each of these menus provides the operations “New”, “Open”,
“Save”, and “Save As” with the usual meanings. The currently active file name is shown with each window. In case
the window displays a version of the file that has been edited but not saved, this is indicated by an asterisk (∗) after the
file name and by use of italic font for the filename.

The “Log” menu contains items for saving output from the model checker: “Save Result” for saving model check-
ing results in the Log window and “Save Game Run” for saving a run of the debugging game. The “CounterExample”
menu may be used to save the counterexample traces generated by the BDD model checker.
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A “Reordering” menu appears if the BDD variable reordering functionality has been invoked, where input and
output variable orderings (see below for further explanation of these) may be saved (there is no distinction between
“Save” and “Save As” in this case since the file name may already be edited directly in the tab.)

8.3 Tabs
The interface provides various windows, grouped into several tabs, to facilitate the editing of MCK scripts, model
checking tasks, and the display of results.

Model Tab

The “Model” tab contains two editable windows for the current model’s environment and protocol sections. Line
numbers are provided on each, and error messages from the parser may refer to these line numbers. The Environment
and Protocol menus are used to save and load the corresponding .env and .spec files, or the environment and
protocols may be saved together with the specifications from the Specification tab in a .mck file using the File menu.

Specification Tab

The main area in the Specification tab is a list of specifications, each consisting of a semantics X, algorithm Y and
formula φ, corresponding to a statement spec X Y = φ in the input script. In case a specification uses a bounded
model checking algorithm, there is also an editable column Length for the BMC parameter.

The semantics and algorithm entries may be clicked to activate a menu for selection of the value: some consistency
rules are enforced, so the Semantics entry of a specification should generally be chosen first. (Due to behaviour
of Qt, it may be necessary to click outside of an entry after making a selection to get that selection to register in the
system.)

If no algorithm is selected on a specification (equivalently, the default value is selected), corresponding to a
statement spec X = φ, MCK will choose an algorithm to apply using the rules described in Chapter 4. A preferred
algorithmic approach for these cases may be set in the “Default Algorithm Type” section, either BDD, BMC (bounded
model checking), or Explicit State, corresponding, respectively, to use of no flag, the -b flag, or the -k flag in the
command line program. In the case BMC is selected a default BMC parameter value should be set.

If a default algorithm type of BDD is selected, the option of setting a BDD heuristic is available. There are
also selection boxes for variable ordering (for -o and -s flags) and counter-example generation (-c flag). These
activate the Reordering and Counter-example tabs (see below).

To the left of the specifications are selection boxes that are used to choose a subset of the specifications to be
checked. The model checker is activated using the Start button, and may be halted using the Stop button. The model
checking results are presented in two columns to the right of a specification. The first of these indicates the outcome of
model checking: “Fails” or “Holds” or, in the case of bounded model checking, “Holds (≤ n)” to express that bounded
model checker can not find a counterexample up to a BMC parameter length of n. The second column to the right
of a specification is used to access debugging information. In case of observational semantics formulas for which
the debugging game is available, this contains a button that may be used to load that specification into the Game tab
(see below). Otherwise, provided that the BDD-Counterexample option has been selected, and this is available for the
specification, a button is provided that switches to the corresponding result in the Counter-example tab.

Game Tab

The Game tab provides an interface to the counter-example game and visualization capabilities (see Chapter 7). Failed
specifications are loaded into the Game by pressing the corresponding Game button in the Specification tab. Before
playing a game, we need to identify an algorithm type (Explicit State or BMC) that will be used by the system. (This
involves rerunning the model checking computation. Note that the game may be available for specifications checked
using a BDD algorithm, but run with a very different performance when using one of the available game algorithms.)

Visualization may also be activated before playing the game. If activated, the state space or a counterexample will
be visualized using the visualization tool selected in the mck/Preferences menu. After pressing the “Start” button, the
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game is played at the “Game” area. This consists of windows displaying the current game state, and for selecting a
move in the game. The selection may be made either by clicking on one of the move buttons or by typing the choice
and RETURN into the bottom window. A record of the play of the game may be saved using the Log/SaveGameRun
menu item.

Log Tab

This tab contains an area “Result” that displays all the model checking results output produced by the model checker,
together with timing information on each model checking run. This log may be saved using the Log/SaveResult menu
item.

Counterexample Tab

The counter-example tab displays the counter-examples generated in the case of clk and spr specifications (see Sec-
tion 7.3). A specific counter-example can be accessed by clicking the corresponding ”C-ex” button in the Specification
tab. These results may be saved using the CounterExample menu.

Reordering Tab

This tab displays information relating to variable ordering, and is activated if the user selects default BDD model
checking and the Order box in the Specification tab.

The input ordering is the variable ordering that is provided to the BDD algorithm at the start of model checking
(corresponding to the -s flag). A default ordering can be constructed from the input script using the ”Generate”
button. The BDD heuristics may change this ordering during the computation of a BDD for the model: the output
ordering refers to the final order after model checking is complete (corresponding to the -o flag). An existing ordering
may be loaded for use as the input order by using the corresponding Find button. The orderings displayed may be
sorted by dragging the variable entries into their new location, and the revised order saved by using the Save options
in the Reordering menu. (Note that a revised input order must be saved before it can be used by the model checker,
and a revised but unsaved order will be lost when invoking the model checker, which will also overwrite the existing
output file.)

The typical use case is to first generate the default ordering, manually reorder this, save into an input order file,
specify an output file name and then run model checking. Once this is done, the computed variable order is saved to
the specified output file and also displayed in the Output order window.

49



50



Bibliography

[1] J. C. M. Baeten. Applications of Process Algebra, chapter An Introduction to Process Algebra by J.A. Bergstra
and J.W. Klop. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[2] Ronen I. Brafman, Jean-Claude Latombe, Yoram Moses, and Yoav Shoham. Applications of a logic of knowledge
to motion planning under uncertainty. JACM, 44(5), 1997.

[3] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, June 1992.

[4] D. Chaum. The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of
Cryptology, 1:65–75, 1988.

[5] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System Design, 10(2):149–169, 1997.

[6] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Dexter Kozen, editor, Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

[7] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look at ltl model checking. In David L.
Dill, editor, CAV, volume 818 of Lecture Notes in Computer Science, pages 415–427. Springer, 1994.

[8] Edgar W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[9] E. Clarke, O. Grumberg, and D. Long. Verification Tools for Finite State Concurrent Systems. In J.W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency-Reflections and Perspectives, volume 803,
pages 124–175, Noordwijkerhout, Netherlands, 1993. Springer-Verlag.

[10] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[11] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A program refinement framework supporting reasoning
about knowledge and time. In Jerzy Tiuryn, editor, Foundations of Software Science and Computation Structures,
volume 1784 of Lecture Notes in Computer Science, pages 114–129. Springer-Verlag, March 2000.

[12] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The MIT Press, 1995.

[13] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proceedings of the 7th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 163–173. ACM, 1980.

[14] Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295, 1997.

[15] Xiaowei Huang, Cheng Luo, and Ron van der Meyden. Improved bounded model checking for a fair branching-
time temporal epistemic logic. In Sixth Workshop on Model Checking and Artificial Intelligence (MoChArt 2010),
2010.

51



[16] Xiaowei Huang, Cheng Luo, and Ron van der Meyden. Symbolic model checking of probabilistic knowledge.
In the thirteenth conference on Theoretical Aspects of Rationality and Knowledge (TARK XIII), pages 177–186,
2011.

[17] Xiaowei Huang and Ron van der Meyden. Model checking games for a fair branching-time temporal epistemic
logic. In Australasian Conference on Artificial Intelligence, volume 5866 of LNCS, pages 11–20. Springer, 2009.

[18] M. Huth and M. Ryan. Logic in Computer Science: modelling and reasoning about systems. Cambridge Univer-
sity Press, 2000.

[19] K. McMillan. Symbolic Model Checking: An Appropach to the State Explosion Problem. PhD thesis, Department
of Computer Science, Carnegie Mellon University, 1992.

[20] Simon Peyton Jones, John Huges, et al. Haskell 98: A non-strict, purely functional language. http://
haskell.org/definition/, February 1999.

[21] Ron van der Meyden. Knowledge-based programs: on the complexity of perfect recall in finite environments
(extended abstract). In Proceedings of the Conference on Theoretical Aspects of Reasoning about Knowledge,
Renesse, Netherlands, mar 1996.

[22] Ron van der Meyden. Common knowledge and update in finite environments. Information and Computation,
140(2), 1998.

[23] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of the dining cryptographers. In
CSFW, pages 280–. IEEE Computer Society, 2004.

52



Appendix A

Input Script Syntax

This section describes the abstract syntax of an input script in EBNF. The convention is that 〈U pperCase〉 production
names denote non-terminals, and 〈lowercase〉 names denote lexemes.

There are the following lexical classes (see Section 2.1): 〈constant〉 and 〈typename〉 are Constants, 〈label〉 and
〈varid〉 are Variables, and 〈muvar〉 are Relational variables. The class 〈int〉 signifies integers and 〈digit〉 signifies
decimal digits.

A.1 Joint Protocols and the Environment
〈JointProtocol〉 ::= 〈Environment〉 〈Protocol〉*

〈Environment〉 ::= 〈TypeDec〉*
〈EnvVarDec〉*
〈Definition〉*
〈EnvInitCond〉?
〈EnvAgentDec〉*
〈EnvTransitions〉?
〈EnvFairness〉*
〈EnvSpec〉+

〈TypeDec〉 ::= ‘type’ 〈typename〉 ‘=’ ‘{’ 〈Vartype〉 ‘}’

〈EnvVarDec〉 ::= 〈VarDec〉

〈Definition〉 ::= ‘define’ 〈varid〉 ‘=’ 〈Expr〉

〈EnvAgentDec〉 ::= ‘agent’ 〈constant〉 〈String〉 ‘(’ [ 〈VarList〉 ] ‘)’

〈EnvInitCond〉 ::= 〈InitDec〉 | ‘init_cond’ ‘=’ 〈BoolExpr〉

〈EnvFairness〉 ::= ‘fairness’ ‘=’ 〈BoolTransitionsExpr〉’

A.1.1 Initialization
〈InitDec〉 ::= ‘initialization’ 〈InitFromPart〉 〈InitProgPart〉

〈InitFromPart〉 ::= ‘from’ 〈InitFromDec〉

〈InitFromDec〉 ::= ‘uniform’ | ‘all_init’
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〈InitProgPart〉 ::= 〈TransitionsBlock〉

A.1.2 Environment Transitions Clause
〈EnvTransitions〉 ::= ‘transitions’ 〈TransitionsBlock〉

〈TransitionsBlock〉 ::= ‘begin’ 〈TransitionsStatement〉 (‘;’ 〈TransitionsStatement〉)* ‘end’

〈TransitionsStatement〉 ::= 〈TransitionsBlock〉
| ‘if’ 〈TransitionsClause〉 (‘[]’ 〈TransitionsClause〉)* [ 〈TransitionsClauseOtherwise〉 ] ‘fi’
| ‘if’ 〈BoolTransitionsExpr〉 ‘then’ 〈TransitionsStatement〉 ‘else’ 〈TransitionsStatement〉
| ‘skip’
| 〈Assignment〉
| 〈Randomization〉

〈TransitionsClause〉 ::= [ 〈Probability〉 ‘:’ ] 〈BoolTransitionsExpr〉 ‘->’ 〈TransitionsStatement〉

〈TransitionsClauseOtherwise〉 ::= ‘otherwise’ ‘->’ 〈TransitionsStatement〉

〈Randomization〉 ::= ‘[[’ 〈VarList〉 ‘|’ 〈BoolExpr〉 ‘]]’

〈Assignment〉 ::= 〈varid〉 ‘:=’ 〈Expr〉

A.2 Agent Protocols
〈Protocol〉 ::= 〈ProtocolHeader〉 〈EnvVarParams〉 〈LocalVars〉 〈Definition〉* 〈Block〉

〈ProtocolHeader〉 ::= ‘protocol’ 〈String〉

〈EnvVarParams〉 ::= ‘(’ [ 〈VarDec〉 (‘,’ 〈VarDec〉)* ] ‘)’

〈LocalVars〉 ::= [ 〈VarDec〉+ [ 〈LocalVarInitCond〉 ] ]

〈LocalVarInitCond〉 ::= ‘where’ (‘all_init’ | 〈Expr〉) | 〈InitDec〉

〈Block〉 ::= ‘begin’ 〈LabelledStatement〉 (‘;’ 〈LabelledStatement〉)* ‘end’

〈LabelledStatement〉 ::= [ 〈label〉 ‘::’ ] 〈Statement〉

〈Statement〉 ::= 〈Block〉
| ‘if’ 〈Clause〉 (‘[]’ 〈Clause〉)* [ ‘[]’ ‘otherwise’ ‘->’ 〈LabelledStatement〉 ] ‘fi’
| ‘do’ 〈Clause〉 (‘[]’ 〈Clause〉)*

[ ‘[]’ ‘otherwise’ ‘->’ 〈LabelledStatement〉 ]
[ ‘[]’ ‘break’ ‘->’ 〈LabelledStatement〉 ]

‘od’
| ‘if’ 〈BoolExpr〉 ‘then’ 〈LabelledStatement〉 ‘else’ 〈LabelledStatement〉
| ‘while’ 〈BoolExpr〉 ‘do’ 〈LabelledStatement〉
| ‘skip’
| 〈Assignment〉
| 〈Randomization〉
| ‘<<’ 〈Action〉 [ ‘|’ 〈ActionAssignments〉 ] ‘>>’

〈Clause〉 ::= [ 〈Probability〉 ‘:’ ] 〈BoolExpr〉 ‘->’ 〈LabelledStatement〉

54



〈Action〉 ::= 〈constant〉
| 〈Var〉 ‘.’ ‘write’ ‘(’ 〈Expr〉 ‘)’
| 〈varid〉 ‘:=’ 〈Var〉 ‘.’ ‘read’ ‘(’ ‘)’

〈ActionAssignments〉 ::= 〈ActionAssignment〉 (‘;’ 〈ActionAssignment〉)*

〈ActionAssignment〉 ::= 〈Var〉 ‘:=’ 〈Expr〉

A.3 Expressions
〈BoolTransitionsExpr〉 ::= 〈VarPrime〉 | 〈constant〉
| 〈LocalObject〉
| 〈Var〉 ‘in’ ‘{’ 〈Vartype〉 ‘}’
| 〈ArithExpr〉 ‘==’ 〈ArithExpr〉 | 〈ArithExpr〉 ‘/=’ 〈ArithExpr〉
| 〈EnumExpr〉 ‘==’ 〈EnumExpr〉 | 〈EnumExpr〉 ‘/=’ 〈EnumExpr〉
| 〈ArithExpr〉 〈RelOp〉 〈ArithExpr〉
| 〈EnumExpr〉 〈RelOp〉 〈EnumExpr〉
| 〈BoolTransitionsExpr〉 〈BoolBinOp〉 〈BoolTransitionsExpr〉
| ‘neg’ 〈BoolTransitionsExpr〉
| ‘(’ 〈BoolTransitionsExpr〉 ‘)’

〈Expr〉 ::= 〈BoolExpr〉 | 〈ArithExpr〉 | 〈EnumExpr〉

〈BoolExpr〉 ::= 〈VarPrime〉 | 〈constant〉
| 〈Var〉 ‘in’ ‘{’ 〈Vartype〉 ‘}’
| 〈ArithExpr〉 ‘==’ 〈ArithExpr〉 | 〈ArithExpr〉 ‘/=’ 〈ArithExpr〉
| 〈EnumExpr〉 ‘==’ 〈EnumExpr〉 | 〈EnumExpr〉 ‘/=’ 〈EnumExpr〉
| 〈ArithExpr〉 〈RelOp〉 〈ArithExpr〉
| 〈EnumExpr〉 〈RelOp〉 〈EnumExpr〉
| 〈BoolExpr〉 〈BoolBinOp〉 〈BoolExpr〉
| ‘neg’ 〈BoolExpr〉
| ‘(’ 〈BoolExpr〉 ‘)’

〈ArithExpr〉 ::= 〈VarPrime〉 | 〈int〉
| 〈ArithExpr〉 〈ArithOp〉 〈ArithExpr〉
| ‘(’ 〈ArithExpr〉 ‘)’

〈EnumExpr〉 ::= 〈VarPrime〉 | 〈constant〉
| ‘prev(’ 〈EnumExpr〉 ‘)’
| ‘next(’ 〈EnumExpr〉 ‘)’
| ‘(’ 〈EnumExpr〉 ‘)’

A.4 Specifications
Some syntactic restrictions apply in the following cases that are not captured in the grammar.

〈EnvSpec〉 ::= ‘spec_obs’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_apr’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_obs_ctl’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_obs_ltl’ ‘=’ [ 〈String〉 ] 〈KF〉
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| ‘spec_obs_ctls’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_obs_es’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_obs_bmc_ctl’ 〈int〉 ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_obs_bmc’ 〈int〉 ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk_xn’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk_ctl_nested’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk_nested’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk_g’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_clk_bmc’ 〈int〉 ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr_xn’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr_ltl_nested’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr_nested’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr_g’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_spr_bmc’ 〈int〉 ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_apr_xn’ ‘=’ [ 〈String〉 ] 〈KF〉
| ‘spec_apr_g’ ‘=’ [ 〈String〉 ] 〈KF〉

KF is the CTL∗+ mu + knowledge + probability specification language,

〈KF〉 ::= 〈BoolSpecExpr〉
| 〈KF〉 〈BoolBinOp〉 〈KF〉
| ‘neg’ 〈KF〉 | ‘(’ 〈KF〉 ‘)’
| ‘X’ 〈KF〉 | ‘X’ 〈int〉 〈KF〉
| ‘F’ 〈KF〉 | ‘G’ 〈KF〉
| 〈KF〉 ‘U’ 〈KF〉
| 〈KF〉 ‘R’ 〈KF〉
| ‘A’ 〈KF〉
| ‘E’ 〈KF〉
| 〈muvar〉
| ‘gfp’ 〈muvar〉 〈KFctl〉 | ‘lfp’ 〈muvar〉 〈KFctl〉
| ‘Knows’ 〈constant〉 〈KF〉
| ‘CK’ 〈AgentList〉 〈KF〉 | ‘CK’ 〈KF〉
| ‘XK’ 〈constant〉 〈KF〉
| ‘(’ 〈KFOps〉 ‘)’ ‘ˆ’ 〈int〉 〈KF〉

〈KFOps〉 ::= 〈KFOp〉
| 〈KFOp〉 〈KFOps〉

〈KFOp〉 ::= ‘neg’
| ‘X’ | ‘X’ 〈int〉
| ‘F’ | ‘G’
| ‘A’ | ‘E’
| ‘gfp’ 〈muvar〉 | ‘lfp’ 〈muvar〉
| ‘Knows’ 〈constant〉
| ‘CK’ 〈AgentList〉 | ‘CK’
| ‘XK’ 〈constant〉

The basic propositions.

〈BoolSpecExpr〉 ::= 〈Var〉 | 〈constant〉 | 〈LocalObject〉 | 〈constant〉 ‘.’ ‘terminated’
| 〈Var〉 ‘in’ ‘{’ 〈Vartype〉 ‘}’
| 〈ArithSpecExpr〉 ‘==’ 〈ArithSpecExpr〉 | 〈ArithSpecExpr〉 ‘/=’ 〈ArithSpecExpr〉
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| 〈EnumSpecExpr〉 ‘==’ 〈EnumSpecExpr〉 | 〈EnumSpecExpr〉 ‘/=’ 〈EnumSpecExpr〉
| 〈ProbArithSpecExpr〉 ‘==’ 〈ProbArithSpecExpr〉 | 〈ProbArithSpecExpr〉 ‘/=’ 〈ProbArithSpecExpr〉
| 〈ArithSpecExpr〉 〈RelOp〉 〈ArithSpecExpr〉
| 〈EnumSpecExpr〉 〈RelOp〉 〈EnumSpecExpr〉
| 〈ProbArithSpecExpr〉 〈RelOp〉 〈ProbArithSpecExpr〉
| 〈BoolSpecExpr〉 〈BoolBinOp〉 〈BoolSpecExpr〉
| ‘neg’ 〈BoolSpecExpr〉
| ‘(’ 〈BoolSpecExpr〉 ‘)’

〈ArithSpecExpr〉 ::= 〈Var〉 | 〈int〉 | 〈LocalObject〉
| 〈ArithSpecExpr〉 〈ArithOp〉 〈ArithSpecExpr〉
| ‘(’ 〈ArithSpecExpr〉 ‘)’

〈EnumSpecExpr〉 ::= 〈Var〉 | 〈constant〉 | 〈LocalObject〉
| ‘prev(’ 〈EnumSpecExpr〉 ‘)’
| ‘next(’ 〈EnumSpecExpr〉 ‘)’
| ‘(’ 〈EnumSpecExpr〉 ‘)’

〈ProbArithSpecExpr〉 ::= 〈Real〉 | 〈ProbFormula〉 | 〈ProbArithSpecExpr〉 〈ProbArithOp〉 〈ProbArithSpecExpr〉 | (〈ProbArithSpecExpr〉)

〈ProbFormula〉 ::= ‘Prob’ 〈constant〉 〈KF〉 | ‘Prior’ 〈constant〉 〈KF〉 | ‘Prob’ 〈constant〉 ‘(’ 〈KF〉 | 〈KF〉 ‘)’ |
‘Prior’ 〈constant〉 ‘(’ 〈KF〉 | 〈KF〉 ‘)’

A.5 Variable Types
〈Vartype〉 ::= 〈Enumeration〉 | 〈NumericRange〉

〈Enumeration〉 ::= 〈Constant〉 (‘,’ 〈Constant〉)*

〈NumericRange〉 ::= 〈int〉 ‘..’ 〈int〉

〈VarDec〉 ::= 〈varid〉 ‘:’ 〈Type〉

〈Type〉 ::= [ 〈TypeAttr〉 ] 〈TypeDesc〉

〈TypeAttr〉 ::= ‘observable’

〈TypeDesc〉 ::= 〈typename〉 | 〈typename〉 ‘[’ [ 〈int〉 ] ‘]’

A.6 Common Productions
〈Var〉 ::= 〈varid〉 | 〈varid〉 ‘[’ (‘self’ | 〈int〉) ‘]’

〈VarPrime〉 ::= 〈Var〉‘’’ | 〈Var〉

〈VarList〉 ::= 〈Var〉 (‘,’ 〈Var〉)*

〈LocalObject〉 ::= 〈constant〉 ‘.’ 〈constant〉

〈AgentList〉 ::= ‘{’ 〈constant〉 (‘,’ 〈constant〉)* ‘}’

〈BoolBinOp〉 ::= ‘/\’ | ‘\/’ | ‘=>’ | ‘<=>’ | ‘xor’
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〈ArithOp〉 ::= ‘+’ | ‘-’

〈ProbArithOp〉 ::= ‘+’ | ‘-’ | ‘*’

〈RelOp〉 ::= ‘<’ | ‘<=’ | ‘>’ | ‘>=’

〈Constant〉 ::= 〈int〉 | 〈constant〉

〈String〉 ::= ‘"’ 〈char〉* ‘"’

〈Probability〉 ::= 〈Real〉

〈Real〉 ::= 〈digit〉 | 〈digit〉 ‘.’ 〈digit〉+

A.7 Operator Priorities
The operators are declared with the following priorities (from low to high; operators on the same line have equal
priority) and associativity

left ‘=>’
left ‘<=>’
left ‘/\’ ‘\/’ ‘xor’
left ‘U’ ‘R’
right ‘Knows’ ‘CK’ ‘XK’ ‘F’ ‘G’ ‘X’ ‘E’ ‘A’ ‘EX’ ‘AX’ ‘EF’ ‘AF’ ‘EG’ ‘AG’ ‘Prob’ ‘Prior’
right ‘neg’
nonassoc "==" "/=" ’>’ ’<’ ">=" "<="
left ‘+’ ‘-’
left ‘*’
left ‘next’ ‘prev’
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Appendix B

Operational Semantics

The motivation for providing a detailed operational semantics is to make the timing model precise. We do not attempt
to capture all features of the language here. (In particular, we do not incorporate treatment of user-defined labels or
the read/write actions.)

There are two major constraints on the design of the language:

1. The agents need to have control over which action they emit at all times (see the Robot example in Section 6.1
for further details).

2. Automata must be naturally expressible.

Also, arbitrary nesting of constructs and a simple, regular timing model are very desirable.
In the following description, let:

• Var be the type of variables.

• Val be the type of values. (We assume that local variables of agent Agt are represented either by the environment
variable to which they are aliased, or written in the form Agt.var to distinguish them from variables of other
agents with the same name.)

• Σ = Var → Val be the type of valuation functions (giving values to all variables), and ρ :: Σ.

• 〈 elt1, ..., eltn 〉 be sequences of arbitrary objects.

• [x 7→ val] :: Var → Val → Σ → Σ be a state transfomer:

([x 7→ val] ρ) y =

{
val : x == y
ρ y : otherwise

• f ◦ g be function composition: (f ◦ g) x ≡ f (g(x)). A summation-style © :: [a → a] → a → a is also
used, where © 〈〉 = id and © 〈 head | tail 〉 = (© tail) ◦ head, where 〈 head | tail 〉 is a list of composable
functions.

In order to implement the select/resolve model (Chapter 1), the overall state transition relation is split into two sets
of relations – agent-local and environment. Both rely on another relation to give meaning to expressions.

Expression Semantics

ρ : Expr ↪→ Val is the expression evaluation function, described in Section B.2.
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Transition relations

For each agent A, two relations are defined:

• ρ : ProgramText {A ProgramText′ are agent-internal transitions, which become stuck upon encountering a
manifest action.

• ρ : ProgramText →A (Action, 〈Assignment〉, ProgramText′) is the selection phase (determines what action
the agent performs in this time step).

The idea is that each agent executes as much ProgramText as possible until it is manifest which action is to be
performed (at which point the {A relation gets stuck). The →A relation takes care of detaching this action and
tracking where the agent is up to in its protocol.

Additionally, we define a global relation→n to capture the synchronous, lock-step aggregate of all the→A agent
relations.

The definitions of these relations are given in Section B.3.

Environment Transitions

• [[·]](ρ,A) generates a state transformer from the transitions clause, given the current state and the actions A the
agents have performed.

• ρ : 〈ProgramText1, ..., ProgramTextn〉 ⇒ ρ′ : 〈ProgramText′1, ..., ProgramText′n〉 is the overall single-step
state-transformation relation.

The definitions of these relations are given in Section B.4.

B.1 Pre-processing
A pre-processing pass is used to expand derived forms and normalise the programs.

1. Append while True do skip to the original program P. This ensures all programs generate infinite runs.

2. Make all variable names unique by qualifying local variables with agent names.

3. Expand all definitions (Section 2.6.4).

4. Eliminate derived forms using the rules in Sections B.2 and ??.

5. For all if ... fi statements: if present, replace an otherwise → C branch with
∧

i ¬condi → C, or add a∧
i ¬condi → skip branch if it is absent.

(Note this expansion also applies to a transitions clause, if present.)

6. For all do ... od statements: if the break branch is absent, add break→ skip.

7. Add internal labels to each action statement. Note these are distinct from the source-language labels, and are
used by the BDD encoding to track where the{A relation becomes stuck.

B.2 Expression Semantics
[[·]]ρ : Expr → Val is an expression evaluation function, where ρ is the system state when evaluating the expression.
All expressions should be well-typed such that all operands are in a same type.
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B.2.1 Basic Values
1. [[var]]ρ ≡ ρ(var) where var is a variable

2. [[val]]ρ ≡ val, where val is a constant.

3. [[var.constant]]ρ ≡ True, if action� constant � is activated by agent var, and ≡ False, otherwise.

B.2.2 Operations for Boolean Type
Let expressions f and g be boolean expressions. We have the following operations.

1. Two basic boolean operations:
[[ f ∧ g]]ρ ≡ [[ f ]]ρ ∧ [[g]]ρ

[[¬ f ]]ρ ≡ ¬[[ f ]]ρ

2. The standard boolean algebraic identities hold:

[[ f ∨ g]]ρ ≡ [[¬(¬ f ∧ ¬g)]]ρ

[[ f → g]]ρ ≡ [[¬ f ∨ g]]ρ

[[ f ↔ g]]ρ ≡ [[( f → g) ∧ (g→ f )]]ρ

[[ f xor g]]ρ ≡ [[(¬x ∧ y) ∨ (x ∧ ¬y)]]ρ

B.2.3 Truncated Arithmetic Operations for Numeric Types
For truncated arithmetic operators + and −, the type of their operands can be any numeric type, and the two operands
should be in the same type. Operations [[e1 +e2]]ρ and [[e1−e2]]ρ are defined as follows, where e1 and e2 are expressions
with numeric types T .

1. [[e1 + e2]]ρ =

{
max(T ) if[[e1]]ρ +[[e2]]ρ ≥ max(T )
e1 + e2 otherwise

2. [[e1 − e2]]ρ =

{
min(T ) if[[e1]]ρ −[[e2]]ρ ≤ min(T )
e1 − e2 otherwise

B.2.4 Comparison Operations for Numeric Types
We have two basic operators == and <. For two expressions with numeric type T , we have

1. [[e1 == e2]]ρ =

{
True if [[e1]]ρ = [[e2]]ρ
False otherwise

2. [[e1 < e2]]ρ =

{
True if[[e1]]ρ < [[e2]]ρ
False otherwise

Then, we have derived operations

1. [[e1 > e2]]ρ ≡ [[e2 < e1]]ρ

2. [[e1 >= e2]]ρ ≡ [[(e2 < e1) ∨ (e1 == e2)]]ρ

3. [[e1 <= e2]]ρ ≡ [[(e1 < e2) ∨ (e1 == e2)]]ρ

4. [[e1/ = e2]]ρ = [[¬(e1 == e2)]]ρ
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B.2.5 Operations for Enumerated Types
Suppose that expressions e1, e2 : T are in the same type T : {const0, ..., constm−1}.

1. [[next(e1)]]ρ ≡ consti+1 mod m if ρ(e1) = consti

2. [[prev(e1)]]ρ ≡ consti−1 mod m if ρ(e1) = consti

3. [[e1 < e2]]ρ ≡ i < j with ρ(e1) = consti and ρ(e2) = const j.

4. [[e1 == e2]]ρ ≡ i = j with ρ(e1) = consti and ρ(e2) = const j.

Other derived comparison operations based on == and < are defined the same with numeric types.

B.2.6 Set Operation
The set operation is interpreted as a syntax sugar. Let e, e1, ..., en be in the same numeric type or enumerated type.

1. [[e ∈ {e1, ..., en}]]ρ ≡ [[(e == e1) ∨ ... ∨ (e == en)]]ρ

B.3 Agent Protocol Semantics
The definition of ρ : ProgramText{A RestO f ProgramText :

Sequencing:
ρ : C1 {A C′1

ρ : C1; C2 {A C′1; C2

If: For each alternative i:

ρ : condi ↪→ True
ρ : if ... condi → Ci ... fi{A Ci

Do: For each alternative i:

ρ : condi ↪→ True
ρ : do ... condi → Ci ... od{A Ci; do ... od

The ρ : ProgramText {A RestO f ProgramText relation is the reflexive, transitive closure of the above defini-
tions. This relation is purposefully non-deterministic.

The definition of ρ : ProgramText →A (Action, 〈Assignment〉, ProgramText′) :

ρ : ProgramText{A< Action|〈Assignment〉 >; ProgramText′

ρ : ProgramText →A (Action, 〈Assignment〉, ProgramText′)

We expect ρ : C {A C′ to terminate for all C, and the overall agent relation

ρ : ProgramText →A (Action, 〈Assignment〉, ProgramText′)

to not get stuck.
Define:

ρ : (ProgramText1, ..., ProgramTextn)→n

((Action1, 〈Assignment〉1, ProgramText′1), ..., (Actionn, 〈Assignment〉n, ProgramText′n))

to be the composite of the individual transitions

ρ : ProgramTextA →A (ActionA, 〈Assignment〉A, ProgramText′A)

for each agent A ∈ {1...n}.
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Note on why ‘do’ has a ‘break’ branch

As noted in Section 2.4, the protocol language is non-standard in that it allows the programmer to specify what happens
immediately after all guards evaluate to false in a do construct. (In Dijkstra’s version [8], there is always an implicit
skip before the programmer regains control.) The reason we require continuous control was set out in Section 6.1.

A superficially plausible alternative semantics is to try to determine an action which will be enabled once the do
loop terminates, and execute that. Unfortunately, this leads to problems. Take, for example, the following program:

do True −>
do False −> <Action>
od

od

under this semantics. In this case, there simply is no action that can be executed between the evaluation of the two
guards, and so the{A relation must be non-terminating.

Given our constraint that guards should be instantaneously evaluated, the most natural thing to do is to add the
break branch. An alternative solution would be to ban nested looping constructs, or require that the first statement in
the body of a do statement always produce an action (i.e. be a non-looping construct). This latter approach is standard
in process algebras, and is termed guarded recursion [1].

B.4 Environment Transitions-Clause Semantics
The manner in which the environment’s state is updated is expressed as a program in the non-looping subset of the
language used to represent protocols. The most significant departure is that guards can mention agent-qualified actions.

As mentioned in Section 2.5.2, the system currently provides shared-variable read() and write() actions as primi-
tives, distinct from the mechanism described here. A semantics for these primitives is omitted.

The definition of [[·]](ρ,A) :: S tatement → (S tate, {Action}) → Σ → Σ, giving meaning to a transitions clause in
terms of state transformers:

ρ′ = [[C1]](ρ,A) ρ

[[C1; C2]](ρ,A) = [[C2]](ρ′,A) ◦ [[C1]](ρ,A)

For each alternative i:

(ρ,A) |= condi

[[if ... condi → Ci ... fi]](ρ,A) = [[Ci]](ρ,A)

[[skip]](ρ,A) = idΣ→Σ

ρ : expr ↪→ val
[[x := expr]](ρ,A) = [x 7→ val]

where idΣ→Σ is the identity function for the specified type.
This function is purposefully non-deterministic.
Conditions are evaluated with respect to a set of actionsA and a state ρ. The base cases are as follows:

Action ∈ A
(ρ,A) |= Action

ρ Var = True
(ρ,A) |= Var

and the recursive cases (for the logical connectives) are similar to those in Section B.2.
The definition of ρ : (ProgramText1, ..., ProgramTextn) ⇒ ρ′ : (ProgramText′1, ..., ProgramText′n) , taking

states and program counters in one state to the next:
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ρ : (ProgramText1, ..., ProgramTextn)→n

((Action1, 〈Assignment〉1, ProgramText′1), ..., (Actionn, 〈Assignment〉n, ProgramText′n))
stenv = [[TransitionsClause]](ρ,A)

for each agent i: sti = [[Assignmenti1 ]](ρ,A) ◦ ... ◦ [[Assignmentik ]](ρ,A).
ρ′ = (stenv ◦ © 〈st1, . . . , stn〉) ρ

ρ : (ProgramText1, ..., ProgramTextn)⇒ ρ′ : (ProgramText′1, ..., ProgramText′n)

Notes:

• The order of composing the Environment’s stenv and Agents’ state transformers sti doesn’t matter as their do-
mains are disjoint.

• Where there are several assignments in a single action statement, the variables in their right-hand-sides refer to
the current state. For example, in a state where {x 7→ True, y 7→ False }, the action << NilAction | x := y; y := x >>
gives rise to a state where {x 7→ False, y 7→ True}.

B.4.1 Runs
A run is a sequence of global states ρi conformant with the overall one-step transition relation⇒:

• The initial state of the system is ρ0 : (ProgramText1, ..., ProgramTextn), where ρ0 must satisfy all local and
global initial constraints, and ProgramTexti is the entire program for agent i.

• For each i ≥ 0, we have (with superscripts indicating position in the run):

ρi : (ProgramTexti
1, ..., ProgramTexti

n)⇒ ρi+1 : (ProgramTexti+1
1 , ..., ProgramTexti+1

n )
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