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Abstract—Mobile device users use applications that require
text input. Today there are three primary text input modalities,
soft keyboard (SK), speech to text (STT) and Swype. Each of
these input modalities have different energy demands, and as a
result, their use will have a significant impact on the battery life
of the mobile device. Using high-precision power measurement
hardware and systematically taking into account the user context,
we characterize and compare the energy consumption of these
three text input modalities. We show that the length of interaction
determines the most energy efficient modality. If the interactions
is short, on average less than 30 characters, using the device
SK is the most energy efficient. For longer interactions, the use
of a STT applications is more energy efficient. Swype is more
energy efficient than STT for very short interactions, less than
5 characters on average, but is never as efficient as SK. This is
primarily due to STT enabling the users to complete tasks more
quickly than when using SK or Swype. We also show that these
results are independent of “user style”, the experience of using
different input modalities and device characteristics. Finally we
show that STT energy efficiency is dependent on application logic
of whether speech samples are for a given period of time before
transmitting to a server for analysis as opposed to streaming the
speech to a sever for analysis. Based on these observations we
recommend that the users should use SK for short interactions
of less than 30 characters, and STT for longer interactions. In
addition, they should use STT applications which uses storing
and transmit logic, if they are willing to trade off battery life to
QoE. Finally we proposed the development of an adaptive storing
and analyze STT to improve the energy efficiency of it.

I. INTRODUCTION

Smart mobile device usage is becoming pervasive. It has

been shown in a study of more than 9 million comments

in Google play store, that more than 18% of all commented

applications have negative comments with respect to their en-

ergy consumption [1]. These applications are primarily being

used to access content/information, and a recent survey [2]

has shown that the top activities of smart mobile device users

are accessing the internet, checking mail, chatting and social

networking. Additionally, Instant Messaging (IM) is becoming

an increasingly popular substitute for Short Message Service

(SMS), offering a flexible range of features at no extra cost [3].

Other recent surveys show that users transmit, on average 110

text messages per day [4] and the number of traditional SMS

texts being sent is being overtaken by instant messages on

chat apps such as WhatsApp and QQ1 [7]. Moreover, average

message sizes for SMS are reported to be around 56 characters

[8] and for WhatsApp 80% of the messages are below 40

characters [3].

Given the popularity (volume) and the size of these instant

messages and the other activities such as social networking

applications that require text input, it is clear that text input is

one of the major modes of interaction. Initially, text input was

enabled on smart mobile devices via a soft keyboard (SK),

i.e. typing on the touch screen keyboard. However with SK,

the users in most cases, need to use both hands to type fast,

which is difficult to do whilst “on the move”. To address

this, speech-to-text (STT) [9], [10] and Swype, which allows

single-hand text input have appeared in the market. With STT,

speech is captured on the mobile device and sent to a server

for processing. With Swype, users simply swipe their finger

from one letter toward the next of the intended word, and the

mobile app attempts to predict the word. Swype is gaining

popularity not only because it allows single-handed input, but

also as it enables faster input compared to SK and is more

discrete compared to STT.

Different users embrace different input modalities based

on their habits and familiarity (convenience). The different

text input modalities use different hardware components and

carry out different amount of processing on the smart mobile

device. Therefore these different input modalities consume

different amount of energy for completing the same task. For

example, SK predominantly uses the touch screen, while STT

uses the microphone for recording and the communication

interface for transmitting the speech sampled to a server and

receiving the converted text from the server. Users are mostly

unaware of the impact of these processing and communications

requirements on the energy consumption of their device. Given

the large volume of text based interactions users have, knowing

the energy implications of the different input modalities will

enable the users to make informed decision about which input

modality use to minimize their devices’ energy consumption,

especially when their device is low on power.

There has been significant work done in terms of optimizing

1reported to have over 400 and 800 million users respectively[5], [6]



the energy consumption of smart phones when it is being

used for purposes such as video streaming [11], web-browsing

[12], downloading content [13] and instant messaging [3]. It

is also shown that using the least energy efficient application

could potentially shorten the battery lifetime by a factor of

2.5 as reported in [3]. However, all these studies have focused

on the use/running of the applications, and not on the user

interactions. To the best of our knowledge, there has been no

prior work in characterizing the energy consumption of user

interaction with smart mobile devices. This paper addresses

this through a comprehensive empirical study of energy con-

sumption of the three widely used text input modalities,

namely SK, STT and Swype. Using high-precision hardware,

which measures energy consumption as the true current drain

from the device battery and systematically taking into account

the user context, we characterize the energy consumption of

the three text input modalities.

This paper makes the following contributions:

• The power consumption of all three text input modalities

is independent of message length. However, due to the

task completion time, for interactions with less than

30 characters, use a soft keyboard is the most energy

efficient. For longer interactions speech to text becomes

the most efficient.

• The “user style” and experience of using a given input

modality has no tangible impact on the power consump-

tion. In addition, the above findings are independent of

the device manufacturer and size.

• We find SK has the lowest error rate (<5%) among the

three input devices, and STT has a comparatively higher

error rate but differs a lot from different engines. Swype

(7.6%) is slightly more accurate than Google STT (8.3%)

on average.

• We also show that for STT, the application logic of

whether speech samples are for a given period of time

before transmitting to a server for analysis as opposed

to streaming the speech for conversion, and the usage of

extra hardware, e.g. GPS, could have an increased power

consumption of up to 45%.

Given the average message lengths, our findings can be used

to provide some guidance as to the most power efficient input

modality use, thus enabling users to trade off convenience

against energy usage.

The rest of the paper is organized as follows. Section II

summarizes the related work. The detailed experimental setup

and measurement methodology are presented in Section III.

We then give the experiment results in Section IV and discuss

the results that we observe in Section V. Finally, Section VI

concludes the paper.

II. RELATED WORK

Smart mobile device technology is improving rapidly with

significant improvements in processing, storage and screen

technology. These improvements are placing more and more

demands on energy. However, battery technology is not keep-

ing pace with these improvements and is unlikely to do

so in the foreseeable future [14]. As a result, the research

community has been investigating ways of minimizing the

energy consumption of hardware that are more energy efficient

exemplified by [15], [16], [17]. Similarly there has been

considerable work done to make the applications more energy

efficient, by reducing their interaction with hardware and

communications. However, there has been limited work that

have investigated the user interaction and the impact on energy.

Page [18] investigated the implications typing using a soft

keyboard, ITU-T numeric keypad, Swype and Swiftkey on

six different smart phones. He concluded that, Swype and

Swiftkey are the most effective and that they offer substantial

benefits to users as typing speeds comparable to when using

common computer keyboard could be achieved. However, the

study does not investigate the energy consumption different

input modalities have. The focus of our work was to examine

the energy consumption of the different input modalities and

provide a guide to the users as to which modality should used

to conserve energy.

Numerous groups have investigated on energy consumption

of mobile devices by examining the energy consumption of

different hardware components of mobile devices and appli-

cations. Carroll and Heiser [19] presented the detailed break-

down power consumption of mobile phone’s main hardware

components and developed a power model for smart phone.

They investigated the energy usage and battery lifetime under

different usage patterns by analyzing the power consumption

of the various components of a smart phone. They showed the

most power hungry components in the phone and identified the

most promising areas to focus on improve energy efficiency.

Yoon et al. [20] also used kernel activity monitoring as a way

of deterring the energy consumption of mobile applications.

Using this technique, they were able to estimate the energy

usage for online activities. These studies again focused on

application behavior as opposed to user interaction.

Perrucci et al. [21] investigated the impact on energy

consumption of a smart phone, when using different services

such as data, cellular link services and mobile TV. They show

that for SMS, the energy consumption was dependent on the

cellular network that is used. The overall finding was that

GSM consumes less energy when compared to 3G (UMTS).

While this finding influences our finding about the STT energy

consumption, it does not directly address the impact of the

input modalities on power consumption. Vergara et al. [3]

studied the energy consumption of different instant messaging

(IM) applications. They showed that short messages consume

as much energy as longer messages and that it is possible to

trade off latency for increased energy efficiency. [22] showed

that typing notifications results in almost a 100% increase

energy consumption. There are also a number of groups

focusing on energy consumption of a specific activities such

as video streaming, web-browsing and downloading. Trestian

et al. analyzed the power consumption for video streaming

using different wireless networks [11]. Their result showed

the network load and signal quality together have a significant

impact on energy consumption. Thiagarajan et al. [12] mea-



sured the detailed energy consumption for web browsing using

a similar measurement methodology to what is presented in

this paper. They optimized the energy needed for web page

downloading, rendering, and showed a modified Wikipedia

mobile site which can reduce 30% of the energy cost. Energy

consumed when downloading via different wireless networks

(Wifi, 3G and Bluetooth) was also investigated by Kalic et al.

[13]. They proposed an energy consumption model for each

communication technology and showed that this model can be

used on collaborative downloading to lower the overall energy

consumption. All these works, whilst relevant does not address

the impact of the input modalities on power consumption.

III. MEASUREMENT METHODOLOGY

Determining the impact of different input modalities on

power consumption is difficult because of the large number

of dependencies, especially the differences in user interaction

styles and the context of use. To address differences in user

interaction styles and the impact of context, two sets of experi-

ments, referred to as primary and secondary experiments, were

conducted. The primary experiments were aimed at identifying

the key differences in power and energy consumption of the

three input modalities, and the secondary experiments were

aimed at identifying the dependency of the input modality

power consumption on user contexts.

Although there exists several software power profilers for

Android such as BatteryManager [23] and CurrentWidget [24],

that could be used for power measurements, they only en-

able the measurement of power at fixed, system dependent

intervals. For example, Batterymanager only gives the volt-

age readings whenever there is a percentage change in the

battery level. Thus to measure power consumption at a finer

granularity, for both sets of experiments, we used a set-up

shown in Fig. 1, which has also been used by others [12],

[25], [26]. With this set-up, the smart mobile device battery

is “hijacked” at one of its terminals, and connected in series

with a 15mΩ shunt resistor. Then a National Instrument (NI)

NI-USB 6008 is used to sample the voltage drop, V , across

the shunt resistor at 1 KHz and log the data on to a laptop

computer. In addition, for each interaction, the start and end

time can be read directly from the voltage log file recorded.

Finally we used the standard equation of power, P = Vb × Ir

to calculate the consumed power for each data point, where

Vb is the battery voltage and Ir is the current through the

shunt resistor. Then the average power consumption for a

specific message input modality was computed as the mean

value of all the calculated instantaneous power values during

the interaction period, as determined by the logged start and

the stop times. The total energy consumed for a given input

modality was calculated by multiplying average power by the

interaction period.

A. Primary Experiments

These experiments were aimed at determining the power

consumption of the input modality. Therefore, the experiments

used a single fully charged (≥ 95%) Samsung Galaxy S3 smart

Fig. 1. Power measurement setup

phone, connected to a 3G or Wifi network. Ten different users

were asked to interact with the smart phone by entering the

7 text messages shown in TABLE I, using each of the three

input modalities. The message lengths of the messages shown

in TABLE I was chosen to be representative of the typical

message lengths of text based interactions of smart mobile

device based on the message length distributions in [3].

To ensure that the power consumption was only due to the

user inputs, all processes on the smart phone were terminated

via Android developer options, except for the application used

for the experiment. The screen brightness is also set to a

fixed level to eliminate any change during the experiment.

Furthermore, after each interaction period, the battery level of

the smart phone was checked and where necessary the smart

phone was recharged, to ensure that the battery level remained

at or above 95%.

For SK, users entered messages using the Android’s default

Messager App editor and default Samsung soft keyboard. In

order to investigate the impact of user typing style to SK

power consumption, we developed an Android application that

logged the touch down/up time, holding time, pressure and the

size of the touch.2

For STT, the Galaxy S3’s built-in Google STT application

and the STT application available with the Swype application,

namely Dragon dictation were used. They represented the only

two STT applications available 3. With Google’s STT applica-

tion, each phrase of speech is recorded and then streamed to

a Google sever for conversion from speech to text. Once the

converted text from the server is received, it is displayed on the

screen. Dragon dictation operates in a similar manner, except

that it records the speech for given period of time and sends it

to a cloud based server for the speech to text conversion. The

difference is that Dragon dictation application always tries to

record for as long as possible, up to 100 seconds of recording,

before sending the whole recorded segment to the server.

Because the streaming nature of Google’s STT application,

the communication modules on the mobile device keeps in

the active state [27], it consumes more power than Dragon

Dictation, but has less latency which is reported to result in

better user QoE as the user can actually see what is being typed

2pressure could not be recorded for Samsung S3 because it uses a capacitive
screen.

3all other applications use the Google STT engine.



TABLE I
SEVEN MESSAGES WITH DIFFERENT LENGTHS

Message Length Message Content

7 A phone
15 That was a test
27 These are few mobile phones
52 This is a test to investigate the energy consumption
79 This is a test to investigate the energy consumption

of different mobile phones
102 This is a test to investigate the energy consumption

of different mobile phones in different situation
202 This is a test to investigate the energy consumption

of different mobile phones in different situation via
variety of Android applications and games in various
locations in university of New South Wales

in real time. In addition, we also find that, Google STT utilizes

location service by default, in contrast, Dragon dictation does

not. This also leads to extra power consumption. As it is the

default configuration, we decide to keep the location service

on for the primary experiments.

Swype keyboard application was used for the Swype experi-

ments. This involved the users simply tracing the characters of

a word with their fingers, and the software predicting the word

and displaying it on the screen. All volunteers were allowed

time to become familiar, if they had not used Swype before to

minimize the user biases.

B. Secondary Experiments

The objective of these experiments were to investigate the

impact of user context on the power consumption of the three

input modalities. Thus the experiments involved a single user

interacting with three devices, two smart phones (Samsung

Galaxy S3, S4) and a tablet (Google Nexus 7) using the same

messages used in the primary experiments.

The contexts of the device operating at two different battery

charge levels of 95%, 30% and connecting to two different net-

works (3G/Wifi) in the case of a smart phone were evaluated.

During these experiments to minimize the network con-

nectivity variations, the experiments were repeated in three

different locations, namely inside a research lab in the city

center, inside a residential apartment in a suburb, and inside

a student laboratory. All experiments are repeated three times

and the average was used for analysis.

IV. RESULTS

A. Primary Experiment Results

Fig. 2 depicts the average power consumption of different

input modalities as a function of message length. As can be

seen from Fig. 2(a), the power consumption is independent

of message length for all three input modalities. Also as

expected, it shows that different input modalities have different

power consumption with Google STT having the highest power

consumption with an average of approximately 2W when

connected to a 3G network, Swype the second highest with an

average consumption of approximately 1.3W, and SK is the
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Fig. 2. Power consumption comparison of input modalities

lowest power consumption with an average of approximately

1W.

When Google STT is used with Wifi network connection,

the power consumption is reduced to around 1.5W. This ver-

ifies the findings in [28]. These differences are due to the use

of different hardware components which have different power

requirements as described in [19], [11]. This is highlighted

by the differences in power consumption of the Google STT

and Dragon STT applications. As can be seen in Fig. 2b,

the power consumption of the Dragon STT application, when

using cellular and Wifi networks is approximately 1.03W and

1.38W respectively. Its power consumption is around 45%
less than Google STT application (streaming) in both cases.

In addition to the use of the communication module, the

Google STT uses GPS where further increase the energy gap.

This will be discussed further in the secondary experiments,

subsection IV-B .

The time taken to complete a task also varies, depending

on the input modality used. Fig. 4a shows the time taken to

complete the 7 messages in these experiments, assuming there

are no errors. Overall, STT takes the shortest time to complete

all tasks. As can be seen despite the variation in user ”speaking

styles”, this holds true for all users.

For SK, the energy consumption could be influenced by the

user ”typing style”. To investigate this we analyzed effect of

touch size and touch duration each key press by developing

a simple application which measured the touch time and
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duration.

Fig. 3 shows the touch time of users during the experiments,

which is done by using Gaussian kernel density estimation. It

shows that the difference between the mean touch times of

users is approximately 55ms, and 80% of all touches has a

touch duration under 90ms.

Touch sizes were found to be similar among all the users,

with a mean touch size to be 0.04 cm2 and standard deviation

of approximately 0.01 cm2. This analysis shows that typing

style, namely the speed and the weight of touch, result in

variation of power consumption between ±6% of 1W. Thus,

the different ”typing styles” of users do not affect the power

consumption of SK.

Fig. 4a, as expected shows that, for all input modes the

completion time of a message is directly proportional to the

message length for all three input modalities. Therefore, it is

possible to approximate the message completion times using

straight lines with high accuracy (R2 = 0.99). Thus the input

speed, s char/s, can be directly obtained as s = 1

m
, where

m is the slope of the line presenting the message completion

time, the completion rate.

The completion rate of STT is only m = 0.074, when
compared to the completion rates of SK of m = 0.457 and

Swype of m = 0.422. This implies that STT is up to 6 times

faster than that of other two text input modalities, and lead

to shorter task completion times. As shown in Fig. 4b, the

cross over where STT results in faster completion times than

Swype and SK occurs approximately when inputs are 9 and
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Fig. 4. Message completion time comparison of three input modalities

14 characters respectively.

Fig. 5a shows energy consumption for the three input

modalities, which is given by the time taken to complete the

task and the average power consumption. It shows that STT

is more energy efficient than SK for longer tasks despite its

higher power consumption, as the time taken to complete these

task becomes shorter when using STT compared to using SK.

Google STT become more energy efficient than Swype and SK

when the message length becomes greater than 16 characters

and 30 characters respectively for Google STT under 3G. In

fact, this is the worst case scenario for STT in terms of energy

consumption. If user switch to Wifi network or use Dragon

STT, energy consumption can be cut by almost half, leading

to the crossover being 6 chars and 14 chars respectively.

The energy consumption rates from Fig. 5a can be used

to derive the percentage of total battery capacity that a user

would consume for any particular application that requires text

input. TABLE II summarizes the energy consumption of a

Samsung Galaxy S3 smart phone for one of the most widely

used applications, texting (SMS), considering age-group-based

texting statistics provided in [4] as a percentage of the phone

battery capacity (7.98WH or 28,728J). It shows that choosing

between SK and Swype may not make much difference in

terms of energy consumption, however the use of STT could

lead to substantial energy savings.
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Fig. 5. Energy consumption comparison of three input modalities

TABLE II
BATTERY CAPACITY OF SAMSUNG S3, 7.98WH, 28728 J

Age
Group

Texts
/day

Battery Percentage

STT SK Swype
Gc Gw Dc Dw

13-17 110 6.21% 4.72% 4.26% 3.18% 9.14% 12.6%

18-24 67.4 3.81% 2.89% 2.61% 1.95% 5.60% 7.73%

24-34 37 2.09% 1.59% 1.43% 1.07% 3.08% 4.24%

35-44 27.7 1.56% 1.19% 1.07% 0.80% 2.30% 3.18%
† Gc, Gw, Dc, Dw stands for Google 3G/wifi, Dragon 3G/wifi.

B. Secondary Experiment Results

1) Device, Battery Charge Level and Networks: The sec-

ondary experiments used the Samsung Galaxy S3 used in

the primary experiments, a Samsung Galxy S4 and a Google

Nexus 7 tablet. They are connected to WiFi and/or 3G cel-

lular networks. The Samsung Galxy S4 represents devices

with more powerful hardware and Nexus 7 tablet represents

devices with bigger screens and larger batteries. TABLE III

presents the energy consumption rates of the three devices

for the all input modalities. It shows that the tablet consumes

approximately twice as much energy as the S3 per character

for all text input modalities. In addition, S4 consumes slightly

more energy than S3 mainly due to a higher resolution screen

and a faster processor.

Fig. 6 shows the energy consumed by the three devices

as a percentage of the device battery, when used for texting

by the 13-17 age group. The results show that all devices

TABLE III
ENERGY CONSUMPTION (JOULS/CHAR) OF THE SMARTPHONE AND

TABLET

Input Mode Samsung S3 Samsung S4 Tablet Nexus7

Google-wifi 0.11 0.12 0.27

Dragon-wifi 0.08 0.10 0.19

SK 0.45 0.59 0.87

Swype 0.57 0.61 1.02

Google-Wifi Dragon-Wifi SK Swype0
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Fig. 6. Battery level consumption for phone and tablet

display similar characteristics despite the tablet consuming

twice as much energy per character and the tablet battery

having double the capacity (16Wh/57600J) of the S3 battery

(7.98Wh/28728J). The S4 battery (9.88Wh/35568J) is around

25% larger than S3’s, which is however not always enough to

offset the extra power consumption of hardware.

In the case of STT, both smart phones display more than

double the energy efficiency of the tablet and in the case of

SK, the tablet performs a bit better battery percentage wise. We

speculate that this due the smart phones having more energy

efficient communications hardware than tablet.

Since the percentage increase in energy consumption is sim-

ilar for all the three input modalities across the three devices,

the results of previous subsection, namely the differences in

energy consumption between the input modalities is device

independent.

As STT is dependent on sending data to server for analysis,

its energy consumption will be influenced by the network

connectivity. To assess the impact, we measured the power

consumption of STT when the smart phone was connected to

a 3G cellular network, and a WiFi network, in three different

locations, namely inside a research laboratory, a residential

apartment, and inside a student laboratory at a University. The

mean power consumption of Google STT in the three locations

were all approximately 2W with a standard deviation under

0.1W. Hence the results of previous subsection is also location

independent.

When the experiment was repeated at a battery charge

level of 30%, the power consumption is increased by 5%-

10% comparing to when the smart phone was fully charged

(≥ 95%). This we believe is due to the non-linear rate of drain

of chemical batteries as explained in [29]. However, this again

does not affect the main observation as percentage increase in

power consumption for all input modalities are similar.



TABLE IV
POWER CONSUMPTION OF LOCATION SERVICE

Input Mode S3 S4 GPS consumption
S3 S4

Google-Wifi-GPS-on 1.53W 1.65W
Google-Wifi-GPS-off 1.29W 1.47W 0.24W 0.18W

Google-3G-GPS-on 2.03W 2.10W
Google-3G-GPS-off 1.73W 1.95W 0.30W 0.15W
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Fig. 7. Error rate for all input modalities

Thus the primary results will remain the same, regardless of

the screen size, processing power and battery charge level and

will only be influenced by the network type, the application

and usage.

2) Location service: Google utilizes location service for

STT conversion, it is also interesting to know the portion of

extra power consumption due to location service and speech

streaming respectively. We found almost no difference in terms

of power consumption for Dragon dictation while keeping the

GPS module on and off. The GPS symbol on the phone also

indicates Google STT uses GPS as oppose to Dragon dictation.

TABLE IV shows the power consumption of Google STT for

the two difference smart phone under different network type

and GPS status. The net power consumption used on location

service is deduced, which shows an 0.2W is drawn from the

GPS module on average.

However, the status of location service again would not

affect results in primary experiment. Both the results of Google

STT and Dragon dictation are presented, representing upper

and lower boundary of STT energy consumption. Only slight

change in the intersection points is observed, the main trend

remains the same.

3) Error Characteristics: SK, Swype and STT display dif-

ferent error characteristics. The SK errors are random and

evenly distributed (trickle errors), where as the Swype and

STT be word specific and thus tend to occur in groups

(burst errors). The two STT engines displayed different error

behavior. Google STT showed higher accuracy (91.69%) when

compared to Dragon dictation (77.11%) for the set of experi-

ments which consisted of the 7 inputs as shown in Fig. 7. The

accuracy was shown to be lower than when using SK (96.47%)

or Swype (92.38%). Also, Swype error rate increased with the

length of interaction.

Users correct errors differently depending on whether they
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Fig. 8. Error Corrected Energy consumption comparison of three input
modalities

are using STT/Swype or SK. Whenever a user makes a mistake

when using SK, it is generally a single character. Thus the error

is corrected by deleting the erroneous character and and enter

the correct character. Therefore with SK, each error results in

2 key strokes. Therefore, for a message of length L chars, if

one assumes an error rate of e% and that the user will only

need to delete the wrong character once, the final length of

character input interaction would be L× (1 + 2e)%. Because

overall user’s input speed when using SK is constant, i.e. that

the completion time is linear, error corrected completion time

can be derived, the energy consumption calculated.

On the other hand, for Swype and STT, the prediction engine

will underline the words that could be in error. Assuming users

take t seconds to press the word and choose the right word

a list of words with similar pronunciation, a message length

L characters and an error rate e%, the average number of

words that need to be corrected can be determined. In turn the

extra time, and hence the energy taken to correct all the errors

could be determined. Finally, t can be estimated by adding

mean press duration from Fig. 3 and thinking/reaction time,

where a total number of 500ms is used in the calculation.

The results obtained using the above two methods is shown

in Fig. 8a. Comparing Fig. 8a with Fig. 5a, the error rates

of the different text input modalities do to have a significant

impact, and therefore the findings of the primary experiments

still hold.



TABLE V
CHARACTERISTICS OF DIFFERENT INPUT MODALITIES

Input
Modes

Accuracy Convenience PrivacySpeed Energy
Consumption
Short long

SK Highest Low High Fast Lowest Low

STT Lowest High Low Fastest High Lowest

SwypeMedium High High Slower Low High

V. DISCUSSION

A. Observations

This study has shown that overall, of the three text input

modalities that are commonly used, the SK has the lowest

energy consumption for short interactions. For longer interac-

tions, the STT has the lowest energy consumption. Swype on

average is the east energy efficient. The results also show that,

these findings hold true regardless of the variations in user us-

age and speaking styles, the type of access network being used,

and the type of device that is being used. There is also higher

potential for STT to have better efficiency gains than SK as

the technology improves this will make STT the most efficient

form of interaction, except for very short interactions (less

than 5 characters). Also, it is clear from the finding that, the

streaming Google STT as opposed “batch” processing Dragon

STT models have significant energy implications because of

the energy overheads of keeping the communication hardware

of the mobile device in an active state. The obvious solution

is to consider a hybrid approach where ”adaptive bundling” is

used. This warrants further investigation. Furthermore, Google

STT utilizes GPS module resulting in a 10-20% increased

power usage on average, which could be further optimized.

With the current availability of STT and Swype applications

and the trends in text based interactions of smart mobile device

users, such as messaging and social media interactions, there

will be clear choice for users from solely an energy point

of view, as most of these interaction will involve pressing a

button, or swiping the screen. However, there are many other

factors that will influence users choice of the input modality.

TABLE V provides a comparison of what we believe will be

the most important of these factors, and provides a subjective

assessment of the benefits of SK, STT, and Swype with respect

to these factors. When all the factors are taken into account,

none of the three input modalities standout as the obvious

choice. Therefore it is necessary to develop a recommendation

system that takes into account these factors and acts as guide

for the users as currently most users are unaware of the

implications specially with respect to their battery usage.

B. Limitations

There are potentially a number of limitations of the exper-

iment that were carried out. Firstly, we only considered the

input modalities with respect to English. This presents the best

case scenario, as STT and Swype engines are optimized for

English. Although it is possible that other languages provide

different results, we do not expect major impact on our

results by considering English comments only as the language

will equally affect all input modalities. Second, the sample

sizes and the user population that were used was small. This

was necessary because we needed to use the experimental

discussed in section III which required the device battery to

be “hijacked” to get fine grained energy measurements. We

attempted to mitigate this by having users of different nation-

alities (4 nationalities) and range of age groups (20-50 years)

who were regular smart mobile device users. Further we used

inputs that are representative of the type of interactions these

users would have, from published data. Therefore, despite

the sample being small, we do believe that our results are

representative. Use of a higher number of users we believe

would not significantly lead to significantly different results.

Third we only used three devices with a single operating

system, Android. Despite the differences in the three devices,

we could not see any indication that our results were device

dependent. As for the operating system, it was not possible

to carry out the same set of experiments on iOS. We believe

this is not a real limitation as the overall findings will be

applicable across platforms as the fundamental reasons for the

differences stamp from the users, applications and the use of

the different hardware components of the smart mobile device.

Finally, although, the error rates when using STT tend to be

higher than when using SK, the methodology used provides

a fair comparison for two primary reasons. (a) The accuracy

of STT is improving and (b) the power consumption of STT

at the longer lengths is significantly lower than that of SK.

Therefore, overall STT will be the most energy efficient at

longer lengths (greater than 30 characters).

VI. CONCLUSION

Energy consumption of mobile devices is dependent on the

way they are used, because different hardware components

of the devices have varying energy demands. As one of the

major uses of mobile devices requires text input, and there

are different text input modalities, the impact on energy usage

when using the different input modalities for text can be

significant.

However, determining the implications of different input

modalities is difficult as the it is dependent on the user

context, the device and the application being used. In this

paper we addressed by carrying out a comprehensive energy

measurement study of mobile text input under different user

context.

The study showed that:

• The most energy efficient input device is different de-

pending on the length of interaction. If the interactions is

short, on average less than 30 characters, using the device

soft keyboard is the most energy efficient. For longer

interactions, the use of a STT applications is more energy

efficient. Swype is more energy efficient than STT for very

short interactions on average less that 5 characters, but

is never as efficient as SK. This is primarily due to STT

enabling the users to complete tasks more quickly than

when using SK or Swype.



• The above findings are independent of the “user style”

and the experience of using any of the input modalities.

• The above findings are also independent of the device

characteristics, such as size and manufacturer. This is

due to larger devices having larger batteries, and all

devices using the components from essentially the same

manufacturers.

• The STT energy efficiency is dependent on the application

logic of whether speech samples are for a given period

of time before transmitting to a server for analysis as

opposed to streaming the speech to a sever for analysis.

It is also affected by the usage of other hardware, GPS

for instance. Of the two available STT engines, Dragon

Dictation, which uses the former method with no extra

hardware usage, results in reducing power consumption

by up to 45%. However, this has the well documented

down sides of reduced users QoE.

From above it is clear that STT energy efficiency can be

improved by using a hybrid approach where the speech sample

buffering size adaptive: initially very small, but increasing with

time to accommodate longer interactions. Hence, additional

hardware usage time could be optimized and should not be

necessary all the time. With these and the improvements in

STT accuracy that are taking place, in the future, STT will

become the most energy efficient text input modality.

In the mean time, users should be recommended to use

SK for short interactions of less than 30 characters, and

STT for longer interactions. In addition, they should use STT

applications which uses storing and transmit logic, if they are

willing to trade-off battery life to QoE.
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