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ABSTRACT

In vehicular mobile communication environments, unpre-
dictable network performance along the route of a cruising
vehicle imposes significant difficulties for many applications
to maintain the required quality of service. To address this
issue, we present the concept of geo-intelligence, which re-
duces bandwidth uncertainty by exploiting the correlation
between location and wireless network performance. Geo-
profiles are used to characterize network parameters as a
function of geographic location. These profiles are then used
to predict the expected network performance at each loca-
tion along the route. As a concrete example, we present
the design of a geo-intelligent traffic scheduler for scheduling
downlink user traffic among multiple wireless access links in
a multi-homed onboard network. Our simulations, which are
based on mobile bandwidth traces collected from real-world
experiments, reveal that geo-intelligence can significantly re-
duce packet loss experienced by multimedia applications.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms

Experimentation, Measurement, Performance

Keywords

Geo-intelligence, Traffic Scheduling, Bandwidth Predictabil-
ity, Mobile Computing

1. INTRODUCTION

It is widely known that the bandwidth of Wireless Wide
Area Network (WWAN), e.g., HSDPA, 3G, and WiMaX,
fluctuates over time and space. These variations can be at-
tributed to a variety of factors including network load, op-
erator scheduling decisions, presence of tall structures that
block line-of-sight, etc. In the context of high-speed vehic-
ular mobility, our earlier work [1] has demonstrated that
the uncertainty associated with WWAN bandwidth reduces
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significantly when observations from past trips are used to
predict bandwidth. In particular, our analysis revealed that
WWAN bandwidth is significantly more predictable when
location is used as a context. In this paper, we propose a
novel principle called geo-intelligence, which seeks to exploit
this strong correlation between location and WWAN link
behavior in a high-speed vehicular mobility scenario.

The main idea behind geo-intelligence is to characterize
wireless network performance, e.g., available bandwidth, as
a function of geographical location by conducting repeated
measurements at different locations. The measurement sam-
ples are then analyzed to create a statistical profile of the
WWAN for each individual location, which we refer to as a
geo-profile. The geo-profile captures the coupling between
WWAN performance and location and hence can be used to
predict the network behavior as a function of location. Geo-
intelligence, i.e, the ability to estimate WWAN link per-
formance at each location along a route in a fast moving
environment can be useful in several aspects of mobile com-
munication, e.g., admission control, congestion control, and
adaptive rate control.

In this paper, we put the principle of geo-intelligence to
practice in the context of on-board communication networks
and demonstrate the significant performance improvement
that can be achieved. In a typical on-board communication
network as illustrated in Fig. 1(a), a Mobile Router (MR)
seamlessly connects multiple user devices inside the vehi-
cle to the Internet. The user devices are simply plugged in
to an on-board LAN (wireless/wired) and the MR connects
this LAN to the Internet using one or more WWAN links.
The MR in conjunction with a Home Agent (HA), trans-
parently manages the mobility of all on-board devices using
the NEMO basic protocol [2]. Recently, several such com-
mercial systems (e.g., iComera', 21net?, wifirail®) have been
deployed for providing Internet services in public transport
vehicles.

The MR is usually multi-homed, i.e., the MR maintains
parallel WWAN links. Prior works [3,4] have substanti-
ated that multi-homing can improve the system capacity
and reliability by leveraging provider and technology diver-
sity. Under normal operating conditions, a large number of
user flows are active at any given time in an on-board net-
work. The HA in conjunction with the MR is responsible
for assigning individual flows to one of the WWAN links.
It is desirable that the flow scheduler effectively utilizes the
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Figure 1: Design of the geo-intelligent traffic scheduler

aggregate capacity of all WWAN links. Assigning too many
flows to one particular link can overload the link resulting
in congestion, packet loss and increased delay. On the other
hand, underutilization of a link leads to inefficient usage of
expensive resources. To avoid these problems, the sched-
uler must ideally have a priori knowledge of the capacity
of each WWAN link. This is particularly challenging in a
high-speed mobility scenario, since the capacity of WWAN
links can fluctuate significantly as the vehicle travels along
its route.

In this paper, we demonstrate how the principle of geo-
intelligence can be applied to address the aforementioned
problem by designing and testing a geo-intelligent traffic
scheduler for a multi-homed on-board network. Prior re-
search in resource scheduling for multi-homed systems [5-7]
has primarily focused on static networks, where the location
of the multi-homed network does not change. To the best
of our knowledge, this is the first attempt at addressing this
issue in the context of high-speed vehicular mobility. We
also present results from simulations using empirical WWAN
bandwidth traces collected during an extensive measurement
campaign consisting of 75 repeated trips along a 7Km route
in the Sydney metropolitan area. The simulations demon-
strate that by employing geo-intelligence in the traffic sched-
uler, packet loss experienced by multimedia flows reduces by
upto 90% as compared to the plain vanilla approach which
does not use geo-intelligence. We believe that the encourag-
ing results from this first attempt at instantiating the con-
cept of geo-intelligence will open up many other interesting
and exciting applications in high-speed mobile computing.

The rest of the paper is organized as follows. We present
the design of the geo-intelligent scheduler in Section 2. In
Section 3, we summarize the measurement campaign con-
ducted for collecting the mobile bandwidth traces. Simula-
tion results are presented in Section 4. Finally, Section 5
concludes with a discussion on future research directions.

2. GEO-INTELLIGENT SCHEDULING

In this section, we present a detailed overview of the pro-
posed geo-intelligent traffic scheduler. We focus on the down-
link traffic, given that it makes up the bulk of the traffic in
a typical on-board network. According to the NEMO ba-

sic protocol, all inbound traffic is routed through the HA as
illustrated in Fig. 1(a). As such, the downlink scheduler is
housed at the HA. Using the same concepts described herein,
one can readily develop a geo-intelligent uplink scheduler,
housed at the MR.

To demonstrate our idea, we have chosen to use the pro-
portional fair scheduling discipline [3,8,9] and incorporate
geo-intelligence. However, the same design philosophy can
be used in conjunction with any other scheduler. In a pro-
portional fair scheduler, the traffic assigned to each link is
in proportion to the available bandwidth of the correspond-
ing end-to-end path, which in the context of an on-board
network is the path between the HA and MR. It is well doc-
umented that the last hop WWAN link forms the bottleneck
along the end-to-end path between the HA and MR. Hence,
the available bandwidth on the WWAN link is representative
of the bandwidth corresponding end-to-end path. Assuming
that the total traffic load in the system is A, the flows as-
signed to link ¢ by the proportional fair scheduler would be
such that the traffic load on link ¢, \;, is given by

Hi

A S X A (1)
where fi; represents the estimated available bandwidth of
link i. However, the bandwidth of the WWAN links vary
significantly, as the vehicle cruises along its route. Hence, in
order to make a correct scheduling decision it is important
the scheduler can accurately estimate the available band-
width as the vehicle rapidly changes its location. To address
this issue, we propose to incorporate geo-intelligence into the
traffic scheduler. Geo-intelligence seeks to reduce the band-
width uncertainty by exploiting recent findings [1], which
demonstrate the strong correlation between WWAN link be-
havior and geographical location in a high-speed vehicular
mobility scenario. The main idea is to develop a charac-
terization of each WWAN link behavior as a function of
the geographical location by conducting empirical measure-
ments. The resulting geo-profiles are used to estimate the
expected network performance, e.g., available bandwidth, at

each location along the route.
In the context of the traffic scheduler, we focus on the geo-
profiles of the available bandwidth for the WWAN links. For




creating the geo-profiles, we deploy an on-line bandwidth
estimation algorithm at the HA and MR. A number of al-
gorithms that rely on either active or passive probing [10]
have been proposed. Any program that can converge to an
estimate quickly would be a suitable candidate, given the
high speed mobility of the on-board network. We have used
a simple lightweight estimation algorithm in Section 3 for
collecting empirical bandwidth traces, which can be a suit-
able candidate. The location of the vehicle is recorded by
installing a GPS receiver at the MR. As shown in Fig. 1(b),
the probed bandwidth samples are tagged with the location
coordinates and time and stored at the HA. Depending on
the granularity used to represent each location, the band-
width samples that are contained within the same location
are averaged to represent the estimated available bandwidth
for that location. The geo-profile for each location is stored
as a probability distribution function (PDF) or a raw collec-
tion of samples. The profiles are continuously updated on-
the-fly as the vehicle makes new trips. Given that WWAN
operators upgrade their equipment frequently in an effort to
improve network performance, the old samples can be aged
to ensure that the geo-profiles are an accurate representation
of the current network conditions.

The geo-profiles are used to predict the available band-
width at each location along the route. The MR periodi-
cally reports its current location to the HA. The HA then
uses the corresponding geo-profile for the WWAN links to
predict the available bandwidth at this location. Several
well-established prediction algorithms ranging from simple
order-0 to higher order stochastic models [11-14] can be em-
ployed for bandwidth prediction. Equation 1, which governs
tpe scheduling operation can now be updated as follows. Let

ul, denote the estimated bandwidth for the WWAN link ¢ at
location [. The proportional scheduler then allocates flows
to the links such that the total traffic allocated to link 3, is
given by,

1
o= P (2)
>

The flow scheduling operation is triggered when the HA is
informed about the change in the location of the on-board
network. The predictor provides the geo-intelligent sched-
uler with the updated predictions of the link bandwidths for
the current location, and the scheduler executes Equation 2
to reschedule flows. The rescheduling is also triggered in the
event that a new flow enters the system or when an existing
flow departs.
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Figure 2: An illustration of different granularities
for representing location

The granularity used to represent the geographical location
is an important system parameter and has implications on

the performance of the geo-intelligent scheduler. Figure 2
illustrates a range of possibilities. If one employs coarse
granularity, an entire geographical region such as a suburb
would correspond to a location segment. We refer to this
representation as region-level. On the other hand, one could
use an extremely fine grained representation, segment-level,
wherein a small section of the road (e.g., 500m section) cor-
responds to a location segment. In between these two ex-
tremes, is the granularity of a route, i.e. a sequence of road
segments, referred to as the route-level representation. In
our simulations presented in Section 4, we evaluate the im-
pact of using different location granularities on the perfor-
mance of the geo-intelligent scheduler.

3. MEASUREMENT CAMPAIGN

In this section, we briefly describe our empirical measure-
ment campaign for collecting WWAN bandwidth traces in
a high-speed vehicular environment. We have used these
traces in Section 4 to demonstrate the effectiveness of our
proposed scheduler using simulation-based evaluations. We
present details of the software and hardware components
and describe the field trips.
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Figure 3: Measurement setup

We developed a simple client-server measurement system,
with the server deployed at the University of New South
Wales (UNSW) on a standard RedHat Linux machine. The
client was installed in a vehicle, and comprises of two Soekris
Net4521 boards (133Mhz processor and 16MB memory),
which are interconnected via 10Mbps Ethernet and config-
ured to operate in the master and slave mode (see Figure 3).
A total of three PCMCIA cellular modems are housed in the
system, with two modems connected to the master board
and one to the slave board. To account for network and tech-
nology diversity, we selected three WWAN providers with
two providers (A and B) offering HSDPA [15] services with
different specifications and the third provider (C) supporting
a pre-WiMaX proprietary standard, iBurst [16]. The adver-
tised peak rates for A, B and C are 7.2Mbps, 3.6Mbps and
1Mbps respectively. The boards are enclosed in a protective
casing and housed in the boot of the OCEAN* vehicle. To
enhance the wireless signal reception, the modems are con-
nected to external antennas, which are mounted on the car
windshield. A Garmin GPS18 GPS sensor is installed on
the top of the vehicle and is connected to the master board
for recording the vehicle location.

We conducted an eight-month bandwidth measurement
campaign to collect the bandwidth traces. We selected a
TKM route, which originated at UNSW and terminated in
Sydney CBD. Figure 4 depicts the trajectory of the route.
Note that, the chosen route is a fairly typical representa-

“OCEAN (On-board Communication Entertainment And
informatioN) is a vehicular Internet project at UNSW.



tion of daily commute for a person who lives near UNSW
and drives to work in Sydney CBD everyday. In the eight
month period, we conducted 75 repeated trips each along
this route. The trips were randomly conducted during nor-
mal commuting hours including morning/evening rush hours
and off-peak periods.
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Figure 4: Route trajectory

We concentrated on measuring the downlink bandwidth
and implemented a simple and lightweight packet-train based
client server program, which was simultaneously run over
each WWAN link. We refer the reader to [1] for further
details on the measurement program and validation results.
We did not use continuous measurements, e.g., bandwidth
saturation test, to avoid generating large amount of network
traffic on the bandwidth expensive WWAN links. In our
measurements, we controlled the sampling interval (T") by
using the vehicle velocity (V, collected from the GPS sensor)
and geographical sampling granularity (e.g., D = 200m),
e.g., T = D/V. Thus we have collected one bandwidth
sample for approximately every 200m section of the route.
Note that, the data samples collected over one trip represent
a space-ordered sequence (i.e. ordered by locations along
the route). Occasionally, the probes used for estimating the
bandwidth were lost, leading to a few missing samples. To
deal with this occasional loss, we use 500m road segments as
the smallest resolution for representing location. The aver-
age value of the samples collected over each segment is used
to represent the bandwidth for that segment.

4. SIMULATION

In this section, we will present the results from our trace-
driven simulations. We demonstrate the performance im-
provement achieved by employing geo-intelligence in the traf-
fic scheduler in an on-board network as compared to not
making use of any location-specific knowledge. We also in-
vestigate the impact of different location granularities on the
performance of the geo-intelligent traffic scheduler.
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Figure 5: Simulation Setup

4.1 Simulation Setup

The simulations were conducted using the popular ns-2
simulator. We have simulated an on-board NEMO network

as illustrated in Figure 5. The MR maintains three paral-
lel WWAN connections, which correspond to providers A,
B and C from our empirical measurements in Section 3.
The bandwidth of the WWAN links is varied by playing
back the corresponding trace file for the 3 providers form
one particular trip. This allows us to simulate the mobil-
ity of the on-board network along the 7Km route discussed
in Section 3. We assume that the propagation delay along
each WWAN interface is 100ms. Since most wired links in
the Internet have sufficiently high capacity and small de-
lays as compared to the last-hop WWAN links, we assume
those links have a capacity of 100Mbps with a small propa-
gation delay of 10ms. We assume the on-board network is a
100Mbps LAN with an 1ms propagation delay. We assume
that the queue size at each cellular tower is 50 packets.

As in Section 2, we only consider downlink traffic. We
have simulated a scenario, wherein several on-board users
are downloading streaming audio files from certain Inter-
net servers, which are referred to as Corresponding Nodes
(CN). We assume 64Kbps constant bit rate (CBR) flows
with a fixed packet size of 180bytes, which correspond to
G771 encoded audio streams. Note that, according to the
NEMO basic protocol, all flows are routed via the HA to the
on-board network. Flow arrival follows the Poisson distribu-
tion, with a variable mean A and the duration of each flow is
exponentially distributed with mean, 3 = 180seconds. The
proportional fair flow scheduler (discussed in Section 2) is
implemented in the HA by using the ns-2 hash classifier.
Note that, as we focus on analyzing the performance of the
non-elastic multimedia flows in this paper, the flow rates
are all constant (64Kbps). Thus the flow scheduling deci-
sion can be made by simply replacing the volume of the
traffic in Equation 2 by the number of the flows. We also
assume that the HA always has the knowledge of the vehicle
location.

In our simulations, we use the simple order-0 exponential
weighted moving average (EWMA) predictor as a example
for estimating the WWAN link bandwidths from the geo-
profiles. The geo-intelligent EWMA predictor is expressed
as:

ph=ax BW! +(1—a) x (3)

, where ! is the EWMA mean bandwidth of WWAN link i
at location I, BW} is the new bandwidth sample of WWAN
link ¢ collected at location I, and « is the smoothing factor
used to phase out the stale samples. Based on our experi-
ments, we have found the prediction is more accurate with
EWMA when the smoothing factor, « is set to 0.125. Also
the prediction error becomes smaller when the geo-profile
for training contains at least 35 trips of data. Thus, we split
the bandwidth traces from our 75 trips into two halves. The
first 35 trips are exclusively used to create the geo-profiles
and train the EWMA bandwidth predictor for each WWAN
link. The second half consisting of 40 trips is used for eval-
uating the performance of the geo-traffic scheduler. We use
the packet loss rate as the performance metric in this pa-
per. We simulate each trip by varying the bandwidth of the
three WWAN links in accordance with the corresponding
traces for the trip. 40 repeated trips are simulated and the
results presented are averaged over the 40 runs achieving
over 85% confidence level for less than 5% relative preci-
sion. We assume that the on-line bandwidth predictor is
operational during each of these trips. Consequently, the



EWMA predictor update its bandwidth predictions as each
trip progresses.

We compare the performance of the geo-intelligent sched-
uler to two schemes, which do not employ geo-intelligence.
The first one is the simple round-robin (RR) flow scheduler,
which simply cycles through all the links and transmits one
flow on each link. The second scheme is a simple propor-
tional scheduler, which uses the provider advertised band-
width statistics to estimate the bandwidth of each WWAN
link. As such, we refer to this scheduler as Adv (i.e., Adver-
tised). It should be noted that these estimates are computed
a priori based on data available from the providers and are
assumed to be location invariant. Most WWAN providers
represent the expected downlink capacity for their network
as a broad range. For example, Provider A, B and C adver-
tise a range of 1500-3000 Kbps, 600-1400 Kbps and 0-1000
Kbps, respectively. For the Adv scheme, we use the mean
value of this range as the estimated capacity of each link,
i.e., 2250 Kbps, 1000 Kbps and 500 Kbps for providers A,
B and C, respectively.

We simulate three versions of the proposed geo-intelligent
traffic scheduler, each using a different location granularity:
region-level, route-level and segment-level, as discussed in
Section 2. To generate the geo-profile for the region-level,
we used the measurement apparatus from Section 3 and con-
ducted several empirical experiments to collect bandwidth
samples over the entire Sydney metropolitan area. The route
used in our simulations is entirely encompassed in this re-
gion. For the region-level, we assume that the entire 7TKM
route corresponds to location segment. For the segment
mean, we assume that a 500m section of the road corre-
sponds to a location segment. As a benchmark, we also
include a version of the geo-intelligent scheduler, Optimal
(Opt), which has perfect knowledge of the bandwidth of all
links and hence achieves the best possible performance.

region-level -

route-level
segment-level
Opt

mean loss (%)
N
9]

3 5 7 9 11 13 15
mean traffic arrival rate (flows/min)

Figure 6: Loss Rate as a function of traffic load

4.2 TImpact of Network Traffic Load

Figure 6 plots the average value of the loss rate experi-
enced over the entire route as a function of the traffic load,
A, for the different scheduling schemes. The Opt scheme il-
lustrates the best achievable performance. As expected RR
achieves poor results, since the scheduler tries to distribute
the packets equally across all interfaces, independent of the
available bandwidth of the links, thus leading to significant
packet loss when certain links are overloaded. Even the Adv
scheme performs significantly better with more than 50% re-
duction in the packet loss as compared to RR. However, all
geo-intelligent schedulers perform substantially better than
the Adv scheme. In particular, we focus on the part of the
graph where the traffic load varies from 7 to 12 flows/minute,

which corresponds to the normal operational range of the
on-board network. The region to the left denotes a lightly
loaded network and the region to the right corresponds to
the overloaded case. Since, the segment-level relies on fine-
grained statistics, it can adapt quickly to changes in the
link behavior, thus achieving performance similar to the
Opt scheme. Segment-level results in a reduction in the
loss rate by about 5-20% and 10-30% compared with the
coarse-grained route-level and region-level schemes, respec-
tively. Note that, when the network is heavily loaded, i.e.,
when A > 12, all schemes (excluding RR) expectedly achieve
similar high loss rates, due to the fact that the total incident
traffic consistently exceeds the system capacity.

In the rest of the simulations we will focus on the results
for the case when the traffic load, X is 10 flows/min, which
represents the state when the load on the system is close to
saturation on average.
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4.3 Loss Rates at Location Segments

In Fig. 6, we presented results averaged over the entire
trip. We now concentrate on the individual location seg-
ments along the route, in an effort to investigate if inter-
esting patterns emerge. We use a granularity of 500m for
each location segment. We do not include RR in this com-
parison due to its poor performance, as observed from Fig-
ure 6. The segments are labelled by ids. Figure 7 represents
the average value of the loss rate at each individual seg-
ment over the 40 trips. Observe that for all locations, the
Adv scheme consistently performs worse than all the geo-
intelligent schedulers. For example, at segments 9-11, the
segment-level reduces the packet loss by over two folds as
compared to Adv. At certain locations, e.g., location #4
and #8, the schemes with different granularities all exhibit
similar performance. However, at other locations, signifi-
cant disparities emerge amongst these schemes. For exam-
ple, at segment #10, segment-level outperforms route-level
and region-level by a factor of 4 and 6, respectively. Fig 8



highlights the difference in the performance of the different
schedulers at segment #10. These results, imply that using
finer-grained statistics can significantly improve the perfor-
mance of the scheduler at certain locations, since they allow
the scheduler to adapt quickly to changes in the link capac-
ities. Coarse-grained schemes aggregate the statistics over
a larger region and thus, are unable to accurately predict
instantaneous fluctuations and subsequently react to these
events.

S. CONCLUSION AND FUTURE WORK

In this paper, we have presented the geo-intelligence con-
cept as a solution for dealing with the significant bandwidth
variations inherent in high-speed vehicular mobile commu-
nication environment. Geo-intelligence exploits the strong
correlation between location and WWAN network perfor-
mance. Geo-profiles are used to characterize the network
parameters as a function of geographic location. These pro-
files are then be used to predict the expected network per-
formance at each location along the route. As a concrete
example, we have presented the design and implementation
of a geo-intelligent traffic scheduler for scheduling downlink
user traffic amongst multiple WWAN links in a multi-homed
on-board network. Our simulations, which are based on mo-
bile bandwidth traces collected from real-world experiments,
revealed that geo-intelligence can significantly reduce packet
loss experienced by multimedia flows.

Although our preliminary results are certainly encourag-
ing, we have not explored the bounds of performance im-
provements that could be achieved with geo-intelligence. For
example, we have used the simple EWMA algorithm for esti-
mating the bandwidth. There is opportunity to explore more
sophisticated prediction algorithms which use higher order
stochastic models such as Fixed Order-N Markovian, Vari-
able Mixed Order-N Markovian (e.g., PPM [13], Lezi [14]),
etc., and evaluate the optimal number of samples required
to train these models. While our implementation was based
on the proportional fair scheduling principle, it would be in-
teresting to evaluate whether and how much other schedul-
ing strategies, such as utility fairness, would benefit from
using geo-intelligence. It should be noted that our experi-
ments were confined to a small part of a city. More com-
prehensive experiments using many different routes through
more diverse terrains (e.g., along freeways, mountains, tun-
nels, industrial areas, etc.), preferably in different parts of
the world, would enable us to make more generalized con-
clusions about the benefits of geo-intelligence. Finally, it
would be an interesting exercise to implement a prototype
of a geo-intelligent scheduler and evaluate its performance
in a real-world setting.

With successful testing in the context of mobile multi-
homing, geo-intelligence has the potential to open up a new
direction of research in mobile computing. The ability to
predict wireless link behavior at future locations can be har-
nessed to design a new set of ge-intelligent networking algo-
rithms and protocols in high-speed mobile communication
environment. Although we exclusively focused our exper-
iments on voice over IP flows, performance evaluation of
other multimedia applications, or even elastic data applica-
tions will constitute a useful future research direction.
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