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Abstract—We study a scenario where multiple drone-mounted
base stations cruise freely over a macro hotspot to serve mobile
users on the ground. The drone base stations move constantly and
update their moving directions following our proposed mobility
control algorithm. The constant movement of drones reduces
the distance between the base stations and users, which in turn
improves the probability of having a line of sight connection. We
consider a practical user association scheme for the moving base
stations, which enables user equipments to switch their serving
base stations based only on the received signal strength. Via
extensive simulations, we demonstrate that the drone base sta-
tions moving according to our proposed algorithms can improve
the average packet throughput by 82% and the 5th-percentile
packet throughput by 430% compared to a baseline scenario,
where drones hover over fixed locations. These improvements
can be realized regardless of users’ and base stations’ density.
The constant movement of the drones also help reduce the total
number of drones required to cover the macro hotspot.

I. INTRODUCTION

Due to their ability to autonomously move to any hard-to-
reach-areas, drones or small unmanned aerial vehicles (UAVs)
are becoming a promising solution for a wide range of applica-
tions in cellular networks. For example, drones equipped with
light-weight base station (BS) hardware can act as a flying
BS, creating an attractive alternative to conventional roof-top
or pole-mounted BSs. In our research, we are leveraging the
flexibility and agility of drones to study a new breed of drone
BSs (DBSs) that can move continuously over the serving area.
Such DBSs can continuously adapt their moving directions in
order to provide higher service quality for mobile users on the
ground.

In this paper, we focus on a practical scenario, where drones
provide emergency coverage to a large area struck by disasters
that destroyed all or most of the existing cell towers in the
area. In this case, users can move around in the entire area.
We refer to such areas as macro-hotspots due to the larger
size of the area compared with conventional pico-hotspots.
For such macro-hotspots, it is more meaningful for drones to
fly over the entire area to serve as many users as they can,
instead of limiting themselves in pre-defined small areas. In
this scenario, the following challenges arise:

• Due to the free movement of DBSs over the entire service
area, a user may frequently find different DBSs available
for communication. Therefore, users should be able to
re-select their serving DBS in the network area.

• The probability of physical collision between DBSs
arises, as they are assumed to be deployed at the same
optimal altitude and can move around the entire network
freely.

• By allowing DBSs to move freely over the entire service
area, it is necessary to optimize the number of DBSs to
achieve a certain performance target at a minimum cost.

In this paper, we address all of the above mentioned
challenges. Our contributions can be summarized as follows:
• We propose a game theoretic distributed mobility control

algorithm to guide the movement of the drones in the
service area. We demonstrate that the proposed mobility
control can not only optimize the spectral efficiency of
the system, but also reduce the number of required drones
in the network. We also show that the proposed mobility
algorithm helps to prevent drones flying too close to each
other, which reduces the risk of collisions

• We propose a simple and practically realizable user
association scheme for the moving DBSs, which makes
association decisions based only on the received signal
strength.

• Using extensive simulations, we show that our proposed
user association and drone mobility control algorithms
can improve the average packet throughput by 82% and
the 5th-percentile packet throughput by 430% compared
to the baseline scenario, where drones hover over fixed
locations. These improvements can be realized regardless
of users’ and base stations’ density.

The rest of this paper is structured as follows. The related
work is reviewed in Section II. The system model is presented
in Section III, followed by performance metrics in Section IV.
We then explain our proposed drone movement algorithm in
Section V. In Section VI, the simulation results are presented.
Finally, our conclusions are drawn in Section VII.

II. RELATED WORK

In this section, we review the recent drone-related research
relevant to cellular networks.

Due to special characteristics of UAVs and drones [1],
finding a realistic and reliable path loss and fading models
is one of the basic challenges in drone communications.
Several studies demonstrate that a model that depends on the
altitude and the elevation angle of UAVs fits the best for drone
communications [2], [3], [4]. The proposed model is validated
by experiments and used in our work as well.

Additionally, due to the flexibility and mobility of drones,
authors employed them in different approaches. Deploying
one single drone at fixed altitude hovering above the target
area is addressed in [2] and [5]. It is shown that there is
an optimal altitude for one UAV to provide the maximum
coverage of the area. Another recent study by Mozaffari
et al. [6] involves finding the optimal cell boundaries and
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deployment locations for multiple non-interfering UAVs. The
objective of this study is to minimize the total transmission
power of UAVs. Moreover, authors in [7] discussed finding
the 3D optimal location for deploying a drone cell to provide
services for the maximum number of users satisfying their
SNR (Signal to Noise Ratio) constraints.

Rather than deploying UAVs in optimal location, dynamic
movement of UAVs are also investigated in the literature.
Following a predefined path, specially circular trajectory, is
one of the common mobility models for drones, addressed in
[8] and [9]. The center and the radius of circular path are
adjusted for better performance between ground users and the
UAV. Irregular movement is another way to gain benefits of
drone’s abilities [10], [11], [12]. Motion control of UAVs’
chain to improve the link capacity between two mobile nodes
is explored in [10]. Artificial Potential Field model is used to
control the speed and heading angle of UAVs. A maximum
turning angle and speed is defined for drones.

In our previous work [13], we designed drone mobility
control algorithms according to drone’s practical limitation
[14], in order to improve the performance of the cellular
network. DBS’s mobility was limited to its small cell bound-
aries, and all users in the small cell were assumed to be
associated to their local DBS all the time. we have shown
that letting drones chasing users can significantly improve
the system performance, especially the packet throughput for
cell-edge users. In this work, we employ drones in a large
area where they can move freely. Users are also allowed
to move freely in the entire networks. Considering mobile
users, multiple interfering drones, and practical limitations
on drones’ movements bring new challenges in this work. In
the following section we review the system model and our
proposed algorithm for DBSs.

III. SYSTEM MODEL

We assume there is a large network area with a size of
L(m)× L(m), which will be covered by flying DBSs. There
are U mobile users initially placed randomly in the serving
area, moving according to the Random Way Point Model
(RWP). In this model, each user selects a random destination
within the area border independent of other users and moves
there following a straight trajectory with a constant speed
selected randomly from a given range. Upon reaching the
destination, users may pause for a while before continuing to
move to another destination [15], [16], [17]. Moreover, there
are N DBSs, constantly moving in the network with a constant
speed v (m/s), at a fixed altitude of h (m). Figure 1 illustrates
the considered network scenario.

Note that, deploying drones at the same height with free
movement would cause potential collision among drones. One
alternative to avoid such collision issue is to use the height
separation technique, i.e., deploying DBSs at various heights.
However, by using height separation, drones could be deployed
at a vast range of heights, causing performance degradation for
the system. As a result, we assume all DBSs are flying at the
same height and address the possibility of collision later.

DBSs may be connected to a nearby cell tower with
wireless backhaul links. We further assume that each DBS
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Fig. 1: Considered network area with multiple mobile users
and DBSs

is transmitting data to users using a fixed transmission power
of ptx (watt), a total bandwidth B (Hz) centered on a carrier
frequency of f (Hz). It is assumed that transmissions from
DBSs can create interference up to κ meters. The interference
beyond κ meter is assumed to be negligible.

The ground distance or the two-dimensional (2D) distance
between user u (u ∈ [1, 2, . . . , U ]), and drone n (n ∈
[1, 2, . . . , N ]) is defined by the distance between the user and
the projection of the drone location onto the ground, denoted
by ru,n. The euclidean distance or the three-dimensional (3D)
distance between user u and drone n is then presented by
du,n =

√
r2u,n + h2, where h is the height of drone.

A. Channel Model

In this paper, we consider a practical path loss model incor-
porating both LoS (Line of Sight), and NLoS (Non Line of
Sight) transmissions. More specifically, the path loss function
is formulated according to a probabilistic LoS model [2],
[3], in which the probability of having a LoS connection
between a drone and its user depends on the elevation angle
of the transmission link. According to [2], the LoS probability
function can be expressed as

PLoS(u, n) =
1

1 + α× e(−β[ω−α])
, (1)

where α and β are environment-dependent constants, ω equals
to arctan(h/ru,n) in degree. Although this model is rec-
ommended by 3GPP/ITU for urban scenarios, it would still
be valid for disasters, as buildings will not be completely
destroyed for most disasters. Moreover, the ratio of built-
up land area to the total land can be changed by adjusting
the environment-dependent parameters. As a result of (1), the
probability of having a NLoS connection can be written as

PNLoS(u, n) = 1− PLoS(u, n). (2)

From (1) and (2), the path loss in dB can be modeled as

ηpath(u, n) = Apath + 10γpath log10(du,n), (3)

where the string variable “path” takes the value of “LoS”
and “NLoS” for the LoS and the NLoS cases, respectively. In
addition, Apath is the path loss at the reference distance (1
meter) and γpath is the path loss exponent, both obtainable
from field tests [18].
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B. Traffic Model

The traffic model for each user follows the 3GPP rec-
ommendation [19]. In this model, there is a reading time
interval between two subsequent user’s data packet request.
The reading time of each data packet is modeled as an
exponential distribution with a mean of λ (sec). Moreover,
the transmission time for each data packet is defined as the
time interval between the request time of a data packet and
the end of its download, denoted by τ (sec).

All data packets are assumed to have a fixed size of s
(MByte). A user is referred to as an active user during the
transmission time.

C. Communication Model

The received signal power, Spath(u, n) (watt), of an active
user u associated with drone n can be expressed by

Spath(u, n) =
bu
B
× ptx × 10

−ηpath(u,n)

10 (4)

where bu (0 ≤ bu ≤ B) is the allocated bandwidth to the user.
Moreover, the total noise power, Nu (watt), for an active

user u including the thermal noise power and the user equip-
ment noise figure, can be represented by [20]

Nu = 10
−174+δue

10 × bu × 10−3, (5)

where δue (dB) is the user equipment noise figure.
Accordingly, the Signal to Noise (SNR) and Signal to

Interference plus Noise Ratio (SINR) of user u associated to
drone n can be expressed by

SNRpath(u, n) =
Spath(u, n)

Nu
, (6)

SINRpath(u, n) =
Spath(u, n)

Iu +Nu
, (7)

where Iu =
(∑

i∈N,i6=n,ru,i≤κ S
path(u, i)

)
represents the

interference signal from neighbor DBSs received by user u.
Then, the spectral efficiency (SE) (bps/Hz) of an active user

u associated with drone n can be formulated according to the
Shannon Capacity Theorem as [21]

Φpath(u, n) = log2(1 + SINRpath(u, n)). (8)

Given the probabilistic channel model, the average SE for
user u is given by

Φ̄(u, n) = PLoS × ΦLoS(u, n) + PNLoS × ΦNLoS(u, n).
(9)

Moreover, the Throughput (bps) of a communication link
between an active user u and drone n can be formulated as

T (u, n) = bu × Φ̄(u, n). (10)

D. Drone Mobility Control

Since all DBSs are flying at the same height, we consider
their mobility in the 2D plane only. In more detail, we assume
that each drone moves continuously in the 2D plane with a
constant linear speed of v, and updates its moving direction
every tm sec, hereafter called Direction Update Interval. The
proposed continuously moving model is thus applicable to all
types of drones, with or without drone rotors.

When a drone wants to change its direction while keeping
a constant speed, it moves along an arc. More importantly,
the maximum possible turning angle θmax for a drone during

a specific time tm can be obtained by θmax =
amax × tm

v
,

where amax and v is the maximum centripetal acceleration
and the speed of drone, respectively [14], [22]. At every tm,
the DBS chooses an angle, θn, between ±[0,θmax] and starts
to complete the turn at the end of next tm sec.

E. User Association Scheme

At any particular time, a set of users are connected to a DBS.
However, when drones can move freely in the entire network
area, users can reselect their serving DBSs frequently. The set
of all active users associated to a DBS n at a specific time t is
denoted by Qn(t) (0 ≤ |Qn(t)| ≤ U ). Additionally, the total
bandwidth of B is shared equally among all associated active
users of a DBS, and the DBS updates resource allocation every
tr second, which is referred to as Resource Allocation Interval.

In the considered user association scheme, a user selects
a DBS with the highest received signal strength (RSS), and
can reselect its serving DBS every tr. There is no limitation
on the number of users that can be associated to a specific
DBS. Note that each user can independently choose its serving
DBS according to the observed RSS without any additional
information from the other users.

IV. PERFORMANCE METRICS

In this section, we define the required metrics to evaluate
the network performance.

A. Packet Throughput

The Packet Throughput, the ratio of successfully transmitted
bits over the time consumed to transmit the said data bits, can
be expressed as

P = s× 1

τ
, (11)

where s is the packet size, and τ is the transmission time.
Recall that the transmission time for each data packet is
defined as the time interval between the request time of a
data packet and the end of its download. The traffic model for
each user is shown in Figure 2.

B. 5th-Percentile Packet Throughput

In order to evaluate the performance of DBSs for the cell
edge users, the lowest 5th percentile of packet throughput
is considered, as recommended by the 3GPP [23]. Generally
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Fig. 2: The traffic model per user

speaking, a more homogeneous distribution of the user expe-
rience over the coverage area is highly desirable, and hence
improving the cell edge performance is particularly useful for
operators in practice.

C. User-to-DBS Distance

One of the main motivation of mobile DBSs is to get close
to users and shorten the distance between users and BSs. As
a result, we investigate on the user-to-DBS ground distance to
see the impact of drones mobility on it.

D. DBS-to-DBS Distance

In the free movement models, drones can fly over the entire
network area, however keeping a safe distance to avoid phys-
ical collision between DBS is also very important. Moreover,
maintaining a reasonable distance among DBSs can help to
alleviate the interference problem.

E. Probability of LoS

The probability of having a LoS connection between a
serving DBS and an active user mainly depends on the height
of the drone and the elevation angle of the transmission link.
(See Equation 1) Higher LoS probability will improve the
communication quality, results in higher network performance.
Therefore, the probability of LoS is considered as one the
performances metrics in this paper.

V. DBS MOBILITY ALGORITHM

In this paper, we propose a DBS mobility algorithms
(DMAs) that employs Game Theory to make mobility deci-
sions.

The task of a DMA is to choose turning angles for DBSs at
the start of every tm interval to improve the performance of
the system. The DBS will continue to follow the path specified
by the turning angle selected at the start of the interval for the
next tm seconds. This path cannot be changed in the middle
of tm despite any further changes in mobile user population
and traffic in the system. When there is no associated user to
a DBS, it chooses a random direction that keeps the drone in
the intended border.

To reduce the complexity of the problem, we
discretized all turning options into a finite set of

[−θmax, . . . ,−2g,−g, 0, g, 2g, . . . , θmax], where g =
2θmax
G− 1

,
with G representing the total number of turning options. Each
drone can choose its direction from G candidate ones.

In the game theory based DMA, the direction selection is
formulated as a non-cooperative game played by all serving
DBSs in the system. The game is played at the start of each

tm interval and the decisions leading to the Nash Equilibrium
(NE) are adopted by the DBSs to update their directions.
A pure NE is a convergence point where no player has an
incentive to deviate from it by changing its action. Hereafter,
we refer to this algorithm as GT DMA.

The game is described by G = (P, {Ap}, up), where P =
{1, 2, . . . , P} is the set of DBSs as players with at least one
associated active user. Ap is the set of actions (G turning
angles) for each DBS, and up is the utility function of each
DBS.

Furthermore, up : A → IR maps any member of the action
space, θ ∈ A, to a numerical real number. The action space
A is defined as the Cartesian product of the set of actions of
all players (A = A1 ×A2 × · · · ×AP ). We denote the utility
function of each player as up(θp, θ−p), where θ−p presents
the action of all players except p. The utility function for each
player is defined by the spectral efficiency of that player given
the action of all players, as follows

up(θ) = up(θp, θ−p) = Φ̄(p), (12)

where Φ̄(p) is the average SE for the active users associated
to DBS p.

In a non-cooperative game, each player independently tries
to find an action that maximizes its own utility, however its
decision is influenced by the action of other players:

θn = arg max
∀θp∈Ap

up(θp, θ−p) ∀p ∈ P. (13)

In this algorithm, at first, all drones select a random direc-
tion from their set of actions. Then each of them finds their
best response considering other players’ action that maximize
the utility function. Exhaustive search is considered to find the
best response. Finally, after few trials they all converge to a
NE point and move towards the selected directions during the
next tm interval.

VI. SIMULATION AND DISCUSSION

In this section, the performance of the DBS network where
both users and DBSs are free to move in the entire network
area is evaluated through extensive simulations by MATLAB.
In this model, the RSS-based user association scheme is
employed. The numerical results are compared against those of
non-moving DBSs, i.e., hovering over the serving area. Such
baseline scheme is referred to as the hovering (HOV) model.

In the HOV model, the total network area is reformed into
a regular grid of squares based on the number of available
DBSs. Each DBS is deployed hovering at the target height
above the centre of such squares. For example, given an area
of size 560m × 560m, and 16 available DBSs, the area is
divided into a 4×4 squares, each of size 140m × 140m. Then
a DBS is deployed above the centre of each square.

The DBS’ speed vary from 2m/s to 8m/s, with the capability
of changing direction every tm = 1s. Moreover, the current
observed drone centripetal acceleration is set to 4 m/s2 [24],
while higher centripetal acceleration are expected for future
drones.
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TABLE I: Definition of parameters and their value

Symbol Definition Value
N Number of Drones [144, 100, 49, 36,

25, 16]
B Total Bandwidth 5 MHz
U Number of Users [245, 392, 490]
h Drone Height 10 m
v Drone Speed [2, 4, 6, 8] m/s
L Length of the Network Area 560m
f Working Frequency 2 GHz
ptx Drone Transmission Power 24 dBm [18]
λ Mean Reading Time 40 sec
α, β Environmental Parameter for Urban

Area
9.61 , 0.16 [7]

γ Path Loss Exponent (LoS/NLoS) 2.09/3.75 [18]
δue UE Noise Figure 9 dB
tm Direction Update Interval 1 sec
tr Resource Allocation Slot 200 msec
κ Interference Distance 200 m
s Data Size 40MByte
G Number of Candidate Directions 21
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Fig. 3: The average packet throughput for DBSs with various
speeds and two different maximum centripetal accelerations

The recommended height of 10m [25] is selected for all
DBSs in our simulation. The number of users and their traffic
model follow the parameters recommended by the 3GPP [19]
shown in Table I. Our preliminary simulation results show
that the system performance becomes stable after 500 seconds.
As a result, we run all simulations for 800 seconds to obtain
meaningful results. Moreover, to mitigate the randomness of
the results, all results have been averaged over 10 independent
runs of 800-second simulations.

A. Impact of DBSs’ Speed and Acceleration

In this section, we fixed the number of DBSs to 49.
Moreover, the number of users in the area is 245. The DBSs
which are following our proposed GT algorithm are compared
against HOV model in terms of various performance metrics.

1) Average Packet Throughput: Figure 3 plots the average
packet throughput of the system when DBSs are moving
at various speeds, while the speed of “0” represents the
HOV scenario. From this figure, we can draw the following
observations:
• Generally speaking, the average packet throughput of the

mobile DBSs becomes larger with a higher speed. Note
that considering the working frequency and the maximum
speed of 8m/s, the Doppler effect is negligible. Moreover,
a higher acceleration generates better results than a lower
acceleration.

• Although flying the drone faster may help taking the DBS
from one location to another in less amount of time, the
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Fig. 4: The average packet throughput gain for DBSs with
various speeds and two different maximum centripetal accel-
erations
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Fig. 5: The empirical CDF of packet throughput, having 49
DBSs and 245 users

higher moving speed reduces the maximum turning angle
limiting the possible directions the DBS can move. As a
result, by having a low maximum centripetal acceleration
the system suffers from lower average packet throughput
at higher speed. However, in higher acceleration, drones
are able to enjoy both higher speed and higher maneu-
verability, and the average packet throughput increases
by increasing the drones’ speed.

• Regardless of the speed and the acceleration, the mobile
DBSs moving freely in the network area yield a con-
siderably higher average packet throughput than that of
the HOV model. The achieved gain of average packet
throughput for various speeds and accelerations are plot-
ted in Figure 4. For example, with the current drone
technology and the acceleration of 4m/s2, a remarkable
67 % gain can be achieved when DBSs are moving at
a low speed of 4m/s. By increasing the acceleration to
8m/s2, and the speed to 8m/s, an even larger performance
gain of 82 % can be obtained.

Moreover, to have a better understanding on the perfor-
mance gains, we have plotted the empirical CDF of the packet
throughput for the HOV model with the GT algorithm in
Figure 5. For the GT algorithm, drones are flying with the
speed of 6m/s with two different acceleration of 4m/s2 and
8m/s2, respectively. This figure shows that the GT algorithms
noticeably pushes the packet throughput CDF to the right
compared to the HOV model. Additionally, it can be observed
that a higher acceleration has led to a larger packet throughput.

2) 5th-Percentile Packet Throughput: The 5th-percentile
packet throughput and the achievable gain are compared to
HOV model, and plotted in Figure 6 and 7, respectively. From
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Fig. 6: 5th-percentile packet throughput for DBSs with various
speeds and two different accelerations
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Fig. 7: 5th-percentile packet throughput gain for DBSs with
various speeds and two different accelerations

these two figures, we can draw the following observations:
• The 5th-percentile packet throughput improves as the

DBSs’ speed and acceleration increase.
• According to Figure 7, there is a large performance gain

in terms of the 5th-percentile packet throughput, reaching
up to 343 % and 430 % improvement with the existing
consumer drones (an acceleration of 4m/s2) and the fu-
ture drones (an acceleration of 8m/s2), respectively. This
is because our algorithm allows drones to move to the
vicinity of users, while hovering drones are stationary at
pre-defined locations and thus cannot deliver satisfactory
QoS to cell-edge users.

We also summarized the 50th-percentile and 95th-percentile
packet throughput [in Mbps] along with the achieved gain
in Table II and Table III, respectively. Both Table II and
Table III indicate that mobile DBSs following our proposed

TABLE II: 50th-percentile packet throughput and the achieved
gain

Speed/Acceleration 4 m/s2 8 m/s2

2m/s 6.86 (99.4%) 6.96 (102.3%)
4m/s 7.52 (118.6%) 7.9 (129.6%)
6m/s 7.46 (116.8%) 8.34 (142.4%)
8m/s 6.86 (99.4%) 8.4 (144.1%)

TABLE III: 95th-percentile packet throughput and the
achieved gain

Speed/Acceleration 4 m/s2 8 m/s2

2m/s 24.86 (26.5%) 624.7 (25.7%)
4m/s 25.56 (30.1%) 25.7(31.1%)
6m/s 25.68 (30.7%) 26.2 (33.6%)
8m/s 24.7 (25.7%) 26.4 (34.4%)
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Fig. 8: The average user to DBS ground distance as a function
of DBSs’ speed and acceleration
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Fig. 9: Empirical CDF of the probability of LoS connection
for the HOV model with the GT algorithm

GT algorithm can achieve a remarkable gain comparing to
the scenario where base stations are hovering above fixed
locations. Generally speaking, a higher acceleration generates
a higher gain as well.

3) User to DBS Distance: The goal of designing mobility
algorithms for DBSs is to reduce the distance between users
and the serving BS. Therefore, in this subsection, we show
how the DBS-to-user distance reduces with mobile DBSs.

We collected the ground distance statistics between any
active user and its corresponding DBS during the entire
simulation time. Figure 8 shows the average ground distances
for the proposed algorithm and the baseline model, where
drones are moving at various speeds. The results are plotted
for two different accelerations as well, i.e., 4m/s2 and 8m/s2.
According to this figure, there is a substantial reduction in the
average user-to-DBS distance, reaching up to 33% and 38%
reduction with the existing consumer drones (an acceleration
of 4m/s2), and the future drones (an acceleration of 8m/s2),
respectively.

4) Probability of LoS: Having a LoS link between a user
and a DBS will greatly improve the communication perfor-
mance. In the proposed model, DBSs are adapting themselves
in a way to increase the probability of having a LoS link.
Figure 9 exhibits the CDF of the probability of LoS for any
communication link between active users and their serving
DBSs during the simulation time. In this figure, drones are
moving at the speed of 6m/s. According to this figure, the
proposed GT algorithm successfully pushes the CDF rightward
compared against the HOV scenario. Moreover, it shows that
a higher acceleration outperforms a lower one in terms of
the probability of having LoS communications. Having a
LoS communication depends on the elevation angle of the
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Fig. 10: Empirical CDF of the elevation angle for GT and
HOV

0 1 2 3 4 5 6 7 8

Speed [m/s]

3

4

5

6

7

8

9

10

Av
er

ag
e 

Pa
ck

et
 T

hr
ou

gh
pu

t[M
bp

s]

245 user
392 user
490 user

Fig. 11: The average packet throughput for different user
density

transmission link. Therefore, in Figure 10 we show the CDF
of the elevation angle the for the proposed GT algorithm and
the baseline model, where drones are moving at the speed of
6m/s for the GT algorithm, given two different accelerations.
Similar to the probability of LoS, the GT algorithm, effectively
pushes the elevation angle CDF to the right side. Having larger
elevation angles means that the BS has reduced the distance to
the user and try to position itself on top of the user’s location.

B. Impact of User Density

In this section, we change the number of users in the same
network area to see how DBSs perform having a different
number of users.

Figure 11 illustrates the average packet throughput for the
HOV model with the GT algorithm, when there are 49 DBSs in
the network area. Three different user densities are considered
in this figure. From Figure 11, the following observations can
be drawn:
• Given a fixed number of DBSs, increasing the number of

users in the network area decreases the average packet
throughput. The reason is that a large number of users
have more requests to be served by the DBSs; as a
result, each DBS needs to transmit a longer time than
the case with a less number of users in the area. More
transmissions by DBSs create more interference, and
thus reduces the system performance. Such conclusion
is corroborated by the results in Figure 12. This figure
presents the empirical CDF of interference when DBSs
are moving at the speed of 4m/s. According to this
figure, having 490 users creates more interference than
having 392 and 245 users. Additionally, we summarize
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Fig. 12: The empirical CDF of interference for different user
density

TABLE IV: Average percentage of transmission time for
drones during the simulation time

Density/Model HOV GT(speed = 2m/s) GT (speed = 8m/s)
245 Users 55.7% 41.2% 38.9%
392 Users 74.6% 64.6% 63.6%
490 Users 82% 75.9% 76.1%

the average percentage of transmission time for DBSs
during the simulation time in Table IV. This table verifies
that the average transmission time for drones increases
noticeably as the user density grows. For example, the
average transmission time for drones moving at the speed
of 2m/s in the GT algorithm increases from 41.2 % to
75.9 % as the number of users increases from 245 to 490.

• Regardless of the number of users in the area, the pro-
posed flying DBSs outperforms the baseline HOV model
considerably in term of the average packet throughput.
For instance, having DBSs with a speed of merely 2m/s,
yields a gain of 68 % and 71 % for a DBS network with
392 and 490 users, respectively.

C. Impact of Number of DBSs

When DBSs and users can move freely in the entire
network area, there is no physical constraint on the number
of deployed DBSs. As a result, we conduct simulations with
different number of DBSs in the area and evaluate the packet
throughput. Moreover, the results are compared against the
HOV model, where the same number of DBSs are deployed
in the network, hovering at the centre of considered grids.
We first set the number of users to 245. From Figure 13, the
following observations can be drawn:
• The average packet throughput reduces as the number of

deployed DBSs decreases in the network. By having a
less number of DBSs in the area, each DBS needs to
serve a larger number of users; thus the average packet
throughput reduces. The variation of the number of active
users served by DBSs during the simulation time is
plotted in Figure 14. In this figure, the median number of
served users is plotted using a red line in a box for each
number of DBSs in the area. Moreover, the variations
are shown in + symbol in red color. As it can be seen
from this figure, there is a possibility of serving 60 users
by one DBS in the case of deploying 16 DBSs in the
network area. On the other hand, a drone may serve up
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Fig. 13: Average packet throughput as a function of number
of DBSs with 245 users

Fig. 14: Variation of associated users to DBSs as a function
of number of DBSs with 245 users

to 7 users when 144 DBSs are available in the network
area.

• Utilizing the mobility features of drones provides an
exciting opportunity to reduce the number of required
BSs in the network. As shown in Figure 13, having
36 flying DBSs can achieve a similar packet throughput
performance to that of 49 fixed hovering DBSs.

• For a given number of DBSs, mobile DBSs following
our proposed algorithm can bring a huge improvement in
terms of packet throughput compared to the same number
of hovering DBSs. However, the obtained gain could be
different depending on the number of available DBSs.
To see how the achieved average packet throughput gain
varies with various number of DBSs, we plot the gain in
Figure 15.

As can be seen from Figure 15, one interesting finding is
that the performance gain increases at first, however it wanes
when the number of DBSs is larger than 36. This figure
indicates that the highest performance gain can be obtained by
36 DBSs in the area. Through dense deployment of DBSs (e.g.,
144 DBSs), there is less chance for DBSs to move around. As
a result, they cannot provide a high performance gain.

Figure 15 also presents the gains as a function of drones’
speed. It indicates that regardless of the speed of drones, the
highest performance gain can be achieved by 36 DBSs when
there are 245 users in the network area.

To see how the gain varies by the change of the user number,
we also plot the achievable gain for variable number of DBSs
when there are 392 users in the network area in Figure 16.
Interestingly, this figure shows that the optimal number of
DBSs to achieve the maximum gain is 49 DBSs, when there
are 392 users in the network.
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Fig. 15: Average packet throughput gain as a function of
number of DBSs with 245 users
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Fig. 16: Average packet throughput gain as a function of
number of DBSs with 392 users

From Figure 15 and Figure 16, it can be concluded that there
is an optimal number of DBSs to achieve the maximum gain
in the network area. However, such optimal number depends
on the user density. It shows that with a higher user density,
a higher DBS density is needed to achieve the maximum
gain. The reason is that with too few DBSs the gain of DBS
mobility is limited because of the large BS-to-user distance.
On the other hand, with too many DBSs the baseline scheme of
hovering is already good enough. Therefore, the movement of
drones does not make a large difference. The relation between
the optimal DBS number and the user density is left for future
work.

We also provide the moving trajectory of DBSs in the entire
network area during the simulation time to see how they chase
the users in the network. According to Figure 17, mobile DBSs
can leverage their mobility in order to cover the entire area and
provide high quality services for the users even if the density
is low.

D. The DBSs Collision Issue

Note that when drones are moving freely at the same height,
they may collide with each other. To study the probability
of collision, we analyze the DBS-to-DBS distance during the
simulation time. Figure 18 illustrates the CDF of such DBS-to-
DBS distance for the free movement models. As can be seen
from this figure, the intelligent movement of drones maintains
a comfortable distance among the DBSs. The intuition is that
in the proposed algorithm, each DBS tends to be closer to
its serving users, and farther away from interfering DBSs.
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Therefore, the possibility of having two drones flying in close
proximity is extremely low, which helps to prevent drones
coming too close to each other. As shown in Figure 18, the
probability that the DBS-to-DBS distance is less than 10m, is
well below 10−3 even for dense DBSs deployment.

VII. CONCLUSION

In this paper, we considered a macro hotspot scenario, where
both flying DBSs and users can move freely in the entire
network area. The flying DBSs serve as many users as they
can based on the received signal strength. We shows that
by freeing up the DBSs and letting them cruise in the net-
work, a significantly large system throughput can be achieved.
This enormous performance is the result of an intelligent
and effective control mobility algorithm and a practical user
association scheme. Moreover, by allowing DBSs to move
freely, the opportunity to deploy a less number of DBSs
becomes promising. The performance impact of the DBS and
user densities have also been studied in this paper.
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